On Periodic Points of the Order of Appearance in the Fibonacci Sequence
Abstract
:1. Introduction
- -
- ;
- -
- ;
- -
- ;
- -
- ;
2. Auxiliary Results
3. The Proof of The Theorem
Case
Case
4. Conclusions
Funding
Conflicts of Interest
References
- Koshy, T. Fibonacci and Lucas Numbers with Applications; Wiley: New York, NY, USA, 2001. [Google Scholar]
- Vorobiev, N.N. Fibonacci Numbers; Dover Publications: New York, NY, USA, 2013. [Google Scholar]
- Kalman, D.; Mena, R. The Fibonacci Numbers–Exposed. Math. Mag. 2003, 76, 167–181. [Google Scholar]
- Benjamin, A.; Quinn, J. The Fibonacci numbers–Exposed more discretely. Math. Mag. 2003, 76, 182–192. [Google Scholar]
- Gabai, H. Generalized Fibonacci k-sequences. Fibonacci Quart. 1970, 8, 31–38. [Google Scholar]
- Dresden, G.P.B.; Du, Z. A Simplified Binet Formula for k-Generalized Fibonacci Numbers. J. Integer Seq. 2014, 17, 14.4.7. [Google Scholar]
- Chen, Z.; Qi, L. Some Convolution Formulae Related to the Second-Order Linear Recurrence Sequence. Symmetry 2019, 11, 788. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Lv, X. Some New Identities of Second Order Linear Recurrence Sequences. Symmetry 2019, 11, 1496. [Google Scholar] [CrossRef] [Green Version]
- Marques, D.; Trojovský, P. On characteristic polynomial of higher order generalized Jacobsthal numbers. Adv. Differ. Equ. 2019, 2019, 392. [Google Scholar] [CrossRef]
- Lucas, E. Théorie des fonctions numériques simplement périodiques. Am. J. Math. 1878, 1, 184–240, 289–321. [Google Scholar] [CrossRef] [Green Version]
- Robin, G. Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann. J. Math. Pures Appl. 1984, 63, 187–213. [Google Scholar]
- Sallé, H.J.A. A Maximum value for the rank of apparition of integers in recursive sequences. Fibonacci Quart. 1975, 13, 159–161. [Google Scholar]
- Sun, Z.H.; Sun, Z.W. Fibonacci numbers and Fermat’s last theorem. Acta Arith. 1992, 60, 371–388. [Google Scholar] [CrossRef] [Green Version]
- Marques, D. Fixed points of the order of appearance in the Fibonacci sequence. Fibonacci Quart. 2012, 50, 346–352. [Google Scholar]
- Somer, L.; Křížek, M. Fixed points and upper bounds for the rank of appearance in Lucas sequences. Fibonacci Quart. 2013, 51, 291–306. [Google Scholar]
- Trojovský, P. On Diophantine equations related to order of appearance in Fibonacci sequence. Mathematics 2019, 7, 1073. [Google Scholar] [CrossRef] [Green Version]
- Trojovská, E. On the Diophantine Equation z(n)=(2-1/k)n Involving the Order of Appearance in the Fibonacci Sequence. Mathematics 2020, 8, 124. [Google Scholar] [CrossRef] [Green Version]
- Luca, F.; Tron, E. The distribution of self-Fibonacci divisors. In Advances in the Theory of Numbers; Springer: New York, NY, USA, 2015; pp. 149–158. [Google Scholar]
- Mariana Montiel, M.; Peck, R.W. Mathematical Music Theory: Algebraic, Geometric, Combinatorial, Topological and Applied Approaches to Understanding Musical Phenomena; World Scientific: Singapore, 2019. [Google Scholar]
- Fulton, J.D.; Morris, W.L. On arithmetical functions related to the Fibonacci numbers. Acta Arith. 1969, 16, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Halton, J.H. On the divisibility properties of Fibonacci numbers. Fibonacci Quart. 1966, 4, 217–240. [Google Scholar]
- Lengyel, T. The order of the Fibonacci and Lucas numbers. Fibonacci Quart. 1995, 33, 234–239. [Google Scholar]
- Kreutz, A.; Lelis, J.; Marques, D.; Silva, E.; Trojovský, P. The p-adic order of the k-Fibonacci and k-Lucas numbers. p-Adic Numbers, Ultrametr. Anal. Appl. 2017, 9, 15–21. [Google Scholar] [CrossRef]
- Marques, D.; Trojovský, P. The p-adic order of some Fibonomial Coefficients. J. Integer Seq. 2015, 18, 15.3.1. [Google Scholar]
- Phunphayap, P.; Pongsriiam, P. Explicit Formulas for the p-adic Valuations of Fibonomial Coefficients. J. Integer Seq. 2018, 21, 3. [Google Scholar]
- Marques, D. Sharper upper bounds for the order of appearance in the Fibonacci sequence. Fibonacci Quart. 2013, 51, 233–238. [Google Scholar]
- Klaška, J. Donald Dines Conjecture. Fibonacci Quart. 2018, 56, 43–51. [Google Scholar]
- Renault, M. Properties of the Fibonacci Sequence under Various Moduli. Master’s Thesis, Wake Forest University, Winston-Salem, NC, USA, 1996. Available online: http://webspace.ship.edu/msrenault/fibonacci/FibThesis.pdf (accessed on 10 March 2020).
n | n | n | n | n | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 1 | 11 | 10 | 21 | 8 | 31 | 30 | 41 | 20 |
2 | 3 | 12 | 12 | 22 | 30 | 32 | 24 | 42 | 24 |
3 | 4 | 13 | 7 | 23 | 24 | 33 | 20 | 43 | 44 |
4 | 6 | 14 | 24 | 24 | 12 | 34 | 9 | 44 | 30 |
5 | 5 | 15 | 20 | 25 | 25 | 35 | 40 | 45 | 60 |
6 | 12 | 16 | 12 | 26 | 21 | 36 | 12 | 46 | 24 |
7 | 8 | 17 | 9 | 27 | 36 | 37 | 19 | 47 | 16 |
8 | 6 | 18 | 12 | 28 | 24 | 38 | 18 | 48 | 12 |
9 | 12 | 19 | 18 | 29 | 14 | 39 | 28 | 49 | 56 |
10 | 15 | 20 | 30 | 30 | 60 | 40 | 30 | 50 | 75 |
k | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
Color of points in Figure 1 | red | orange | yellow | green | cyan | blue | magenta | purple | pink | brown |
13 | 520 | 6248 | 17,988 | 16,282 | 6672 | 1796 | 418 | 53 | 10 | |
0.03 | 1.04 | 12.50 | 35.98 | 32.56 | 13.34 | 3.59 | 0.84 | 0.11 | 0.02 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trojovská, E. On Periodic Points of the Order of Appearance in the Fibonacci Sequence. Mathematics 2020, 8, 773. https://doi.org/10.3390/math8050773
Trojovská E. On Periodic Points of the Order of Appearance in the Fibonacci Sequence. Mathematics. 2020; 8(5):773. https://doi.org/10.3390/math8050773
Chicago/Turabian StyleTrojovská, Eva. 2020. "On Periodic Points of the Order of Appearance in the Fibonacci Sequence" Mathematics 8, no. 5: 773. https://doi.org/10.3390/math8050773
APA StyleTrojovská, E. (2020). On Periodic Points of the Order of Appearance in the Fibonacci Sequence. Mathematics, 8(5), 773. https://doi.org/10.3390/math8050773