Decompositions of Weakly Compact Valued Integrable Multifunctions
Abstract
:1. Introduction
2. Preliminaries
3. Intersections
- 1.
- directly from the definitions and the Rådström embedding, a multifunctionis Birkhoff (resp. Henstock, McShane, variationally Henstock) integrable if and only ifis integrable in the same sense. For the Pettis integrability this is not true. However, for Bochner measurable multifunctions, we have that sinceis separable for the Hausdorff distance and then G is Pettis integrable if and only ifis Pettis integrable ([26] (Proposition 4.5)), so we have( for strongly measurable vector valued functions, Pettis, McShane and Birkhoff integrability coincide (see [44] (Corollary 4C) and [45] (Theorem 10)).
- 2.
- 3.
- 4.
4. Decompositions
- (1)
- Existence of a selection of Γ integrable in the same sense as Γ.
- (2)
- A particular behaviour with respect to the integration of a positive multifunction.
- (i)
- (ii)
- (iii)
- (iv)
- (i)
- If G is Henstock integrable (resp.-integrable) and positive, then it is also McShane (resp. Birkhoff) integrable on(see [18] (Proposition 3.1));
- (ii)
- If G is variationally Henstock integrable and positive, then G is Birkhoff integrable (see [17] (Proposition 4.1));
- (iii)
- If G is HKP (resp.) integrable and positive, then G is Pettis integrable (see [31] (Lemma 1)).
- The notation means that each element of V can be represented as , where f is a selection of belonging to the class and G is a member of the class . And conversely, if and , then .
- The inclusion means that if and , then . While means that if and , then but there are elements of V that cannot be represented as , where and f is a selection of belonging to . Clearly, one has always but, if zero function is not a selection of then this is not what we are looking for.
- The inclusion means that each element of V can be represented as , where f is a selection of belonging to the class and G is a member of the class . While means additionally that sometimes for properly chosen G and f.
- Question tag indicates that we do not know something.
- 1.
- -cell and-cell: Multifunction Γ that is Henstock integrable but not-integrable cannot be decomposed aswith Birkhoff integrable G. G is only McShane integrable.
- 2.
- -cell: Multifunction Γ that is-integrable but not-integrable cannot be represented aswith Birkhoff and-integrable G.
- 3.
- The Henstock (resp.) integrability of G, together witha.e. implies that G is McShane integrable (resp.) by [18] (Proposition 3.1) and then the characterization any class of Γ is contained in the MS androws.
- 4.
- 5.
- -cell: Let f be McShane integrable with. Define Γ by. The multifunction Γ is McShane integrable and the integral of each scalarly measurable selection of Γ is of infinite variation.
- 6.
- and-cells: The same as in (5) but with a Birkhoff integrable function.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Balder, E.J.; Sambucini, A.R. Fatou’s lemma for multifunctions with unbounded values in a dual space. J. Convex Anal. 2005, 12, 383–395. [Google Scholar]
- Cichoń, K.; Cichoń, M. Some Applications of Nonabsolute Integrals in the Theory of Differential Inclusions in Banach Spaces. In Vector Measures, Integration and Related Topics; Curbera, G.P., Mockenhaupt, G., Ricker, W.J., Eds.; Operator Theory: Advances and Applications; BirHauser-Verlag: Basel, Switzerland, 2010; Volume 201, pp. 115–124. ISBN 978-3-0346-0210-5. [Google Scholar]
- Di Piazza, L.; Marraffa, V.; Satco, B. Set valued integrability and measurability in non separable Fréchet spaces and applications. Math. Slovaca 2016, 66, 1119–1138. [Google Scholar] [CrossRef] [Green Version]
- Di Piazza, L.; Marraffa, V.; Satco, B. Closure properties for integral problems driven by regulated functions via convergence results. J. Math. Anal. Appl. 2018, 466, 690–710. [Google Scholar] [CrossRef]
- Di Piazza, L.; Satco, B. A new result on impulsive differential equations involving non-absolutely convergent integrals. J. Math. Anal. Appl. 2009, 352, 954–963. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Papageorgiou, N.S. Handbook of Multivalued Analysis I and II. In Mathematics and Its Applications, 419; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1997. [Google Scholar]
- Labuschagne, C.C.A.; Marraffa, V. On spaces of Bochner and Pettis integrable functions and their set-valued counterparts. Nonlinear Math. Uncertainty Appl. AISC 2011, 100, 51–59. [Google Scholar]
- Kudo, H. Dependent experiments and sufficient statistics. Nat. Sci. Rep. Ochanomizu Univ. 1954, 4, 151–163. [Google Scholar]
- Richter, H. Verallgemeinerung eines in der Statistik benötigten Satzes der Masstheorie, (German). Math. Ann. 1963, 150, 85–90. [Google Scholar] [CrossRef]
- Shang, Y. The limit behavior of a stochastic logistic model with individual time-dependent rates. J. Math. 2013, 2013, 1–8. [Google Scholar] [CrossRef]
- Boccuto, A.; Candeloro, D.; Sambucini, A.R. Henstock multivalued integrability in Banach lattices with respect to pointwise non atomic measures. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 2015, 26, 363–383. [Google Scholar] [CrossRef] [Green Version]
- Boccuto, A.; Sambucini, A.R. A note on comparison between Birkhoff and McShane-type integrals for multifunctions. Real Anal. Exch. 2011, 37, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Bongiorno, B.; Di Piazza, L.; Musiał, K. A variational Henstock integral characterization of the Radon-Nikodym property. Ill. J. Math. 2009, 53, 87–99. [Google Scholar] [CrossRef]
- Boxer, L. Multivalued Functions in Digital Topology. Note di Matematica 2017, 37, 61–76. [Google Scholar] [CrossRef]
- Candeloro, D.; Croitoru, A.; Gavrilut, A.; Sambucini, A.R. An extension of the Birkhoff integrability for multifunctions. Mediterr. J. Math. 2016, 13, 2551–2575. [Google Scholar] [CrossRef]
- Candeloro, D.; Croitoru, A.; Gavrilut, A.; Iosif, A.; Sambucini, A.R. Properties of the Riemann-Lebesgue integrability in the non-additive case. Rend. Circ. Mat. Palermo II Ser. 2019. [Google Scholar] [CrossRef]
- Candeloro, D.; Di Piazza, L.; Musiał, K.; Sambucini, A.R. Gauge integrals and selections of weakly compact valued multifunctions. J. Math. Anal. Appl. 2016, 441, 293–308. [Google Scholar] [CrossRef] [Green Version]
- Candeloro, D.; Di Piazza, L.; Musiał, K.; Sambucini, A.R. Relations among gauge and Pettis integrals for multifunctions with weakly compact convex values. Annali di Matematica 2018, 197, 171–183. [Google Scholar] [CrossRef] [Green Version]
- Candeloro, D.; Di Piazza, L.; Musiał, K.; Sambucini, A.R. Some new results on integration for multifunction. Ricerche Mat. 2018, 67, 361–372. [Google Scholar] [CrossRef] [Green Version]
- Candeloro, D.; Di Piazza, L.; Musiał, K.; Sambucini, A.R. Multifunctions determined by integrable functions. Inter. J. Approx. Reason. 2019, 112, 140–148. [Google Scholar] [CrossRef] [Green Version]
- Candeloro, D.; Di Piazza, L.; Musiał, K.; Sambucini, A.R. Integration of multifunctions with closed convex values in arbitrary Banach spaces. in press J. Convex Anal. 2020, 27. [Google Scholar]
- Candeloro, D.; Sambucini, A.R. A Girsanov result through Birkhoff integral. In Computational Science and Its Applications ICCSA; Gervasi, O., Murgante, B., Misra, S., Stankova, E., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E., Ryu, Y., Eds.; LNCS 10960; Springer: Cham, Switzerland, 2018; pp. 676–683. [Google Scholar]
- Candeloro, D.; Sambucini, A.R.; Trastulli, L. A vector Girsanov result and its applications to conditional measures via the Birkhoff integrability. Mediterr. J. Math. 2019, 16, 144. [Google Scholar] [CrossRef] [Green Version]
- Caponetti, D.; Marraffa, V.; Naralenkov, K. On the integration of Riemann-measurable vector-valued functions. Monatsh. Math. 2017, 182, 513–536. [Google Scholar] [CrossRef]
- Cascales, C.; Kadets, V.; Rodríguez, J. Birkhoff integral for multi-valued functions. J. Math. Anal. Appl. 2004, 297, 540–560. [Google Scholar] [CrossRef] [Green Version]
- Cascales, C.; Kadets, V.; Rodríguez, J. Measurable selectors and set-valued Pettis integral in non-separable Banach spaces. J. Funct. Anal. 2009, 256, 673–699. [Google Scholar] [CrossRef] [Green Version]
- Cascales, C.; Kadets, V.; Rodríguez, J. The Gelfand integral for multi-valued functions. J. Convex Anal. 2011, 18, 873–895. [Google Scholar]
- D’Aniello, E.; Mauriello, M. Some Types of Composition Operators on Some Spaces of Functions. arXiv 2020, arXiv:2005.07735. [Google Scholar]
- Di Piazza, L.; Marraffa, V.; Musiał, K. Variational Henstock integrability of Banach space valued function. Math. Bohem. 2016, 141, 287–296. [Google Scholar] [CrossRef] [Green Version]
- Di Piazza, L.; Musiał, K. A decomposition theorem for compact-valued Henstock integral. Monatsh. Math. 2006, 148, 119–126. [Google Scholar] [CrossRef]
- Di Piazza, L.; Musiał, K. A decomposition of Denjoy-Khintchine-Pettis and Henstock-Kurzweil-Pettis integrable multifunctions. In Vector Measures, Integration and Related Topics; Curbera, G.P., Mockenhaupt, G., Ricker, W.J., Eds.; Operator Theory: Advances and Applications; Birkhauser Verlag: Basel, Switzerland, 2009; Volume 201, pp. 171–182. [Google Scholar]
- Di Piazza, L.; Musiał, K. Henstock-Kurzweil-Pettis integrability of compact valued multifunctions with values in an arbitrary Banach space. J. Math. Anal. Appl. 2013, 408, 452–464. [Google Scholar] [CrossRef]
- Di Piazza, L.; Musiał, K. Relations among Henstock, McShane and Pettis integrals for multifunctions with compact convex values. Monatsh. Math. 2014, 173, 459–470. [Google Scholar] [CrossRef]
- Di Piazza, L.; Porcello, G. Radon-Nikodym theorems for finitely additive multimeasures. Z. Anal. Ihre. Anwend. (ZAA) 2015, 34, 373–389. [Google Scholar] [CrossRef]
- Kaliaj, S.B. The New Extensions of the Henstock–Kurzweil and the McShane Integrals of Vector-Valued Functions. Mediterr. J. Math. 2018, 15, 22. [Google Scholar] [CrossRef]
- Musiał, K. Pettis Integrability of Multifunctions with Values in Arbitrary Banach Spaces. J. Convex Anal. 2011, 18, 769–810. [Google Scholar]
- Musiał, K. Approximation of Pettis integrable multifunctions with values in arbitrary Banach spaces. J. Convex Anal. 2013, 20, 833–870. [Google Scholar]
- Naralenkov, K.M. A Lusin type measurability property for vector-valued functions. J. Math. Anal. Appl. 2014, 417, 293–307. [Google Scholar] [CrossRef]
- Gordon, R.A. The Denjoy extension of the Bochner, Pettis and Dunford integrals. Stud. Math. 1989, 92, 73–91. [Google Scholar] [CrossRef]
- Candeloro, D.; Sambucini, A.R. Order-type Henstock and McShane integrals in Banach lattices setting. In Proceedings of the Sisy 20014- IEEE 12th International Symposium on Intelligent Systems and Informatics, Subotica, Serbia, 11–13 September 2014; Volume 9. [Google Scholar]
- El Amri, K.; Hess, C. On the Pettis integral of closed valued multifunctions. Set-Valued Anal. 2000, 8, 329–360. [Google Scholar] [CrossRef]
- Shang, Y. Continuous-time average consensus under dynamically changing topologies and multiple time-varying delays. Appl. Math. Comput. 2014, 244, 457–466. [Google Scholar] [CrossRef]
- Labuschagne, C.C.A.; Pinchuck, A.L.; van Alten, C.J. A vector lattice version of Rådström’s embedding theorem. Quaest. Math. 2007, 30, 285–308. [Google Scholar] [CrossRef]
- Fremlin, D.H. The generalized McShane integral. Ill. J. Math. 1995, 39, 39–67. [Google Scholar] [CrossRef]
- Fremlin, D.H. The McShane and Birkhoff Integrals of Vector-Valued Functions; Mathematics Department Research Report 92-10, Version 18.5; University of Essex: Colchester, UK, 2007. [Google Scholar]
- Di Piazza, L.; Marraffa, V. The McShane, PU and Henstock integrals of Banach valued functions. Czechoslov. Math. J. 2002, 52, 609–633. [Google Scholar] [CrossRef] [Green Version]
- Musiał, K. Topics in the theory of Pettis integration. Rend. Istit. Mat. Univ. Trieste 1991, 23, 177–262. [Google Scholar]
- Di Piazza, L.; Musiał, K. A characterization of variationally McShane integrable Banach-space valued function. Ill. J. Math. 2001, 45, 279–289. [Google Scholar] [CrossRef]
- Gordon, R.A. The McShane integral of Banach-valued functions. Ill. J. Math. 1990, 34, 557–567. [Google Scholar]
- Saadoune, M.; Sayyad, R. The weak Mc Shane integral. Czechoslov. Math. J. 2014, 64, 387–418. [Google Scholar] [CrossRef] [Green Version]
- Di Piazza, L.; Musiał, K. Set-Valued Kurzweil-Henstock-Pettis Integral. Set-Valued Anal. 2005, 13, 167–179. [Google Scholar] [CrossRef]
- Cao, S. The Henstock integral for Banach-valued functions, The Henstock integral for Banach-valued functions. SEA Bull. Math. 1992, 16, 35–40. [Google Scholar]
- Rodríguez, J. Some examples in Vector Integration. Bull. Aust. Math. Soc. 2009, 80, 384–392. [Google Scholar] [CrossRef] [Green Version]
- Candeloro, D.; Di Piazza, L.; Musiał, K.; Sambucini, A.R. Multi-integrals of finite variation. Boll. dell’Unione Matematica Italiana 2020. [Google Scholar] [CrossRef] [Green Version]
- Bongiorno, B.; Di Piazza, L.; Musiał, K. A Decomposition Theorem for the Fuzzy Henstock Integral. Fuzzy Sets Syst. 2012, 200, 36–47. [Google Scholar] [CrossRef]
- Di Piazza, L.; Marraffa, V. Pettis integrability of fuzzy mappings with values in arbitrary Banach spaces, functions. Math. Slovaca 2017, 67, 1359–1370. [Google Scholar] [CrossRef] [Green Version]
- Musiał, K. A decomposition theorem for Banach space valued fuzzy Henstock integral. Fuzzy Sets Syst. 2015, 259, 21–28. [Google Scholar] [CrossRef]
GG | H | ||
---|---|---|---|
Remark 1 | [18] (Theorem 4.3) | [18] (Theorem 3.3) | |
Remark 1 | [18] (Theorem 4.3) | [18] (Theorem 3.3) | |
if Remark 1 | if Remark 1 | if Remark 1 |
A | ||||
= | ⊊ Example 5, [54] (Proposition 4.7) | ⊊ Example 5, [54] (Proposition 4.7), [51] (Example 2) | ⊊ Proposition 3, Example 5, [54] (Proposition 4.7) | |
⊂ | = | ⊊ Example 5, [54] (Proposition 4.7), [51] (Example 2) | Proposition 3, Example 5, [54] (Proposition 4.7) | |
⊊ Remark 3 | ⊊ Remark 3 | = | ⊊ Example 4 | |
⊂ ∩ ? | ⊊ H Remark 3 | ? | ⊊ Example 4 | |
⊂ | ? | ? | = | |
⊂ Remark 3 | ⊂ Remark 3 | ⊂ ? | ⊂ Remark 3 | |
B | ||||
⊊ Example 5 [54] (Proposition 4.7) [51] (Example 2) | ⊊ H Example 5 [54] (Proposition 4.7) | Example 5 [54] (Proposition 4.7) | ⊊ [18] (Remark 5.4) | |
⊊ Example 5, [54] (Proposition 4.7), [51] (Example 2) | Remark 2 | Remark 2 | Remark 2 | |
⊊ MS Example 4 | ⊊ H Remark 3 | [18] (Theorem 4.2) | ⊊ & ⊃ [19] (Cor. 3.7) | |
⊊ MS Proposition 3 | ⊊ H Remark 3 | Remark 3 | [18] (Theorem 5.3), [19] (Cor. 3.7) | |
,51] (Example 2) | Remark 2 | Remark 2 | Remark 2 | |
= | [18] (Theorem 3.2) | [18] (Theorem 4.2) | ⊂ H |
Gf | |||||
---|---|---|---|---|---|
= | ⊊ Pe Remark 3 | = | = HKP, [31] (Theorem 1) [51] (Theorem 1) (sep. case) | = DP [21] (Theorem 3.5) | |
⊂ | = | ⊂ | ⊂ HKP | ⊂ DP | |
[21] (Theorem 3.7) | [21] (Theorem 3.7) | = | = HKP [21] (Theorem 3.5) | = DP [21] (Theorem 3.5) | |
[21](Theorem 3.7) | [21] (Theorem 3.7) | [21] (Theorem 3.7) | = HKP | = DP [21] (Theorem 3.5) | |
[21] (Theorem 3.7) | [21] (Theorem 3.7) | [21] (Theorem 3.7) | [21] (Theorem 3.7) | = DP |
Gf | ||||
---|---|---|---|---|
Pe + DL | = + DL | = + DL | = HKP + DL | = DP + DL |
Pe + Db | = + Db | = + Db | = HKP + Db | = DP + Db |
Gf | H | |||||||
---|---|---|---|---|---|---|---|---|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piazza, L.D.; Musiał, K. Decompositions of Weakly Compact Valued Integrable Multifunctions. Mathematics 2020, 8, 863. https://doi.org/10.3390/math8060863
Piazza LD, Musiał K. Decompositions of Weakly Compact Valued Integrable Multifunctions. Mathematics. 2020; 8(6):863. https://doi.org/10.3390/math8060863
Chicago/Turabian StylePiazza, Luisa Di, and Kazimierz Musiał. 2020. "Decompositions of Weakly Compact Valued Integrable Multifunctions" Mathematics 8, no. 6: 863. https://doi.org/10.3390/math8060863
APA StylePiazza, L. D., & Musiał, K. (2020). Decompositions of Weakly Compact Valued Integrable Multifunctions. Mathematics, 8(6), 863. https://doi.org/10.3390/math8060863