On The Third-Order Complex Differential Inequalities of ξ-Generalized-Hurwitz–Lerch Zeta Functions
Abstract
:1. Introduction and Terminology
2. Imposed Linear Integral Operator
- For and in Equation (27), we yield the Ruscheweyh operator given in Equation (9).
- For , and , the operator Equation (27) reduce to the Noor operator defined by Equation (11).
- For , , the operator Equation (27), we have the extended Noor operator given by Equation (13).
- For , and , the operator Equation (27) provides the Noor-type integral operator defined by [65].
- For , and , the operator Equation (27) provides the Noor integral operator given in [66].
- For , and , the operator Equation (27) reduce to the generalized Noor-type linear integral operator defined in [67].
- For and , the operator Equation (27) reduce to Alexander operator given in Equation (6).
- For and , the operator Equation (27) is reduced to given by Equation (2).
3. Differential Subordination with
4. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Duren, P.L. Univalent Functions; Springer: New York, NY, USA, 1983. [Google Scholar]
- Koebe, P. Über die Uniformisierung beliebiger analytischer kurven. Nachrichten Ges. Wiss. Göttingen. Math. Phys. Kl. 1907, 1907, 191–210. [Google Scholar]
- Koebe, P. Über eine neue Methode der konformen Abbildung und Uniformisierung. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen Mathematisch-Physikalische Klasse 1912, 1912, 844–848. [Google Scholar]
- Goodman, A.W. Univalent Functions, I; Mariner: Tampa, FL, USA, 1983. [Google Scholar]
- Littlewood, J.E. On equalities in the theory of functions. Proc. Lond. Math. Soc. 1925, 23, 481–519. [Google Scholar] [CrossRef]
- Littlewood, J.E. Lectures on the Theory of Functions; Oxford University Press: Oxford, UK; London, UK, 1944. [Google Scholar]
- Rogosinski, W. On subordinate functions. Proc. Camb. Philos. Soc. 1939, 35, 1–26. [Google Scholar] [CrossRef]
- Rogosinski, W. On the coefficients of subordinate functions. Proc. London Math. Soc. 1945, 48, 48–82. [Google Scholar] [CrossRef]
- Goluzin, G.M. On the majorization principle in function theory (Russian). Dokl. Akad. Nauk. SSSR 1953, 42, 647–650. [Google Scholar]
- Suffridge, T.J. Some remarks on convex maps of the unit disk. Duke Math. J. 1970, 37, 775–777. [Google Scholar] [CrossRef]
- Robinson, R.M. Univalent majorants. Trans. Am. Math. Soc. 1947, 61, 1–35. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Michigan Math. J. 1981, 28, 157–171. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. On some classes of first order differential subordinations. Michigan Math. J. 1985, 32, 185–195. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential subordinations and inequalities in the complex plane. J. Differ. Eqns. 1987, 67, 199–211. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.S.; Mocanu, P.T. The theory and applications of second-order differential subordinations. Studia Univ. Babeş-Bolyai Math. 1989, 34, 3–33. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. A Special Differential Subordination and Its Application to Univalency Conditions. In Current Topics in Analytic Function Theory; World Scientific: Singapore; London, UK, 1992; pp. 171–185. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Briot-Bouquet differential equations and differential subordinations. Complex Var. 1997, 33, 217–237. [Google Scholar] [CrossRef]
- Ponnusamy, S.; Juneja, O.P. Third-Order Differential Inequalities in the Complex Plane. In Current Topics in Analytic Function Theory; World Scientific: Singapore; London, UK, 1992. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Marcel Dekker: New York, NY, USA, 2000. [Google Scholar]
- Antonino, J.A.; Miller, S.S. Third-order differential inequalities and subordinations in the complex plane. Complex Var. Appl. 2011, 56, 439–454. [Google Scholar] [CrossRef]
- Tang, H.; Srivastiva, H.M.; Li, S.; Ma, L. Third-order differential subordinations and superordination results for meromorphically multivalent functions associated with the Liu-Srivastava Operator. Abstr. Appl. Anal. 2014, 2014, 1–11. [Google Scholar] [CrossRef]
- Tang, H.; Deniz, E. Third-order differential subordinations results for analytic functions involving the generalized Bessel functions. Acta Math. Sci. 2014, 6, 1707–1719. [Google Scholar] [CrossRef]
- Farzana, H.A.; Stephen, B.A.; Jeyaraman, M.P. Certain third-order differential subordination and superordination results of meromorphic multivalent functions. Asia Pacific J. Math. 2015, 2, 76–87. [Google Scholar]
- Tang, H.; Srivastiva, H.M.; Deniz, E.; Li, S.-H. Third-order differential superordination involving the generalized Bessel functions. Bull. Malay. Math. Soc. 2015, 38, 1669–1688. [Google Scholar] [CrossRef]
- Ibrahim, R.W.; Ahmad, M.Z.; Al-Janaby, H.F. The Third-Order Differential Subordination and Superordination involving a fractional operator. Open Math. 2015, 13, 706–728. [Google Scholar] [CrossRef] [Green Version]
- El-Ashwah, R.M.; Hassan, A.H. Some third-order differential subordination and superordination results of some meromorphic functions using a Hurwitz-Lerech Zeta type operator. Ilirias J. Math. 2015, 4, 1–15. [Google Scholar]
- El-Ashwah, R.M.; Hassan, A.A. Third-order differential subordination and superordination results by using Fox-Wright generalized hypergeometric function. Func. Anal. TMA 2016, 2, 34–51. [Google Scholar]
- Attiya, A.A.; Kwon, O.S.; Hyang, P.J.; Cho, N.E. An integrodifferential operator for meromorphic functions associated with the Hurwitz–Lerch Zeta function. Filomat 2016, 30, 2045–2057. [Google Scholar] [CrossRef] [Green Version]
- Rǎducanu, D. Third-order differential subordinations for analytic functions associated with generalized Mittag-Leffler functions. Mediterr. J. Math. 2017, 14, 1–18. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Prajapati, A.; Gochhayat, P. Third-order differential subordination and differential superordination results for analytic functions involving the Srivastava-Attiya operator. Appl. Math. Inf. Sci. 2018, 12, 469–481. [Google Scholar] [CrossRef]
- Gochhayat, P.; Prajapati, A. Applications of third order differential subordination and superordination involving generalized Struve function. Filomat 2019, 33, 3047–3059. [Google Scholar] [CrossRef]
- Alexander, J.W. Functions which map the interior of the unit circle upon simple regions. Ann. Math. 1915, 17, 12–22. [Google Scholar] [CrossRef]
- Libera, R.J. Some classes of regular univalent functions. Proc. Am. Math. Soc. 1965, 16, 755–758. [Google Scholar] [CrossRef]
- Bernardi, S.D. Convex and starlike univalent functions. Trans. Am. Math. Soc. 1969, 135, 429–446. [Google Scholar] [CrossRef]
- Ruscheweyh, S. New criteria for univalent functions. Proc. Am. Math. Soc. 1975, 49, 109–115. [Google Scholar] [CrossRef]
- Noor, K.L. On new classes of integral operators. J. Nat. Geom. 1999, 16, 71–80. [Google Scholar]
- Cho, N.E.; Saigo, M.; Srivastava, H.M. Some inclusion properties of a certain family of integral operators. J. Math. Anal. Appl. 2002, 276, 432–445. [Google Scholar] [CrossRef]
- Liu, J.-L.; Noor, K.I. Some properties of noor integral operator. J. Nat. Geom. 2002, 21, 81–90. [Google Scholar]
- Branges, L.D. A proof of the Bieberbach conjecture. Acta Math. 1984, 154, 137–152. [Google Scholar] [CrossRef]
- Al-Janay, H.F.; Ghanim, F. On Subclass Noor-Type Harmonic Multivalent Functions Based on Hypergeometric Functions. Kragujev. J. Math. 2020, 45, 499–519. [Google Scholar]
- Al-Janaby, H.F.; Ghanim, F.; Ahmad, M.Z. Harmonic Multivalent Functions Associated with an Extended Generalized Linear Operator of Noor-type. J. Nonlinear Funct. Anal. Appl. 2019, 24, 269–292. [Google Scholar]
- Al-Janaby, H.F.; Ghanim, F.; Agarwal, P. Geometric Studies on Inequalities of Harmonic Functions in a Complex Field Based on ξ-Generalized Hurwitz–Lerch Zeta Function. Iran. J. Math. Sci. Inform. 2020. accepted. [Google Scholar]
- Al-Janay, H.F.; Ghanim, F.; Darus, M. Some Geometric Properties of Integral Operators Proposed by Hurwitz–Lerch Zeta Function. IOP Conf. Ser. J. Phys. Conf. Ser. 2019, 1212, 1–6. [Google Scholar]
- Ghanim, F. Study of a certain subclass of Hurwitz–Lerch zeta function related to a linear operator. Abstr. Appl. Anal. 2013, 2013, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ghanim, F.; Darus, M. New result of analytic functions related to Hurwitz-zeta function. Sci. World J. 2013, 2013, 1–5. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F. A Certain Subclass of Univalent Meromorphic Functions Defined by a Linear Operator Associated with the Hurwitz–Lerch Zeta Function. Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 2019, 23, 71–83. [Google Scholar] [CrossRef]
- Rǎducanu, D.; Srivastava, H.M. A new class of analytic functions defined by means of a convolution operator involving the Hurwitz–Lerch zeta function. Integr. Trans. Spec. Funct. 2007, 18, 933–943. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Attiya, A.A. An integral operator associated with the Hurwitz–Lerch zeta function and differential subordination. Integr. Trans. Spec. Funct. 2007, 18, 207–216. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gaboury, S.A.; Ghanim, F. Certain subclasses of meromorphically univalent functions defined by a linear operator associated with the λ-generalized Hurwitz–Lerch zeta function. Integr. Transf. Spec. Funct. 2015, 26, 258–272. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gaboury, S.A.; Ghanim, F. Some further properties of a linear operator associated with the λ-generalized Hurwitz–Lerch zeta function related to the class of meromorphically univalent functions. Appl. Math. Comput. 2015, 259, 1019–1029. [Google Scholar]
- Xing, S.C.; Jose, L.L. A note on the asymptotic expansion of the Lerch’s transcendent. Integr. Trans. Spec. Funct. 2019, 30, 844–855. [Google Scholar]
- Choi, J.; Srivastava, H.M. The Multiple Hurwitz Zeta Function and the Multiple Hurwitz-Euler Eta Function. Taiwan J. Math. 2011, 15, 501–522. [Google Scholar] [CrossRef]
- Milovanovic, G.V.; Rassias, M.T. (Eds.) Analytic Number Theory, Approximation Theory and Special Functions—In Honor of Hari M. Srivastava; Springer: Basel, Switzerland, 2014. [Google Scholar]
- Rassias, M.T.; Yang, B. On an Equivalent Property of a Reverse Hilbert-Type Integral Inequality Related to the Extended Hurwitz-Zeta Function. J. Math. Inequal. 2019, 13, 315–334. [Google Scholar] [CrossRef] [Green Version]
- Rassias, M.T.; Yang, B. On a Hilbert-type integral inequality related to the extended Hurwitz zeta function in the whole plane. Acta Appl. Math. 2019, 160, 67–80. [Google Scholar] [CrossRef]
- Rassias, M.T.; Yang, B. Equivalent properties of a Hilbert-type integral inequality with the best constant factor related to the Hurwitz zeta function. Ann. Funct. Anal. 2018, 9, 282–295. [Google Scholar] [CrossRef]
- Rassias, M.T.; Yang, B.; Raigorodskii, A. Two Kinds of the Reverse Hardy-Type Integral Inequalities with the Equivalent Forms Related to the Extended Riemann Zeta Function. Appl. Anal. Discret. Math. 2018, 12, 273–296. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Choi, J. Series Associated with Zeta and Related Functions; Kluwer Academic Publishers: Dordrecht, Germany, 2001. [Google Scholar]
- Srivastava, H.M. Some formulas for the Bernoulli and Euler polynomials at rational arguments. Math. Proc. Camb. Philos. Soc. 2000, 129, 77–84. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Choi, J. Zeta and q-zeta Functions and Associated Series and Integrals; Elsevier Science Publishers: Amsterdam, The Netherland, 2012. [Google Scholar]
- Srivastava, H.M. A new family of the λ-generalized Hurwitz–Lerch zeta functions with applications. Appl. Math. Inf. Sci. 2014, 8, 1485–1500. [Google Scholar] [CrossRef]
- Mathai, A.M.; Saxena, R.K.; Haubold, H.J. The H-function: Theory and applications; Springer: New York, NY, USA, 2010. [Google Scholar]
- Srivastava, H.M.; Gupta, K.C.; Goyal, S.P. The H-functions of One and Two Variables with Applications; South Asian Publishers: New Delhi, India, 1982. [Google Scholar]
- Srivastava, H.M.; Gaboury, S.; Tremblay, R. New relations involving an extended multiparameter Hurwitz–Lerch zeta function with applications. Int. J. Anal. 2014, 2014, 1–14. [Google Scholar] [CrossRef]
- Cho, N.E.; Kwon, O.S.; Srivastava, H.M. Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators. J. Math. Anal. Appl. 2004, 292, 470–483. [Google Scholar] [CrossRef] [Green Version]
- Noor, K.L. Integral operators defined by convolution with hypergeometric functions. Appl. Math. Comput. 2006, 182, 1872–1881. [Google Scholar] [CrossRef]
- Darus, M.; Ibrahim, R.W. Integral operator defined by convolution product of hypergeometric functions. Int. J. Nonlinear Sci. 2012, 13, 153–157. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Janaby, H.; Ghanim, F.; Darus, M. On The Third-Order Complex Differential Inequalities of ξ-Generalized-Hurwitz–Lerch Zeta Functions. Mathematics 2020, 8, 845. https://doi.org/10.3390/math8050845
Al-Janaby H, Ghanim F, Darus M. On The Third-Order Complex Differential Inequalities of ξ-Generalized-Hurwitz–Lerch Zeta Functions. Mathematics. 2020; 8(5):845. https://doi.org/10.3390/math8050845
Chicago/Turabian StyleAl-Janaby, Hiba, Firas Ghanim, and Maslina Darus. 2020. "On The Third-Order Complex Differential Inequalities of ξ-Generalized-Hurwitz–Lerch Zeta Functions" Mathematics 8, no. 5: 845. https://doi.org/10.3390/math8050845
APA StyleAl-Janaby, H., Ghanim, F., & Darus, M. (2020). On The Third-Order Complex Differential Inequalities of ξ-Generalized-Hurwitz–Lerch Zeta Functions. Mathematics, 8(5), 845. https://doi.org/10.3390/math8050845