About Some Possible Implementations of the Fractional Calculus
Abstract
:1. From Elementary Mathematical Analysis to Fractional Derivatives
1.1. From Factorial to the Gamma Function
1.2. Some Definitions of Fractional Integrals and Derivatives
- Left-side Riemann–Liouville Fractional Integral of order :
- Right-side Riemann–Liouville Fractional Integral of order :
- Left-side Riemann–Liouville Fractional Derivative of order :
- Right-side Riemann–Liouville Fractional Derivative of order :
- Let and . Then:
- Let , , such that , and , . Then:
- Let , . Then:
- Left-side Caputo Fractional Derivative of order :
- Right-side Caputo Fractional Derivative of order :
- Left-side Liouville Fractional Integral of order :
- Right-side Liouville Fractional Integral of order :
- Left-side Liouville Fractional Derivative of order :
- Right-side Liouville Fractional Derivative of order :
1.3. Mittag-Leffler Functions
1.4. Some Ideas for Numerical Integration
2. Variational Problems and Euler—Lagrange Equations
2.1. Nonlocal, Fractional Calculus of Variations
2.1.1. Positions
2.1.2. Velocities
2.1.3. Extension of the Velocities Case
2.1.4. General Case
2.1.5. Fractional Integrals
2.1.6. Fractional Derivatives
2.2. Momenta and Hamilton Formalism
2.3. Interpretation
3. New Mathematical Scenarios: New Families of Functions and Equations
- Hooke’s Law: ;
- Newtonian Fluid: ;
- Newton’s second law: .
4. Nonlocal Phenomena in Space and/or Time. Applications
- Potential theory: Newton and Coulomb laws of the inverse of the square of the distance.
- Problems in geophysics: three-dimensional maps of the Earth’s inside.
- Problems in electricity and magnetism.
- Hereditary phenomena in physics (materials with memory: hysteresis) and biology (ecological processes: accumulation of metals).
- Problems of evolution of populations.
- Problems of radiation.
- Optimization, control systems.
- Communication theory.
- Mathematical economy.
- Are the models with space and/or time fractional derivatives consistent with the fundamental laws and symmetries of Nature?
- How can the fractional differentiation order be experimentally observed and how does a fractional derivative emerge from models without fractional derivatives?
4.1. Application of Fractional Calculus to Model Atmospheric Effects of Absorption
4.2. Chaos in a Fractional Duffing’S Equation
5. Conclusions
- The effect of the nonlocality, associated to the structure itself of the fractional derivative, manifests that in a solution we can observe the coexistence of two decays exponential and polynomial according to the time scale we consider (Section 1.4).
- Up to our best knowledge, the obtained results in Section 2 by using the Dirac delta are new. We show that the loss of causality in fractional mechanics is not specific to choosing any particular fractional derivative but is intrinsic to the formulation of nonlocal dependence with more general kernels. We present an approach, using a Dirac delta formulation, that simplifies the, otherwise, more cumbersome computations.
- Concerning Section 3, there are many remarkable issues. We show explicitly the use of the fractional calculus as an instrument to create new equations as interpolation among other classical ones very well known. An important issue is the interpolation between the parabolic and the hyperbolic dynamics. In this case, we have challenging dynamics attending to the behaviours under discrete symmetries as the time and space inversion.Dirac obtained his famous equation by considering the square root of the Klein–Gordon equation. It is related to the basic idea of evolution depending only on the initial configuration of the system. At the same time, Dirac introduced the concept of internal degrees of freedom: the spin of a particle. In this contribution, we apply the above idea of Dirac to the square root of the classical heat equation and we obtain a fractional diffusion equation with internal degrees of freedom.We extend the idea of considering a general root equation of a given one, and we obtain a connection between the Silvester algebra and the fractional calculus.
- In Section 4, we show one example where a fractional diffusion equation does not satisfy the second law of Thermodynamics, and we consider the use of the fractional calculus to model the dust dynamics with the associated electromagnetic interaction in Earth and Mars atmospheres.
- In physics, the laws must have the same form in all the inertial reference systems, otherwise we could distinguish an inertial reference system from other one by internal experiments.
- The above statement implies that we must have a suitable dictionary to relate the measurements in one system to other one.
- For inertial systems we have the Galileo and the Lorentz transforms (dictionaries).
- Einstein generalized the Galileo transform to the Lorentz transform in order to take into account that two inertial systems cannot distinguish each other by either internal mechanic or electromagnetic experiments (special relativity).
- Einstein generalized the above statements to the accelerated reference systems and created the general relativity.
- As a consequence, given an evolution fractional differential equation should be analysed its behaviour under Galileo and Lorentz transformations, as well as the discrete symmetries of the time and space inversion. This preliminary analysis will enlighten, for instance, the reversibility and causality issues associated to the equation.
- Concerning the velocity issue, we consider it in the general sense as the variation of a quantity with time.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Taylor & Francis: London, UK, 2002. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Baleanu, D.; Fernández, A. On fractional operators and their classifications. Mathematics 2019, 7, 830. [Google Scholar] [CrossRef] [Green Version]
- Ortigueira, M.D.; Machado, J.A.T. Which Derivative? Fractal Fract. 2017, 1, 3. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Machado, J.A.T. On fractional vectorial calculus. Bull. Pol. Acad. Tech. 2018, 66, 389–402. [Google Scholar]
- Ortigueira, M.D.; Machado, J.A.T. Fractional Derivatives: The Perspective of System Theory. Mathematics 2019, 7, 150. [Google Scholar] [CrossRef] [Green Version]
- Atangana, A.; Baleanu, D. New fractional derivatives with non-local and non-singular kernel. Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Baleanu, D.; Fernandez, A. On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun. Nonlinear Sci. Numer. Simul. 2018, 59, 444–462. [Google Scholar] [CrossRef] [Green Version]
- Sopasakis, P.; Sarimveis, H.; Macheras, P.; Dokoumetzidis, A. Fractional calculus in pharmacokinetics. J. Pharmacokinet. Pharmacodyn. 2018, 45, 107–125. [Google Scholar] [CrossRef]
- Ionescu, C.M. A computationally efficient Hill curve adaptation strategy during continuous monitoring of dose-effect relation in anaesthesia. Nonlinear Dyn. 2018, 92, 843–852. [Google Scholar] [CrossRef]
- Turchetti, G.; Usero, D.; Vázquez, L. Hamiltonian systems with fractional time derivative. Tamsui Oxf. J. Math. Sci. 2002, 18, 31–44. [Google Scholar]
- Usero, D. Propagación de Ondas no Lineales en Medios Heterogéneos. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2004. [Google Scholar]
- Usero, D.; Vázquez, L. Fractional derivative: A new formulation for damped systems. Localization Energy Transf. Nonlinear Syst. 2003, 296–303. [Google Scholar] [CrossRef]
- Riewe, F. Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 1996, 53, 1890–1899. [Google Scholar] [CrossRef]
- Riewe, F. Mechanics with fractional derivatives. Phys. Rev. E 1997, 55, 3581–3592. [Google Scholar] [CrossRef]
- Agrawall, O.P. Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 2001, 272, 368–379. [Google Scholar] [CrossRef] [Green Version]
- Muslih, S.I.; Baleanu, D. Hamiltonian formulation of systems with linear velocities within Riemann–Liouville fractional derivatives. J. Math. Anal. Appl. 2005, 304, 599–606. [Google Scholar] [CrossRef] [Green Version]
- Rabei, E.M.; Nawafleh, K.H.I.; Hijjawi, R.S.; Muslih, S.I.; Baleanu, D. The Hamilton formalism with fractional derivatives. J. Math. Anal. Appl. 2007, 327, 891–897. [Google Scholar] [CrossRef]
- Dattoli, G.; Cesarano, C.; Ricci, P.E.; Vázquez, L. Fractional operators, integral representations and special polynomials. Int. J. Appl. Math. 2003, 10, 131–139. [Google Scholar]
- Dattoli, G.; Cesarano, C.; Ricci, P.E.; Vázquez, L. Special polynomials and fractional calculus. Math. Comput. Model. 2003, 37, 729–733. [Google Scholar] [CrossRef]
- Rodríguez-Germá, L.; Trujillo, J.J.; Velasco, M.P. Fractional calculus framework to avoid singularities of differential equations. Fract. Cal. Appl. Anal. 2008, 11, 431–441. [Google Scholar]
- Rivero, M.; Rodríguez-Germá, L.; Trujillo, J.J.; Velasco, M.P. Fractional operators and some special functions. Comput. Math. Appl. 2010, 59, 1822–1834. [Google Scholar] [CrossRef] [Green Version]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House Publishers: Danbury, CT, USA, 2006. [Google Scholar]
- Rocco, A.; West, B.J. Fractional calculus and the evoluction of fractal phenomena. Physica A 1999, 265, 535–546. [Google Scholar] [CrossRef] [Green Version]
- West, B.J.; Bologna, M.; Grigolini, P. Physics of Fractal Operators; Springer Verlag: New York, NY, USA, 2003. [Google Scholar]
- Ionescu, C.; Lopes, A.; Copot, D.; Machado, J.A.T.; Bates, J.H.T. The role of fractional calculus in modeling biological phenomena: A review. Commun. Nonlinear Sci. Numer. Simul. 2017, 51, 141–159. [Google Scholar] [CrossRef]
- Larsson, M.; Balatsky, A. Paul Dirac and the Nobel Prize in Physics. Phys. Today 2019, 72, 46–52. [Google Scholar] [CrossRef]
- Vázquez, L. Fractional Diffusion Equations with Internal Degrees of Freedom. J. Comp. Math. 2003, 21, 491–494. [Google Scholar]
- Pierantozzi, T.; Vázquez, L. An Interpolation between the Wave and Diffusion Equations through the Fractional Evolution Equations Dirac Like. J. Math. Phys. 2005, 46, 113521. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, L.; Trujillo, J.J.; Velasco, M.P. Fractional heat equation and the second law of thermodynamics. Fract. Cal. Appl. Anal. 2011, 14, 334–342. [Google Scholar] [CrossRef]
- Angstrom, A. On the atmospheric transmission of sun radiation and on dust in the air. Geogr. Ann. 1929, 11, 156–166. [Google Scholar]
- Córdoba-Jabonero, C.; Vázquez, L. Characterization of atmospheric aerosols by an in-situ photometris technique in planetary environments. SPIE 2005, 4878, 54–58. [Google Scholar]
- Jiménez, S.; Usero, D.; Vázquez, L.; Velasco, M.P. Fractional diffusion models for the atmosphere of Mars. Fractal Fract. 2018, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Vázquez, L.; Velasco, M.P.; Vázquez-Poletti, J.L.; Llorente, I.M.; Usero, D.; Jiménez, S. Modeling and simulation of the atmospheric dust dynamic: Fractional Calculus and Cloud Computing. Int. J. Numer. Anal. Model. 2018, 15, 74–85. [Google Scholar]
- Vázquez-Poletti, J.L.; Llorente, I.M.; Velasco, M.P.; Vicente-Retortillo, A.; Aguirre, C.; Caro-Carretero, R.; Valero, F.; Vázquez, L. Martian Computing Clouds: A Two Use Case Study. In Proceedings of the Seventh Moscow Solar System Symposium (7M-S3), Moscow, Russia, 10–14 October 2016. [Google Scholar]
- De Lucas, E.; Miguel, M.J.; Mozos, D.; Vázquez, L. Martian dust devils detector over FPGA. Geosci. Instrum. Method Data Syst. 2012, 1, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Aguirre, C.; Franzese, G.; Esposito, F.; Vázquez, L.; Caro-Carretero, R.; Vilela-Mendes, R.; Ramírez-Nicolás, M.; Cozzolino, F.; Popa, C.I. Signal-adapted tomography as a tool for dust devil detection. Aeolian Res. 2017, 29, 12–22. [Google Scholar] [CrossRef]
- Gómez-Elvira, J.; Armiens, C.; Castañer, L.; Domínguez, M.; Genzer, M.; Gómez, F.; Haberle, R.; Harri, A.M.; Jiménez, V.; Kahanpaa, H.; et al. REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover. Space Sci. Rev. 2012, 170, 583–640. [Google Scholar] [CrossRef]
- Domínguez-Pumar, M.; Pérez, E.; Ramón, M.; Jiménez, V.; Bermejo, S.; Pons-Nin, J. Acceleration of the Measurement Time of Thermopiles Using Sigma-delta Control. Sensors 2019, 19, 3159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guckenheimer, J.; Holmes, P.H. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields; Springer-Verlag: New York, NY, USA, 1986. [Google Scholar]
- Gao, X.; Yu, J. Chaos in the fractional order periodically forced complex Duffing’s oscillators. Chaos Solitons Fractals 2005, 24, 1097–1104. [Google Scholar] [CrossRef]
- Sheu, L.J.; Chen, H.K.; Chen, J.H.; Tam, L.M. Chaotic dynamics of the fractionally damped Duffing equation. Chaos Solitons Fractals 2007, 32, 1459–1468. [Google Scholar] [CrossRef]
- Jiménez, S.; González, J.A.; Vázquez, L. Fractional Duffing’s equation and geometrical resonance. Int. J. Bifurcation Chaos 2013, 23, 1350089-1–1350089-13. [Google Scholar] [CrossRef]
- Jiménez, S.; Zufiria, P.J. Chaos in a fractional Duffing’s equation. Dyn. Syst. Differ. Equ. Appl. 2015, 10, 660–669. [Google Scholar]
Law | Darcy: | Fourier: | Fick: | Ohm: |
---|---|---|---|---|
Flux | Subterranean | Heat: Q | Solute: f | Charge: j |
Water: q | ||||
Potential | Hydrostatic | Temperature: T | Concentration: C | Voltage: V |
Charge: h | ||||
Medium’s | Hydraulic | Thermal | Diffusion | Electric |
Property | Conductivity: K | Conductivity: | Coefficient: D | Conductivity: |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velasco, M.P.; Usero, D.; Jiménez, S.; Vázquez, L.; Vázquez-Poletti, J.L.; Mortazavi, M. About Some Possible Implementations of the Fractional Calculus. Mathematics 2020, 8, 893. https://doi.org/10.3390/math8060893
Velasco MP, Usero D, Jiménez S, Vázquez L, Vázquez-Poletti JL, Mortazavi M. About Some Possible Implementations of the Fractional Calculus. Mathematics. 2020; 8(6):893. https://doi.org/10.3390/math8060893
Chicago/Turabian StyleVelasco, María Pilar, David Usero, Salvador Jiménez, Luis Vázquez, José Luis Vázquez-Poletti, and Mina Mortazavi. 2020. "About Some Possible Implementations of the Fractional Calculus" Mathematics 8, no. 6: 893. https://doi.org/10.3390/math8060893
APA StyleVelasco, M. P., Usero, D., Jiménez, S., Vázquez, L., Vázquez-Poletti, J. L., & Mortazavi, M. (2020). About Some Possible Implementations of the Fractional Calculus. Mathematics, 8(6), 893. https://doi.org/10.3390/math8060893