Subclasses of Bi-Univalent Functions Defined by Frasin Differential Operator
Abstract
:1. Introduction and Definitions
2. Coefficient Bounds for the Function Class
3. Coefficient Bounds for the Function Class
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Frasin, B.A. A new differential operator of analytic functions involving binomial series. Bol. Soc. Paran. Mat. 2020, 38, 205–213. [Google Scholar] [CrossRef]
- Al-Hawary, T.; Frasin, B.A.; Yousef, F. Coefficient estimates for certain classes of analytic functions of complex order. Afr. Mat. 2018, 29, 1265–1271. [Google Scholar] [CrossRef]
- Wanas, A.K.; Frasin, B.A. Strong differential sandwich results for Frasin operator. Earthline J. Math. Sci. 2020, 3, 95–104. [Google Scholar] [CrossRef]
- Yousef, F.; Al-Hawary, T.; Murugusundaramoorthy, G. Fekete-Szegö functional problems for some subclasses of bi-univalent functions defined by Frasin differential operator. Afr. Mat. 2019, 30, 495–503. [Google Scholar] [CrossRef]
- Al-Oboudi, F.M. On univalent functions defined by a generalized Sălăgean operator. Int. J. Math. Math. Sci. 2004, 2004, 1429–1436. [Google Scholar] [CrossRef] [Green Version]
- Sãlãgean, G. Subclasses of univalent functions. In Complex Analysis—Fifth Romanian-Finnish Seminar; Springer: Berlin/Heidelberg, Germany, 1983; pp. 362–372. [Google Scholar]
- Frasin, B.A. Coefficient inequalities for certain classes of Sakaguchi type functions. Int. J. Nonlinear Sci. 2010, 10, 206–211. [Google Scholar]
- Owa, S.; Sekine, T.; Yamakawa, R. On Sakaguchi type functions. App. Math. Comp 2007, 356–361. [Google Scholar] [CrossRef]
- Sakaguchi, K. On a certain univalent mapping. J. Math. Soc. Jpn. 1959, 11, 72–75. [Google Scholar] [CrossRef]
- Cho, N.E.; Kwon, O.S.; Owa, S. Certain subclasses of Sakaguchi functions. SEA Bull. Math. 1993, 17, 121–126. [Google Scholar]
- Owa, S.; Sekine, T.; Yamakawa, R. Notes on Sakaguchi functions. RIMS Kokyuroku 2005, 1414, 76–82. [Google Scholar]
- Duren, P.L. Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Lewin, M. On a coeffcient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Brannan, D.A.; Taha, T.S. On some classes of bi-univalent functions. In Mathematical Analysis and Its Applications; Pergamon Press: Pergamon, Turkey, 1988; pp. 53–60. [Google Scholar]
- Taha, T.S. Topics in Univalent Function Theory. Ph.D. Thesis, University of London, London, UK, 1981. [Google Scholar]
- Brannan, D.A.; Clunie, J.; Kirwan, W.E. Coefficient estimates for a class of starlike functions. Canad. J. Math. 1970, 22, 476–485. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and biunivalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
- Bulut, S. Coefficient estimates for a class of analytic and biunivalent functions. Novi Sad J. Math. 2013, 43, 59–65. [Google Scholar]
- Cağlar, M.; Orhan, H.; Yağmur, N. Coefficient bounds for new subclasses of bi-univalent functions. Filomat 2013, 27, 1165–1171. [Google Scholar] [CrossRef] [Green Version]
- Crisan, O. Coefficient estimates for certain subclasses of bi-univalent functions. Gen. Math. Notes 2013, 16, 93–102. [Google Scholar]
- Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2013, 2, 49–60. [Google Scholar] [CrossRef]
- Frasin, B.A. Coefficient bounds for certain classes of bi-univalent functions. Hacettepe J. Math. Stat. 2014, 43, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Frasin, B.A.; Al-Hawary, T. Initial Maclaurin Coefficients Bounds for New Subclasses of Bi-univalent Functions. Theory App. Math. Comp. Sci. 2015, 5, 186–193. [Google Scholar]
- Frasin, B.A.; Al-Hawary, T.; Yousef, F. Necessary and sufficient conditions for hypergeometric functions to be in a subclass of analytic functions. Afr. Mat. 2019, 30, 223–230. [Google Scholar] [CrossRef]
- Goyal, S.P.; Goswami, P. Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives. J. Egyp. Math. Soc. 2012, 20, 179–182. [Google Scholar] [CrossRef] [Green Version]
- Hayami, T.; Owa, S. Coefficient bounds for bi-univalent functions. Pan Am. Math. J. 2012, 22, 15–26. [Google Scholar]
- Li, X.-F.; Wang, A.-P. Two new subclasses of bi-univalent functions. Int. Math. Forum. 2012, 7, 1495–1504. [Google Scholar]
- Magesh, N.; Yamini, J. Coefficient bounds for certain subclasses of bi-univalent functions. Int. Math. Forum 2013, 8, 1337–1344. [Google Scholar] [CrossRef] [Green Version]
- Yousef, F.; Al-Hawary, T.; Frasin, B.A. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials. Filomat 2018, 32, 3229–3236. [Google Scholar] [CrossRef]
- Yousef, F.; Alroud, S.; Illafe, M. A comprehensive subclass of bi-univalent functions associated with Chebyshev polynomials of the second kind. Bol. Soc. Mat. Mex. 2019. [Google Scholar] [CrossRef] [Green Version]
- Porwal, S.; Darus, M. On a new subclass of bi-univalent functions. J. Egyp. Math. Soc. 2013, 21, 190–193. [Google Scholar] [CrossRef] [Green Version]
- Murugusundaramoorthy, G.; Magesh, N.; Prameela, V. Coefficient bounds for certain subclasses of bi-univalent functions. Abs. App. Ana. 2013, 2013, 573017. [Google Scholar] [CrossRef] [Green Version]
- Pommerenke, C. Univalent Functions; Vandenhoeck and Rupercht: Gottingen, Germany, 1975. [Google Scholar]
- Shang, Y. Emergence in random noisy environments. Int. J. Math. Ana. 2010, 4, 1205–1215. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldawish, I.; Al-Hawary, T.; Frasin, B.A. Subclasses of Bi-Univalent Functions Defined by Frasin Differential Operator. Mathematics 2020, 8, 783. https://doi.org/10.3390/math8050783
Aldawish I, Al-Hawary T, Frasin BA. Subclasses of Bi-Univalent Functions Defined by Frasin Differential Operator. Mathematics. 2020; 8(5):783. https://doi.org/10.3390/math8050783
Chicago/Turabian StyleAldawish, Ibtisam, Tariq Al-Hawary, and B. A. Frasin. 2020. "Subclasses of Bi-Univalent Functions Defined by Frasin Differential Operator" Mathematics 8, no. 5: 783. https://doi.org/10.3390/math8050783
APA StyleAldawish, I., Al-Hawary, T., & Frasin, B. A. (2020). Subclasses of Bi-Univalent Functions Defined by Frasin Differential Operator. Mathematics, 8(5), 783. https://doi.org/10.3390/math8050783