Rate of Convergence and Periodicity of the Expected Population Structure of Markov Systems that Live in a General State Space
Abstract
:1. Introductory Notes
2. The Markov System in a General State Space
2.1. The Foundation of an MSGS
2.2. An Abstract Image for MSGS
2.3. Introducing Some Important Concepts and Known Results
3. Rate of Convergence of MSGS
4. Asymptotic Periodicity of an MSGS
5. Total Variability from the Invariant Measures in the Periodic Case. Coupling Theorems
6. Conclusions and Further Research
Funding
Conflicts of Interest
References
- Vassiliou, P.-C.G. Asymptotic behaviour of Markov systems. J. Appl. Probab. 1982, 19, 851–857. [Google Scholar] [CrossRef]
- Vassiliou, P.-C.G. and Papadopoulou, A.A. Nonhomogeneous semi-Markov systems and maintainability of the state sizes. J. Appl. Probab. 1992, 29, 519–534. [Google Scholar] [CrossRef]
- Vassiliou, P.-C.G. The evolution of the theory of non-homogeneous Markov systems. Appl. Stoch. Models Data Anal. 1997, 13, 159–176. [Google Scholar] [CrossRef]
- Ugwuogo, F.I.; Mc Clean, S.I. Modelling heterogeneity in manpower systems: A review. Appl. Stoch. Models Bus. Ind. 2000, 2, 99–110. [Google Scholar] [CrossRef]
- Young, A.; Almond, G. Predicting distributions of staff. Comput. J. 1961, 3, 246–250. [Google Scholar] [CrossRef] [Green Version]
- Bartholomew, D.J. A multistage renewal process. J. R. Stat. Soc. B 1963, 25, 150–168. [Google Scholar]
- Bartholomew, D.J. Stochastic Models for Social Processes; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Young, A.; Vassiliou, P.-C.G. A non-linear model on the promotion of staff. J. R. Stat. Soc. A 1974, 138, 584–595. [Google Scholar] [CrossRef]
- Vassiliou, P.-C.G. A markov model for wastage in manpower systems. Oper. Res. Quart. 1976, 27, 57–70. [Google Scholar] [CrossRef]
- Vassiliou, P.-C.G. A high order non-linear Markovian model for promotion in manpower systems. J. R. Stat. Soc. A 1978, 141, 86–94. [Google Scholar] [CrossRef]
- Mathew, E.; Foucher, Y.; Dellamonika, P. Daures, J.-P. Parametric and Non-Homogeneous Semi-Markov Process for HIV Control; Working paper; Archer Hospital: Nice, France, 2006. [Google Scholar]
- Foucher, Y.; Mathew, E.; Saint Pierre, P.; Durant, J.-F.; Daures, J.P. A semi-Markov model based on generalized Weibull distribution with an illustration for HIV disease. Biom. J. 2005, 47, 825–833. [Google Scholar] [CrossRef]
- Dessie, Z.G. Modeling of HIV/AIDS dynamic evolution using non-homogeneous semi-Markov process. Springerplus 2014, 3, 537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saint Pierre, P. Modelles multi-etas de type Markovien et Application a la Astme. Ph.D. Thesis, University of Monpellier I, Montpellier, France, 2005. [Google Scholar]
- Barbu, V.; Boussement, M.; Limnios, N. Discrete-time semi Markov model for reliability and survival analysis. Commun. Stat. Theory Methods 2004, 33, 2833–2886. [Google Scholar] [CrossRef]
- Perez-Ocon, R.; Castro, J.E.R. A semi-Markov model in biomedical studies. Commun. Stat. Theory Methods 2004, 33, 437–455. [Google Scholar]
- Ocana-Riola, R. Non-homogeneous Markov process for biomedical data analysis. Biom. J. 2005, 47, 369–376. [Google Scholar] [CrossRef] [PubMed]
- McClean, S.I.; Scotney, B.; Robinson, S. Conceptual clustering of heterogeneous gene expression sequences. Artif. Intell. Rev. 2003, 20, 53–73. [Google Scholar] [CrossRef]
- Papadopoulou, A.A. Some results on modeling biological sequences and web navigation with a semi-Markov chain. Commun. Stat.Theory Methods 2013, 41, 2853–2871. [Google Scholar] [CrossRef]
- De Freyter, T. Modelling heterogeneity in manpower planning: Dividing the personel system in more homogeneous subgroups. Appl. Stoch. Model. Bus. Ind. 2006, 22, 321–334. [Google Scholar] [CrossRef]
- Nilakantan, K.; Raghavendra, B.G. Control aspects in proportionality Markov manpower systems. Appl. Stoch. Models Data Anal. 2005, 7, 27–341. [Google Scholar] [CrossRef]
- Yadavalli, V.S.S.; Natarajan, R.; Udayabhaskaram, S. Optimal training policy for promotion-stochastic models of manpower systems. Electron. Publ. 2002, 13, 13–23. [Google Scholar] [CrossRef]
- Sen Gupta, A.; Ugwuogo, F.L. Modelling multi-stage processes through multivariate distributions. J. Appl. Stat. 2006, 33, 175–187. [Google Scholar] [CrossRef]
- De Freyter, T.; Guerry, M. Markov manpower models: A review. In Handbook of Optimization Theory: Decision Analysis and Applications; Varela, J., Acuidja, S., Eds.; Nova Science Publishers: Hauppauge, NY, USA, 2011; pp. 67–88. [Google Scholar]
- Guerry, M.A. Some results on the Embeddable problem for discrete time Markov models. Commun. Stat. Theory Methods 2014, 43, 1575–1584. [Google Scholar] [CrossRef]
- Crooks, G.E. Path ensemble averages in system driven far from equilibrium. Phys. Rev. E 2000, 61, 2361–2366. [Google Scholar] [CrossRef] [Green Version]
- Patoucheas, P.D.; Stamou, G. Non-homogeneous Markovian models in ecological modelling: A study of the zoobenthos dynamics in Thermaikos Gulf, Greece. Ecol. Model. 1993, 66, 197–215. [Google Scholar] [CrossRef]
- Faddy, M.J.; McClean, S.I. Markov chain for geriatric patient care. Methods Inf. Med. 2005, 44, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Gournescu, F.; McClean, S.I.; Millard, P.H. A queueing model for bed-occupancy management and planning of hospitals. J. Oper. Res. Soc. 2002, 53, 19–24. [Google Scholar] [CrossRef]
- Gournescu, F.; McClean, S.I.; Millard, P.H. Using a queueing model to help plan bed allocation in a department of geriatric medicine. Health Care Manag. Sci. 2002, 5, 307–312. [Google Scholar] [CrossRef]
- Marshall, A.H.; McClean, S.I. Using Coxian phase-type distributions to identify patient characteristics for duration of stay in hospital. Health Care Manag. Sci. 2004, 7, 285–289. [Google Scholar] [CrossRef]
- McClean, S.I.; Millard, P. Where to treat the older patient? Can Markov models help us better understand the relationship between hospital and community care. J. Oper. Res. Soc. 2007, 58, 255–261. [Google Scholar] [CrossRef]
- Vassiliou, P.-C.G. Markov systems in a General State Space. Commun. Stat.-Theory Methods 2014, 43, 1322–1339. [Google Scholar] [CrossRef]
- Meyn, S.; Tweedie, R.L. Markov Chains and Stochastic Stability; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Tsaklidis, G.M.; Vassiliou, P.-C.G. Asymptotic periodicity of the variances and covariances of the state sizes in non-homogeneous Markov systems. J. Appl. Probab. 1988, 25, 21–33. [Google Scholar] [CrossRef]
- Georgiou, A.C.; Vassiliou, P.-C.G. Periodicity of asymptotically attainable structures in non-homogeneous Markov systems. Linear Algebra Its Appl. 1992, 176, 137–174. [Google Scholar] [CrossRef] [Green Version]
- Doeblin, W. Sur les proprietes asymptotiques de mouvement regis par cerain types de chaines simples. Bull. Math. Soc. Roum. Sci. 1937, 39, 57–115. [Google Scholar]
- Doeblin, W. Elements d’une theorie general des chaines simple constantes de Markov. Ann. Sci. l’Ecole. Norm. Super. 1940, 57, 61–111. [Google Scholar] [CrossRef] [Green Version]
- Doob, J.L. Stochastic Processes; John Wiley: New York, NY, USA, 1953. [Google Scholar]
- Harris, T.E. The existence of stationary measures for certain Markov processes. In Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley, CA, USA, 1956; Volume 2, pp. 113–124. [Google Scholar]
- Orey, S. Recurrent Markov chains. Pacific J. Math. 1959, 9, 805–827. [Google Scholar] [CrossRef] [Green Version]
- Tweedie, R.L. R-theory for Markov chains on a general state space I: Solidarity properties and R-recurrent chains. Adv. Appl. Probab. 1974, 2, 840–864. [Google Scholar] [CrossRef]
- Tweedie, R.L. R-theory for Markov chains on a general state space II: R-subinvariant measures for R-transient chains. Adv. Appl. Probab. 1974, 2, 865–878. [Google Scholar] [CrossRef]
- Tweedie, R.L. Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space. Stoch. Proc. Appl. 1975, 3, 385–403. [Google Scholar] [CrossRef] [Green Version]
- Vassiliou, P.-C.G. Exotic properties of non-homogeneous Markov and semi-Markov systems. Commun. Stat.-Theory Methods 2013, 42, 2971–2990. [Google Scholar] [CrossRef]
- Vassiliou, P.-C.G.; Tsaklidis, G.M. On the rate of convergence of the vector of variances and covariances in non-homogeneous Markov systems. J. Appl. Probab. 1989, 26, 776–783. [Google Scholar] [CrossRef]
- Orey, S. Limit Theorems for Markov Chain Transition Probabilities; Van Nostrand Reinhold: London, UK, 1971. [Google Scholar]
- Hajnal, J. The ergodic properties of non-homogeneous finite Markov chains. Proc. Camb. Philos. Soci. 1956, 52, 67–77. [Google Scholar] [CrossRef]
- Hajnal, J. Weak ergodicity in non-homogeneous Markov chains. Proc. Camb. Philos. Soc. 1958, 54, 233–246. [Google Scholar] [CrossRef]
- Hajnal, J. Shuffling with two matrices. Contemp. Math. 1993, 149, 271–287. [Google Scholar]
- Dobrushin, R.L. Central limit theorem for non-stationary Markov chains, I, II. Theory Probab. Its Appl. 1956, 1, 65–80. [Google Scholar] [CrossRef]
- Nummelin, E. General Irreducible Markov chains and Nonnegative Operators; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Howard, R.A. Dynamic Probabilistic Systems; Wiley: Chichester, UK, 1971; Volumes I and II. [Google Scholar]
- Hunter, J.J. Mathematical Techniques of Applied Probability; Academic Press: Cambridge, MA, USA, 1983. [Google Scholar]
- Vassiliou, P.-C.G. On the limiting behavior of a non-homogeneous Markov chain model in manpower systems. Biometrika 1981, 68, 557–561. [Google Scholar]
- Papadopoulou, A.A.; Vassiliou, P.-C.G. Asymptotic behaviour of non-homogeneous Markov systems. Linear Algebra Its Appl. 1994, 210, 153–198. [Google Scholar] [CrossRef] [Green Version]
- Vassiliou, P.-C.G. Onn the periodicity of non-homogeneous Markov chains and systems. Linear Algebra Its Appl. 2015, 471, 654–684. [Google Scholar] [CrossRef]
- Lindvall, T. Lectures on the Coupling Method; John Wiley: Hoboken, NJ, USA, 1992. [Google Scholar]
- Vassiliou, P.-C.G. Laws of Large numbers for non-homogeneous Markov systems. Methodol. Comput. Appl. Probab. 2018, 1–28. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vassiliou, P.-C.G. Rate of Convergence and Periodicity of the Expected Population Structure of Markov Systems that Live in a General State Space. Mathematics 2020, 8, 1021. https://doi.org/10.3390/math8061021
Vassiliou P-CG. Rate of Convergence and Periodicity of the Expected Population Structure of Markov Systems that Live in a General State Space. Mathematics. 2020; 8(6):1021. https://doi.org/10.3390/math8061021
Chicago/Turabian StyleVassiliou, P. -C. G. 2020. "Rate of Convergence and Periodicity of the Expected Population Structure of Markov Systems that Live in a General State Space" Mathematics 8, no. 6: 1021. https://doi.org/10.3390/math8061021
APA StyleVassiliou, P. -C. G. (2020). Rate of Convergence and Periodicity of the Expected Population Structure of Markov Systems that Live in a General State Space. Mathematics, 8(6), 1021. https://doi.org/10.3390/math8061021