Abstract Formulation of the Miura Transform †
Abstract
:1. Introduction
2. Operator Logarithm as Nonlinear Transform
2.1. Nonlinear Transform Associated with the Riccati’s Equation
2.2. Miura Transform and Cole-Hopf Transform
2.3. Logarithmic Representation of Infinitesimal Generators
3. Main Result
3.1. Generalization of Miura Transform
3.2. Second Order Abstract Evolution Equations
4. Conclusions
- it is not only the transform between the KdV and mKdV equations;
- the spatial dimension of the equation is not necessarily equal to 1;
- the differential in Equation (12) is not necessarily for the spatial variable x;
Funding
Acknowledgments
Conflicts of Interest
References
- Benia, Y.; Scapellato, A. Existence of solution to Korteweg-de Vries equation in a non-parabolic domain. Nonlinear Anal. 2020, 195, 111758. [Google Scholar] [CrossRef]
- Ruggieri, M.; Speciale, M.P. Quasi self-adjoint coupled KdV-like equations. AIP Conf. Proc. 2013, 1558, 1220–1223. [Google Scholar]
- Miura, R. Korteweg-de Vries Equation and Generalizations. I. A Remarkable Explicit Nonlinear Transformation. J. Math. Phys. 1968, 9, 1202–1204. [Google Scholar] [CrossRef]
- Cole, D. On a quasi-linear parabolic equation occurring in aerodynamics. Q. Appl. Math. 1951, 9, 225–236. [Google Scholar] [CrossRef] [Green Version]
- Hopf, E. The partial differential equation ut + uux = μuxx. Commun. Pure Appl. Math. 1950, 3, 201–230. [Google Scholar] [CrossRef]
- Iwata, Y. Abstract formulation of the Cole-Hopf transform. Methods Funct. Anal. Topol. 2019, 25, 142–151. [Google Scholar]
- Hirota, R. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 1971, 27, 1192–1194. [Google Scholar] [CrossRef]
- Jackson, E.A. Perspectives of Nonlinear Dynamics Vols. I and II; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Kato, T. Linear evolution equation of “hyperbolic” type. J. Fac. Sci. Univ. Tokyo 1970, 17, 241–258. [Google Scholar] [CrossRef]
- Kato, T. Linear evolution equation of “hyperbolic” type II. J. Math. Soc. Jpn. 1973, 25, 648–666. [Google Scholar] [CrossRef]
- Kato, T. Perturbation Theory for Linear Operators; Springer: Berlin/Heidelberg, Germany, 1966. [Google Scholar]
- Tanabe, H. Equations of Evolution; Pitman: London, UK, 1979. [Google Scholar]
- Yosida, K. Functional Analysis; Springer: Berlin/Heidelberg, Germany, 1965. [Google Scholar]
- Iwata, Y. Infinitesimal generators of invertible evolution families. Methods Funct. Anal. Topol. 2017, 23, 26–36. [Google Scholar] [CrossRef] [Green Version]
- Iwata, Y. Alternative infinitesimal generator of invertible evolution families. J. Appl. Math. Phys. 2017, 5, 822–830. [Google Scholar] [CrossRef] [Green Version]
- Iwata, Y. Theory of B(X)-module. arXiv 2019, arXiv:1907.08767. [Google Scholar]
- Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Iwata, Y. Relativistic formulation of abstract evolution equations. AIP Conf. Proc. 2019, 2075, 100007. [Google Scholar]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwata, Y. Abstract Formulation of the Miura Transform. Mathematics 2020, 8, 747. https://doi.org/10.3390/math8050747
Iwata Y. Abstract Formulation of the Miura Transform. Mathematics. 2020; 8(5):747. https://doi.org/10.3390/math8050747
Chicago/Turabian StyleIwata, Yoritaka. 2020. "Abstract Formulation of the Miura Transform" Mathematics 8, no. 5: 747. https://doi.org/10.3390/math8050747
APA StyleIwata, Y. (2020). Abstract Formulation of the Miura Transform. Mathematics, 8(5), 747. https://doi.org/10.3390/math8050747