A Competitive Memory Paradigm for Multimodal Optimization Driven by Clustering and Chaos
Abstract
:1. Introduction
2. Cluster-Chaotic-Optimization (CCO)
2.1. Initialization
2.2. Intracluster Operation
2.2.1. Local Attraction
2.2.2. Local Perturbation
2.3. Extracluster Operation
2.3.1. Global Attraction
2.3.2. Global Perturbation
Algorithm 1. Pseudo-code for the Cluster-Chaotic-Optimization (CCO) algorithm. | ||
1. | Input:, gen, k = 0 | |
2. | InitializePopulation(); | |
3. | whilek<=gendo | |
4. | SelectBestParticle(); | |
5. | [,g] WardClustering(); | |
6. | CalculatePerturbation(gen); | Self-Adaptive value from [29] |
7. | for (q = 1; q <= g; q++) | Intracluster procedure |
8. | SelectBestCluster(); | |
9. | LocalAttractionOperation (); | |
10. | LocalPerturbationOperation(); | |
11. | end for | |
12. | for (each element of ) | Extracluster procedure |
13. | GlobalAttractionOperation(); | |
14. | GlobalPerturbationOperation(); | |
15. | end for | |
16. | k = k + 1; | |
17. | end while | |
18. | Output: |
3. Multimodal Cluster-Chaotic-Optimization (MCCO)
3.1. Initialization Phase
3.2. Competition Phase
- Compute the dominance radius .
- Compute the euclidean distance among elements of and elements of .
- If the distance between two individuals is less than the dominance radius , then the prevailing individuals beloging to will be stored in a temporary historic memory , while the prevailing individuals in will be stored in temporary population memory .
- The temporary memory structure will be the union of and .
Algorithm 2. Pseudo-code for the competition phase. | ||
1. | ||
2. | ||
3. | 1st Rule | |
4. | for(i = 1; i<=size;i++) | |
5. | for (j = 1; j<=size;j++) | |
6. | 2st Rule | |
7. | if | 3rd Rule |
8. | if | 4rd Rule |
9. | ||
10. | else | |
11. | ||
12. | end if | |
13. | end if | |
14. | end for | |
15. | end for | |
16. |
3.3. Update Phase
- If , then the best individuals belonging to will be stored in .
- If , then the best solutions in will be allocated to .
Algorithm 3. Pseudo-code for the update phase. |
1. if size < size 2. if size > 0 3. 4. end if 5. if size < ND 6. 7. end if 8. end if 9. |
3.4. The Complete Multimodal Cluster-Chaotic-Optimization (MCCO)
Algorithm 4. Pseudo-code for the Multimodal Cluster-Chaotic-Optimization (MCCO) algorithm. | ||
1. | Input:, gen, k=0 | |
2. | InitializePopulation(); | |
3. | InitializeMemory(); | Memory initialization |
4. | whilek<=gendo | |
5. | SelectBestParticle(); | |
6. | [,g]WardClustering(); | |
7. | CalculatePerturbation(gen); | |
8. | for (q = 1; q <= g; q++) | Original CCO operators |
9. | SelectBestCluster(); | |
10. | LocalAttractionOperation (); | |
11. | LocalPerturbationOperation(); | |
12. | end for | |
13. | for (each element of ) | |
14. | GlobalAttractionOperation(); | |
15. | GlobalPerturbationOperation(); | |
16. | end for | |
17. | CompetitionPhase(); | Memory Competition and Update |
18. | UpdatePhase(); | |
19. | k=k+1; | |
20. | ||
21. | end while | |
22. | Output:, |
4. Experimental Results
4.1. Performance Metrics
4.2. True Optima Determination
4.3. Performance Comparison
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A. Multimodal Test Functions Formulation
Function | Search Domain | Dimensionality | Optima Number | Graph |
---|---|---|---|---|
Bird | ||||
n = 2 | 6 | |||
Test Tube Holder | ||||
n = 2 | 4 | |||
Penholder | ||||
n = 2 | 12 | |||
Rastriguin | ||||
n = 2 | 21 | |||
Himmelblau | ||||
n = 2 | 5 | |||
Six Hump Camel | ||||
n = 2 | 3 | |||
Giunta | ||||
n = 2 | 4 |
Function | Search Domain | Dimensionality | Optima Number | Graph |
---|---|---|---|---|
Rastriguin49 | ||||
n = 2 | 8 | |||
Roots | ||||
n = 2 | 6 | |||
Vincent | ||||
n = 2 | 36 | |||
Multi Peak | ||||
n = 2 | 40 | |||
Alpine 02 | ||||
n = 2 | 8 | |||
Cosine Mixture | ||||
n = 2 | 12 | |||
Egg Crate | ||||
n = 2 | 9 |
References
- Rao, S.S. Engineering Optimization: Theory and Practice: Fourth Edition; University of Miami: Florida, FL, USA, 2009. [Google Scholar]
- Yang, X.-S.; Wiley InterScience (Online service). Engineering Optimization: An Introduction with Metaheuristic Applications; John Wiley & Sons: New Jersey, NJ, USA, 2010. [Google Scholar]
- Persson, J.A.; Davidsson, P.; Johansson, S.J.; Wernstedt, F. Combining Agent-Based Approaches and Classical Optimization Techniques; Springer: Brussels, Belgium, 2005. [Google Scholar]
- Cuevas, E.; Gálvez, J.; Hinojosa, S.; Avalos, O.; Zaldívar, D.; Pérez-Cisneros, M. A Comparison of Evolutionary Computation Techniques for IIR Model Identification. J. Appl. Math. 2014, 2014, 9. [Google Scholar] [CrossRef]
- Lera, D.; Sergeyev, Y.D. Lipschitz and Hölder global optimization using space-filling curves. Appl. Numer. Math. 2010, 60, 115–129. [Google Scholar] [CrossRef]
- Rana, P.B.; Patel, J.L.; Lalwani, D.I. Parametric optimization of turning process using evolutionary optimization techniques—A review (2000–2016). Adv. Intell. Syst. Comput. 2019, 817, 165–180. [Google Scholar]
- Holland, J.H. Adaptation in Natural and Artificial Systems; University of Michigan Press: Michigan, MI, USA, 1975. [Google Scholar]
- Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley: Reading, MA, USA, 1989. [Google Scholar]
- Dorigo, M.; Stützle, T. The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Advances. In Handbook of Metaheuristics; Kluwer Academic Publishers: Boston, MA, USA, 2003; pp. 250–285. [Google Scholar]
- Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Karaboga, D. An Idea Based on Honey Bee SWARM for Numerical Optimization; Erciyes University: Kayseri, Turkey, 2005. [Google Scholar]
- Rashedi, E.; Nezamabadi-pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Hansen, N.; Kern, S. Evaluating the CMA Evolution Strategy on Multimodal Test Functions. In Proceedings of the 8th International Conference Parallel Problem Solving from Nature—PPSN VIII, Birmingham, UK, 18–44 September 2004; Volume 3242/2004, pp. 282–291, no. 0. [Google Scholar]
- Biswas, S.; Kundu, S.; Das, S. Inducing Niching Behavior in Differential Evolution Through Local Information Sharing. IEEE Trans. Evol. Comput. 2015, 19, 246–263. [Google Scholar] [CrossRef]
- Sareni, B.; Krahenbuhl, L. Fitness sharing and niching methods revisited. IEEE Trans. Evol. Comput. 1998, 2, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, R. Multimodal optimization using crowding-based differential evolution. In Proceedings of the Congress on Evolutionary Computation (CEC ’04), Portland, OR, USA, 19–23 June 2004; pp. 1382–1389. [Google Scholar]
- Liang, J.J.; Qu, B.Y.; Mao, X.B.; Niu, B.; Wang, D.Y. Differential evolution based on fitness Euclidean-distance ratio for multimodal optimization. Neurocomputing 2014, 137, 252–260. [Google Scholar] [CrossRef]
- Biswas, S.; Das, S.; Kundu, S.; Patra, G.R. Utilizing time-linkage property in DOPs: An information sharing based Artificial Bee Colony algorithm for tracking multiple optima in uncertain environments. Soft Comput. 2014, 18, 1199–1212. [Google Scholar] [CrossRef]
- Gao, W.; Yen, G.G.; Liu, S. A Cluster-Based Differential Evolution with Self-Adaptive Strategy for Multimodal Optimization. IEEE Trans. Cybern. 2014, 44, 1314–1327. [Google Scholar] [CrossRef]
- Liang, Y.; Leung, K.-S. Genetic Algorithm with adaptive elitist-population strategies for multimodal function optimization. Appl. Soft Comput. 2011, 11, 2017–2034. [Google Scholar] [CrossRef]
- Li, L.; Tang, K. History-Based Topological Speciation for Multimodal Optimization. IEEE Trans. Evol. Comput. 2015, 19, 136–150. [Google Scholar] [CrossRef]
- Yao, J.; Kharma, N.; Zhu, Y.Q. On Clustering in Evolutionary Computation. In Proceedings of the IEEE International Conference on Evolutionary Computation, Vancouver, BC, Canada, 16–21 July 2006; pp. 1752–1759. [Google Scholar]
- Ursem, R.K. Multinational evolutionary algorithms. In Proceedings of the Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; pp. 1633–1640. [Google Scholar]
- Yao, J.; Kharma, N.; Grogono, P. Bi-Objective Multipopulation Genetic Algorithm for Multimodal Function Optimization. IEEE Trans. Evol. Comput. 2010, 14, 80–102. [Google Scholar]
- Deb, K.; Saha, A. Multimodal Optimization Using a Bi-Objective Evolutionary Algorithm. Evol. Comput. 2012, 20, 27–62. [Google Scholar] [CrossRef] [PubMed]
- Basak, A.; Das, S.; Tan, K.C. Multimodal Optimization Using a Biobjective Differential Evolution Algorithm Enhanced with Mean Distance-Based Selection. IEEE Trans. Evol. Comput 2013, 17, 666–685. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.X.; Yen, G.G.; Song, W. MOMMOP: Multiobjective Optimization for Locating Multiple Optimal Solutions of Multimodal Optimization Problems. IEEE Trans. Cybern. 2015, 45, 830–843. [Google Scholar] [CrossRef]
- Gálvez, J.; Cuevas, E.; Becerra, H.; Avalos, O. A hybrid optimization approach based on clustering and chaotic sequences. Int. J. Mach. Learn. Cybern. 2020, 11, 359–401. [Google Scholar] [CrossRef]
- Murtagh, F.; Legendre, P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef] [Green Version]
- Couzin, I.D.; Krause, J.; James, R.; Ruxton, G.D.; Franks, N.R. Collective memory and spatial sorting in animal groups. J. Theor. Biol. 2002, 218, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ballerini, M.; Cabibbo, N.; Candelier, R.; Cavagna, A.; Cisbani, E.; Giardina, I.; Lecomte, V.; Orlandi, A.; Parisi, G.; Procaccini, A.; et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proc. Natl. Acad. Sci. USA 2008, 105, 1232–1237. [Google Scholar] [CrossRef] [Green Version]
- Cuevas, E.; González, M.; Zaldivar, D.; Pérez-Cisneros, M.; García, G. An Algorithm for Global Optimization Inspired by Collective Animal Behavior. Discret. Dyn. Nat. Soc. 2012, 2012, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Caponetto, R.; Fortuna, L.; Fazzino, S.; Xibilia, M.G. Chaotic Sequences to Improve the Performance of Evolutionary Algorithms. IEEE Trans. Evol. Comput. 2003, 7, 289–304. [Google Scholar] [CrossRef]
- Zelinka, I.; Lampinen, J.; Senkerik, R.; Pluhacek, M. Investigation on evolutionary algorithms powered by nonrandom processes. Soft Comput. 2018, 22, 1791–1801. [Google Scholar] [CrossRef]
- Mozaffari, A.; Emami, M.; Fathi, A. A comprehensive investigation into the performance, robustness, scalability and convergence of chaos-enhanced evolutionary algorithms with boundary constraints. Artif. Intell. Rev. 2019, 52, 2319–2380. [Google Scholar] [CrossRef]
- He, D.; He, C.; Jiang, L.G.; Zhu, H.W.; Hu, G.R. Chaotic characteristics of a one-dimensional iterative map with infinite collapses. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2001, 48, 900–906. [Google Scholar]
- Lawnik, M. Generation of Numbers with the Distribution Close to Uniform with the Use of Chaotic Maps. In Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH), Vienna, Austria, 28–30 August 2014; pp. 451–455. [Google Scholar]
- De Jong, K.A. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. Ph.D. Thesis, University of Michigan, Michigan, MI, USA, 1975. [Google Scholar]
- Gálvez, J.; Cuevas, E.; Avalos, O. Flower Pollination Algorithm for Multimodal Optimization. Int. J. Comput. Intell. Syst. 2017, 10, 627. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Engelbrecht, A.; Epitropakis, M. Benchmark Functions for CEC 2013 Special Session and Competition on Niching Methods for Multimodal Function Optimization; R. Melb. Inst. …; RMIT University: Melbourne, Australia, 2013; pp. 1–10. [Google Scholar]
- Chitsaz, H.; Amjady, N.; Zareipour, H. Wind power forecast using wavelet neural network trained by improved Clonal selection algorithm. Energy Convers. Manag. 2015, 89, 588–598. [Google Scholar] [CrossRef]
- Aung, T.N.; Khaing, S.S. Genetic and Evolutionary Computing; Springer: New York, NY, USA, 2016. [Google Scholar]
- Qu, B.Y.; Suganthan, P.N.; Das, S. A distance-based locally informed particle swarm model for multimodal optimization. IEEE Trans. Evol. Comput. 2013, 17, 387–402. [Google Scholar] [CrossRef]
- De Castro, L.; Von Zuben, F. The clonal selection algorithm with engineering applications. In Proceedings of the GECCO, Las Vegas, NV, USA, 8–12 July 2000; pp. 36–37. [Google Scholar]
- Vollmer, D.T.; Soule, T.; Manic, M. A distance measure comparison to improve crowding in multi-modal optimization problems. In Proceedings of the ISRCS 2010—3rd International Symposium on Resilient Control Systems, Idaho Falls, ID, USA, 10–12 August 2010; pp. 31–36. [Google Scholar]
- Mahfoud, S.W. Niching Methods for Genetic Algorithms. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana Champaign, IL, USA, 1995. [Google Scholar]
- Biswas, S.; Kundu, S.; Das, S. An improved parent-centric mutation with normalized neighborhoods for inducing niching behavior in differential evolution. IEEE Trans. Cybern. 2014, 44, 1726–1737. [Google Scholar] [CrossRef]
- Yazdani, S.; Nezamabadi-pour, H.; Kamyab, S. A gravitational search algorithm for multimodal optimization. Swarm Evol. Comput. 2014, 14, 1–14. [Google Scholar] [CrossRef]
- Hui, S.; Suganthan, P.N. Ensemble and Arithmetic Recombination-Based Speciation Differential Evolution for Multimodal Optimization. IEEE Trans. Cybern. 2016, 46, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, B.; Molina, D.; Herrera, F. Region-based memetic algorithm with archive for multimodal optimization. Inf. Sci. 2016, 367, 719–746. [Google Scholar] [CrossRef] [Green Version]
- Wilcoxon, F. Individual comparisons by ranking methods. Biometrics 1945, 1, 80–83. [Google Scholar] [CrossRef]
Algorithm | Parameter(s) | Reference |
---|---|---|
DCGA | Crossover probability , Mutation probability | [46] |
CSA | Mutation probability , percentile to random reshuffle , clone per candidate | [45] |
FSDE | Crossover probability , differential weight , sharing radius , | [46] |
LIPSM | Neighborhood size nsize = 2 | [44] |
LoINDE | Crossover probability , differential weight | [15] |
MGSA | Final percentage | [49] |
PNPCDE | Crossover probability , differential weight | [48] |
HTS | Crossover probability , differential weight | [22] |
MOMMOP | Crossover probability , differential weight | [28] |
EARSDE | Crossover probability , differential weight , sharing radius , | [50] |
RM | Detail parameters are described by guidelines of the author. | [51] |
Function | |||||
---|---|---|---|---|---|
3.0000 | 3.4000 | 6.0000 | 5.4000 | 4.6000 | |
(0.7071) | (0.8944) | (0.0000) | (0.8944) | (0.5477) | |
1.0000 | 2.2000 | 4.0000 | 3.8000 | 3.6000 | |
(0.7071) | (0.8367) | (0.0000) | (0.4472) | (0.5477) | |
2.4000 | 4.4000 | 12.0000 | 6.8000 | 6.4000 | |
(0.5477) | (1.8166) | (0.0000) | (1.3038) | (1.9494) | |
10.8000 | 16.2000 | 19.0000 | 18.8000 | 13.2000 | |
(1.6432) | (2.0494) | (2.4083) | (0.4472) | (1.0954) | |
1.2000 | 3.4000 | 5.0000 | 4.4000 | 4.0000 | |
(0.4472) | (0.8944) | (0.0000) | (0.5477) | (1.2247) | |
2.8000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | |
(0.4472) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | |
4.0000 | 4.0000 | 4.0000 | 3.6000 | 3.0000 | |
(0.0000) | (0.0000) | (0.0000) | (0.5477) | (0.7071) | |
8.0000 | 7.8000 | 8.0000 | 8.0000 | 6.2000 | |
(0.0000) | (0.4472) | (0.0000) | (0.0000) | (1.0954) | |
6.0000 | 6.0000 | 6.0000 | 6.0000 | 6.0000 | |
(0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | |
15.2000 | 20.0000 | 24.0000 | 21.2000 | 22.0000 | |
(2.8636) | (1.5811) | (0.7071) | (2.3875) | (1.0000) | |
14.8000 | 20.8000 | 24.0000 | 22.2000 | 20.4000 | |
(1.7889) | (2.2804) | (0.0000) | (1.3038) | (1.1402) | |
3.6000 | 6.4000 | 8.0000 | 6.4000 | 6.8000 | |
(0.8944) | (0.8944) | (0.0000) | (0.8944) | (1.0954) | |
4.0000 | 4.0000 | 4.8000 | 4.0000 | 4.0000 | |
(0.0000) | (0.0000) | (0.4472) | (0.0000) | (0.0000) | |
4.2000 | 6.4000 | 9.0000 | 8.6000 | 8.0000 | |
(1.3038) | (0.5477) | (0.0000) | (0.8944) | (0.7071) |
Function | Algorithm | EPN | MPR | PA | DA | PR | SR | NFC | T(s) |
---|---|---|---|---|---|---|---|---|---|
DCGA | 3.7600 (1.2048) | 0.6442 (0.1990) | 126.2960 (69.4572) | 11.9316 (5.7567) | 6.47E−01 | 6.00E−02 | 5.2701e+06 (373.5616) | 4.7476 (0.2630) | |
CSA | 1.8200 (0.3881) | −0.0107 (0.0017) | 352.9702 (0.6908) | 25.3819 (0.3957) | 1.67E−01 | 2.34E−02 | 1.0020e+03 (0.0000) | 3.6196 (0.4550) | |
FSDE | 3.0000 (0.0000) | 0.8600 (0.0072) | 54.4195 (2.4567) | 14.7039 (0.0815) | 4.93E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 11.1163 (0.3280) | |
LIPSM | 3.9400 (1.2683) | 0.6289 (0.2270) | 130.8030 (78.5388) | 12.7353 (6.2776) | 6.53E−01 | 2.00E−02 | 5.0000e+04 (0.0000) | 0.0715 (0.0025) | |
LoINDE | 0.1400 (0.3505) | −0.0327 (0.0909) | 362.7803 (31.1560) | 26.5336 (1.4380) | 0.00E+00 | 0.00E+00 | 5.0000e+04 (0.0000) | 6.3351 (0.1164) | |
MGSA | 1.0000 (0.0000) | −0.0174 (0.0819) | 357.6663 (28.3122) | 27.2754 (1.6772) | 1.67E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 14.8227 (0.0646) | |
PNPCDE | 3.0400 (0.1979) | −0.5547 (0.0376) | 537.5972 (12.9847) | 20.1959 (0.6167) | 5.00E−01 | 4.31E−02 | 5.0000e+04 (0.0000) | 13.6878 (0.1993) | |
HTS | 3.9200 (0.8999) | 1.1230 (0.2705) | 249.6098 (59.7460) | 14.6753 (2.5628) | 6.90E−01 | 2.00E−02 | 4.7710e+06 (921,384.2807) | 151.2031 (20.3608) | |
MOMMOP | 6.0000 (0.0000) | 0.7144 (0.1391) | 153.3749 (40.9594) | 6.0172 (1.2304) | 1.00E+00 | 1.00E+00 | 5.0000e+04 (0.0000) | 19.9509 (0.2957) | |
EARSDE | 0.9800 (0.1414) | 0.3004 (0.0448) | 248.1227 (15.4322) | 22.9300 (1.1826) | 1.67E−01 | 0.00E+00 | 2.3418e+05 (103,335.0363) | 7.4633 (1.2582) | |
RM | 5.2800 (0.6402) | 0.7036 (0.1274) | 107.5283 (43.2990) | 8.3606 (3.8876) | 8.90E−01 | 2.23E−01 | 5.0000e+04 (0.0000) | 8.2135 (0.7462) | |
MCCO | 6.0000 (0.0000) | 0.9904 (0.0075) | 4.0639 (2.6462) | 0.6218 (0.0963) | 1.00E+00 | 1.00E+00 | 5.0000e+04 (0.0000) | 4.5698 (0.7841) | |
DCGA | 1.1200 (0.8485) | 0.2685 (0.2015) | 31.7400 (8.7399) | 10.3789 (2.7592) | 2.90E−01 | 2.00E−02 | 5.2700e+06 (394.2309) | 4.5124 (0.1676) | |
CSA | 0.0000 (0.0000) | 0.0000 (0.0000) | 43.3904 (0.0000) | 14.0472 (0.0000) | 0.00E+00 | 0.00E+00 | 1.0020e+03 (0.0000) | 4.1331 (0.3774) | |
FSDE | 4.0000 (0.0000) | 0.9887 (0.0077) | 0.4906 (0.3318) | 0.5365 (0.1768) | 1.00E+00 | 1.00E+00 | 5.0000e+04 (0.0000) | 11.3112 (0.3865) | |
LIPSM | 1.7200 (1.2623) | 0.4101 (0.2996) | 25.5940 (12.9992) | 8.4951 (4.0528) | 5.00E−01 | 1.60E−01 | 5.0000e+04 (0.0000) | 0.0712 (0.0009) | |
LoINDE | 2.8800 (0.9823) | 0.0000 (0.0000) | 43.3904 (0.0000) | 10.3229 (1.2543) | 7.00E−01 | 2.40E−01 | 5.0000e+04 (0.0000) | 6.4320 (0.0187) | |
MGSA | 1.0000 (0.0000) | 0.1199 (0.0740) | 38.1891 (3.2111) | 15.0909 (2.1688) | 2.50E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 14.6761 (0.0265) | |
PNPCDE | 3.7000 (0.4629) | 0.0000 (0.0000) | 43.3904 (0.0000) | 9.2659 (0.6119) | 9.05E−01 | 6.20E−01 | 5.0000e+04 (0.0000) | 13.6181 (0.0343) | |
HTS | 1.5600 (0.9293) | 0.3902 (0.2317) | 26.4993 (10.0648) | 13.3447 (2.4274) | 3.50E−01 | 1.56E−02 | 4.0284e+06 (923,964.7574) | 84.3728 (34.0255) | |
MOMMOP | 3.8200 (0.3881) | 0.7118 (0.1288) | 12.5069 (5.5905) | 7.0579 (2.0677) | 9.40E−01 | 7.60E−01 | 5.0000e+04 (0.0000) | 19.1834 (0.4985) | |
EARSDE | 1.0000 (0.0000) | 0.2504 (0.0003) | 32.5607 (0.0101) | 13.6066 (1.5561) | 2.50E−01 | 0.00E+00 | 2.0677e+05 (100,142.9924) | 7.0750 (1.6465) | |
RM | 3.7400 (0.4431) | 0.7180 (0.1452) | 12.2383 (6.3022) | 3.3264 (1.5125) | 9.29E−01 | 5.00E−01 | 5.0000e+04 (0.0000) | 11.1452 (0.2781) | |
MCCO | 4.0000 (0.0000) | 0.9891 (0.0068) | 0.4759 (0.2947) | 0.5273 (0.1261) | 1.00E+00 | 1.00E+00 | 5.0000e+04 (0.0000) | 4.5961 (0.7636) | |
DCGA | 1.4400 (1.1095) | 0.1198 (0.0927) | 9.9554 (1.0486) | 130.1057 (13.7530) | 1.20E−01 | 5.47E−02 | 5.2700e+06 (325.3758) | 4.7424 (0.0041) | |
CSA | 0.0000 (0.0000) | 0.0000 (0.0000) | 11.3110 (0.0000) | 147.5853 (0.0000) | 0.00E+00 | 0.00E+00 | 1.0020e+03 (0.0000) | 4.2001 (0.2209) | |
FSDE | 8.5800 (1.0708) | 0.7167 (0.0880) | 3.2041 (0.9956) | 41.7794 (12.1795) | 7.27E−01 | 4.75E−01 | 5.0000e+04 (0.0000) | 11.1469 (0.1650) | |
LIPSM | 2.5200 (1.5418) | 0.2094 (0.1279) | 8.9427 (1.4471) | 117.2757 (18.4672) | 2.40E−01 | 3.12E−02 | 5.0000e+04 (0.0000) | 0.0701 (0.0017) | |
LoINDE | 11.0800 (0.8533) | 0.0000 (0.0000) | 11.3110 (0.0000) | 35.0425 (7.9412) | 9.43E−01 | 4.80E−01 | 5.0000e+04 (0.0000) | 6.3708 (0.0240) | |
MGSA | 0.8400 (0.3703) | 0.0172 (0.0171) | 11.1163 (0.1929) | 144.8417 (1.6426) | 6.50E−02 | 0.00E+00 | 5.0000e+04 (0.0000) | 14.6998 (0.0433) | |
PNPCDE | 11.2600 (0.8762) | 0.0000 (0.0000) | 11.3110 (0.0000) | 34.1437 (8.8249) | 9.53E−01 | 5.40E−01 | 5.0000e+04 (0.0000) | 13.5493 (0.0122) | |
HTS | 8.8600 (1.5780) | 0.7526 (0.1332) | 3.0996 (1.4566) | 55.4717 (15.6015) | 7.70E−01 | 0.00E+00 | 7.3565e+06 (1,287,155.0175) | 177.6863 (9.6369) | |
MOMMOP | 11.2600 (0.6943) | 0.8635 (0.0774) | 1.5956 (0.8647) | 25.8957 (7.0792) | 9.37E−01 | 3.20E−01 | 5.0000e+04 (0.0000) | 20.0918 (0.2758) | |
EARSDE | 0.0000 (0.0000) | 0.0000 (0.0000) | 11.3110 (0.0000) | 147.5853 (0.0000) | 0.00E+00 | 0.00E+00 | 1.7467e+05 (42,697.2200) | 7.1183 (0.5543) | |
RM | 10.1600 (1.0947) | 0.6011 (0.1735) | 4.5117 (1.9619) | 32.1361 (12.1145) | 8.45E−01 | 5.52E−01 | 5.0000e+04 (0.0000) | 15.1540 (1.6523) | |
MCCO | 12.0000 (0.0000) | 0.9997 (0.0002) | 0.0036 (0.0024) | 1.0183 (0.1912) | 1.00E+00 | 1.00E+00 | 5.0000e+04 (0.0000) | 4.1569 (0.5874) | |
DCGA | 1.0000 (0.0000) | 0.0000 (0.0000) | 72.3042 (0.0000) | 35.0906 (0.0000) | 4.76E−02 | 0.00E+00 | 5.2699e+06 (416.2384) | 4.3055 (0.1456) | |
CSA | 1.0000 (0.0000) | 0.0000 (0.0000) | 72.3042 (0.0000) | 35.0906 (0.0000) | 4.76E−02 | 0.00E+00 | 1.0020e+03 (0.0000) | 3.5061 (0.3923) | |
FSDE | 1.0000 (0.0000) | 0.0111 (0.0128) | 71.5229 (0.8932) | 34.4844 (0.6165) | 4.76E−02 | 0.00E+00 | 5.0000e+04 (0.0000) | 12.6042 (0.6616) | |
LIPSM | 16.5200 (2.0328) | 3.5017 (0.7066) | 212.4614 (51.9022) | 12.0950 (3.6246) | 7.77E−01 | 5.00E−01 | 5.0000e+04 (0.0000) | 0.0722 (0.0043) | |
LoINDE | 0.0000 (0.0000) | 0.0000 (0.0000) | 72.3042 (0.0000) | 35.0906 (0.0000) | 0.00E+00 | 0.00E+00 | 5.0000e+04 (0.0000) | 6.3880 (0.0158) | |
MGSA | 1.0000 (0.0000) | 0.3235 (0.1556) | 94.7625 (11.2486) | 36.5793 (0.7025) | 4.76E−02 | 0.00E+00 | 5.0000e+04 (0.0000) | 14.9765 (0.6466) | |
PNPCDE | 5.2800 (1.7501) | 3.1901 (1.1053) | 260.7722 (64.7410) | 35.2237 (1.5040) | 2.29E−01 | 1.00E−01 | 5.0000e+04 (0.0000) | 13.5348 (0.0192) | |
HTS | 1.0000 (0.0000) | 0.0058 (0.0071) | 72.3138 (0.1896) | 35.4401 (0.4779) | 4.76E−02 | 0.00E+00 | 1.8194e+06 (397,438.3358) | 55.4796 (7.0736) | |
MOMMOP | 4.1600 (3.0194) | 0.4118 (0.4535) | 74.1442 (15.4454) | 35.5183 (1.6315) | 1.83E−01 | 3.75E−01 | 5.0000e+04 (0.0000) | 19.8674 (1.0594) | |
EARSDE | 1.0000 (0.0000) | 0.0110 (0.0118) | 72.5588 (0.5541) | 35.7343 (0.5839) | 4.76E−02 | 0.00E+00 | 2.1782e+05 (100,997.0905) | 7.7488 (2.6999) | |
RM | 9.9600 (2.6570) | 1.2543 (0.7687) | 90.0817 (47.8586) | 29.9317 (2.0631) | 4.36E−01 | 4.87E−01 | 5.0000e+04 (0.0000) | 14.4105 (0.9501) | |
MCCO | 20.2000 (0.8367) | 1.6587 (0.2146) | 58.5175 (13.3882) | 3.8922 (1.7007) | 9.62e−01 | 4.00e−01 | 5.0000e+04 (0.0000) | 4.3698 (01319) | |
DCGA | 0.7800 (0.7365) | 0.1181 (0.1179) | 5854.3185 (782.3737) | 32.5236 (5.0061) | 1.56E−01 | 0.00E+00 | 5.2699e+06 (388.4161) | 3.3219 (0.0074) | |
CSA | 0.0000 (0.0000) | 0.0000 (0.0000) | 6638.3536 (0.0000) | 37.6246 (0.0000) | 0.00E+00 | 0.00E+00 | 1.0020e+03 (0.0000) | 3.2029 (0.0615) | |
FSDE | 2.0200 (0.1414) | 0.5546 (0.0278) | 2956.7455 (184.2896) | 20.6989 (0.8690) | 4.16E−01 | 2.47E−01 | 5.0000e+04 (0.0000) | 11.3648 (1.0508) | |
LIPSM | 4.8000 (0.4518) | 0.9682 (0.0664) | 210.8735 (440.7701) | 1.5889 (2.6986) | 9.40E−01 | 7.00E−01 | 5.0000e+04 (0.0000) | 0.0689 (0.0005) | |
LoINDE | 0.0000 (0.0000) | 0.0000 (0.0000) | 6638.3536 (0.0000) | 37.6246 (0.0000) | 0.00E+00 | 0.00E+00 | 5.0000e+04 (0.0000) | 6.4482 (0.0766) | |
MGSA | 1.0000 (0.0000) | 0.0180 (0.0091) | 6518.9525 (60.0834) | 37.1607 (1.2430) | 2.00E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 14.8330 (0.1476) | |
PNPCDE | 0.0200 (0.1414) | 0.0001 (0.0010) | 6637.4387 (6.4697) | 37.5088 (0.8188) | 4.00E−03 | 0.00E+00 | 5.0000e+04 (0.0000) | 13.5464 (0.0083) | |
HTS | 3.8400 (0.9765) | 0.9008 (0.1943) | 1857.3834 (926.0475) | 17.2088 (4.5171) | 7.28E−01 | 8.00E−02 | 7.2154e+06 (1,651,796.8452) | 217.8520 (32.1873) | |
MOMMOP | 5.0000 (0.0000) | 0.8328 (0.0956) | 1117.1761 (634.0152) | 5.2591 (2.4087) | 1.00E+00 | 1.00E+00 | 5.0000e+04 (0.0000) | 19.1777 (0.1498) | |
EARSDE | 0.0000 (0.0000) | 0.0000 (0.0000) | 6638.3536 (0.0000) | 37.6246 (0.0000) | 0.00E+00 | 0.00E+00 | 6.9265e+04 (544.3150) | 5.5117 (0.3721) | |
RM | 4.9600 (0.1979) | 0.9795 (0.0404) | 136.0493 (268.3073) | 1.3495 (1.3138) | 9.91E−01 | 7.25E−01 | 5.0000e+04 (0.0000) | 15.6752 (0.4225) | |
MCCO | 5.0000 (0.0000) | 1.0000 (0.0000) | 0.1077 (0.1451) | 0.0653 (0.0437) | 1.00e+00 | 1.00e+00 | 5.0000e+04 (0.0000) | 5.1350 (0.1937) | |
DCGA | 1.6800 (0.4712) | 0.4852 (0.1653) | 276.5939 (64.3688) | 5.3019 (1.5552) | 5.47E−01 | 1.20E−01 | 5.2700e+06 (389.5683) | 4.6943 (0.3738) | |
CSA | 3.0000 (0.0000) | 0.0169 (0.0014) | 468.6314 (0.6779) | 7.7615 (0.3637) | 1.00E+00 | 1.00E+00 | 1.0020e+03 (0.0000) | 3.7440 (0.2425) | |
FSDE | 3.0000 (0.0000) | 0.9488 (0.0371) | 24.3929 (17.6827) | 0.2104 (0.1739) | 1.00E+00 | 1.00E+00 | 5.0000e+04 (0.0000) | 11.0306 (0.3032) | |
LIPSM | 2.9600 (0.1979) | 0.9808 (0.0686) | 9.1553 (32.7096) | 0.1642 (0.7120) | 9.70E−01 | 8.34E−01 | 5.0000e+04 (0.0000) | 0.0698 (0.0033) | |
LoINDE | 0.9400 (0.2399) | −0.0004 (0.0001) | 476.9022 (0.0516) | 9.0917 (0.4403) | 3.33E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 6.4283 (0.0049) | |
MGSA | 1.0000 (0.0000) | 0.0025 (0.0036) | 475.5096 (1.7299) | 10.7513 (0.9050) | 3.33E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 15.2934 (0.1745) | |
PNPCDE | 2.9400 (0.3136) | 0.0124 (0.0024) | 470.7805 (1.1363) | 6.9902 (0.3619) | 9.87E−01 | 9.60E−01 | 5.0000e+04 (0.0000) | 13.5647 (0.0073) | |
HTS | 3.0000 (0.0000) | 1.0145 (0.0212) | 13.2536 (4.6615) | 4.2459 (0.9590) | 1.00E+00 | 1.00E+00 | 4.2998e+06 (659,780.5913) | 107.2854 (7.3498) | |
MOMMOP | 3.0000 (0.0000) | 0.8007 (0.0798) | 95.0269 (38.0208) | 2.4266 (1.5930) | 1.00E+00 | 1.00E+00 | 5.0000e+04 (0.0000) | 19.4086 (0.2270) | |
EARSDE | 0.0000 (0.0000) | 0.0000 (0.0000) | 476.7000 (0.0000) | 10.8167 (0.0000) | 0.00E+00 | 0.00E+00 | 6.9417e+04 (591.6421) | 5.5583 (0.3461) | |
RM | 2.8600 (0.3505) | 0.9164 (0.1442) | 39.8426 (68.7635) | 0.7597 (1.3776) | 9.23E−01 | 8.03E−01 | 5.0000e+04 (0.0000) | 11.7645 (0.1840) | |
MCCO | 3.0000 (0.0000) | 1.0000 (0.0000) | 0.0000 (0.0000) | 0.0000 (0.0000) | 1.00E+00 | 1.00E+00 | 5.0000e+04 (0.0000) | 5.9875 (0.6458) | |
DCGA | 1.1800 (0.3881) | 0.0995 (0.0474) | 0.7495 (0.0388) | 3.5085 (0.2489) | 2.70E−01 | 2.62E−01 | 5.2700e+06 (423.1517) | 12.9869 (0.6382) | |
CSA | 1.0000 (0.0000) | 0.0966 (0.0543) | 0.7834 (0.0452) | 3.6925 (0.1322) | 2.50E−01 | 0.00E+00 | 1.0020e+03 (0.0000) | 3.4782 (0.4208) | |
FSDE | 1.0000 (0.0000) | 0.1053 (0.0335) | 0.7848 (0.0318) | 3.7335 (0.1051) | 2.50E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 12.4835 (0.4654) | |
LIPSM | 3.8400 (0.3703) | 1.1479 (0.1501) | 0.1552 (0.1333) | 0.6102 (0.4302) | 9.95E−01 | 9.80E−01 | 5.0000e+04 (0.0000) | 0.0707 (0.0017) | |
LoINDE | 1.0000 (0.0000) | 0.7286 (0.0001) | 1.3091 (0.0001) | 4.9245 (0.0047) | 2.50E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 6.5180 (0.0086) | |
MGSA | 1.0000 (0.0000) | 0.4178 (0.1458) | 1.0505 (0.1213) | 4.3127 (0.2471) | 2.50E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 14.8000 (0.2078) | |
PNPCDE | 1.0000 (0.0000) | 0.7283 (0.0007) | 1.3089 (0.0006) | 4.9182 (0.0129) | 2.50E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 13.6422 (0.0161) | |
HTS | 1.0000 (0.0000) | 0.0779 (0.0016) | 0.7678 (0.0013) | 3.6304 (0.0153) | 2.50E−01 | 0.00E+00 | 2.9957e+05 (80,384.5566) | 13.2584 (3.7344) | |
MOMMOP | 1.0000 (0.0000) | 0.0859 (0.0099) | 0.7745 (0.0083) | 3.6868 (0.0452) | 2.50E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 20.6801 (1.8592) | |
EARSDE | 1.0000 (0.0000) | 0.0775 (0.0000) | 0.7675 (0.0000) | 3.6242 (0.0002) | 2.50E−01 | 0.00E+00 | 2.0720e+05 (99,520.1634) | 9.7879 (1.7101) | |
RM | 1.4800 (0.5047) | 0.3347 (0.1999) | 0.7724 (0.1356) | 4.1215 (0.5835) | 3.75E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 12.2837 (0.5762) | |
MCCO | 4.0000 (0.0000) | 1.1222 (0.0417) | 0.1017 (0.0347) | 0.3258 (0.1017) | 1.00E+00 | 1.00E+00 | 5.0000e+04 (0.0000) | 7.1484 (0.6582) |
Function | Algorithm | EPN | MPR | PA | DA | PR | SR | NFC | T(s) |
---|---|---|---|---|---|---|---|---|---|
DCGA | 6.7400 (0.8992) | 0.5091 (0.1381) | 57.9157 (16.2795) | 2.1725 (0.9493) | 8.60E−01 | 3.00E−01 | 5.2700e+06 (423.5090) | 3.9790 (0.0227) | |
CSA | 1.0000 (0.0000) | 0.1357 (0.0000) | 101.9679 (0.0000) | 8.2522 (0.0000) | 1.25E−01 | 0.00E+00 | 1.0020e+03 (0.0000) | 3.6211 (0.4123) | |
FSDE | 7.8200 (0.4819) | 0.9358 (0.0614) | 7.5921 (7.2334) | 0.4674 (0.6016) | 9.85E−01 | 8.80E−01 | 5.0000e+04 (0.0000) | 11.0149 (0.2440) | |
LIPSM | 6.3600 (1.3815) | 0.2437 (0.4316) | 89.1749 (50.8793) | 2.7790 (1.7139) | 7.58E−01 | 1.40E−01 | 5.0000e+04 (0.0000) | 0.0705 (0.0005) | |
LoINDE | 1.0000 (0.0000) | −0.4791 (0.0002) | 174.3908 (0.0191) | 8.9533 (0.0077) | 1.25E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 6.3788 (0.0431) | |
MGSA | 1.0000 (0.0000) | −0.0566 (0.1507) | 124.5808 (17.7644) | 8.5178 (0.1649) | 1.25E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 14.5061 (0.5020) | |
PNPCDE | 1.0000 (0.0000) | −0.4702 (0.0119) | 173.3371 (1.4049) | 8.9644 (0.0348) | 1.25E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 13.5234 (0.0121) | |
HTS | 1.0000 (0.0000) | 0.1345 (0.0016) | 102.0548 (0.1845) | 8.2801 (0.1379) | 1.25E−01 | 0.00E+00 | 7.8946e+05 (237,933.4253) | 19.1952 (7.6346) | |
MOMMOP | 1.0000 (0.0000) | 0.1296 (0.0040) | 102.6255 (0.4688) | 8.7652 (0.5011) | 1.25E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 22.3204 (0.8625) | |
EARSDE | 1.0000 (0.0000) | 0.1350 (0.0029) | 102.0438 (0.3251) | 8.3202 (0.2762) | 1.25E−01 | 0.00E+00 | 2.3699e+05 (105,559.4854) | 7.5346 (1.5782) | |
RM | 1.6600 (1.3494) | 0.1324 (0.1502) | 102.2930 (17.7047) | 8.5933 (0.4921) | 2.47E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 13.1458 (0.0762) | |
MCCO | 8.0000 (0.0000) | 0.8051 (0.1250) | 23.0527 (14.7310) | 0.5634 (0.2429) | 1.00E+00 | 1.00E+00 | 5.0000e+04 (0.0000) | 4.7895 (0.3612) | |
DCGA | 5.1000 (0.6468) | 0.5901 (0.0878) | 2.3783 (0.4837) | 1.7795 (0.5792) | 8.67E−01 | 3.40E−01 | 5.2699e+06 (416.2275) | 6.3541 (0.3430) | |
CSA | 1.0000 (0.0000) | 0.1713 (0.0147) | 4.7577 (0.0660) | 6.2613 (0.6894) | 1.67E−01 | 0.00E+00 | 1.0020e+03 (0.0000) | 3.4052 (0.2621) | |
FSDE | 5.8000 (0.4041) | 0.8141 (0.0852) | 1.0691 (0.4780) | 0.5166 (0.4258) | 9.53E−01 | 7.20E−01 | 5.0000e+04 (0.0000) | 11.4995 (0.4801) | |
LIPSM | 4.4800 (0.8862) | 0.4685 (0.1213) | 3.0125 (0.6852) | 2.4932 (0.8558) | 7.33E−01 | 8.00E−02 | 5.0000e+04 (0.0000) | 0.0696 (0.0013) | |
LoINDE | 4.5000 (0.5051) | 0.0016 (0.0002) | 5.6544 (0.0010) | 11.8864 (0.6904) | 7.13E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 5.9209 (0.0470) | |
MGSA | 1.0000 (0.0000) | 0.0798 (0.0265) | 5.2112 (0.1500) | 6.3464 (0.5928) | 1.67E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 14.8454 (0.1165) | |
PNPCDE | 4.1800 (0.3881) | 0.0015 (0.0001) | 5.6548 (0.0008) | 11.4256 (0.5542) | 7.07E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 13.7502 (0.2281) | |
HTS | 1.0000 (0.0000) | 0.1752 (0.0017) | 4.7406 (0.0082) | 6.3731 (0.5063) | 1.67E−01 | 0.00E+00 | 1.9116e+06 (292,922.6258) | 46.6750 (0.1455) | |
MOMMOP | 1.0000 (0.0000) | 0.1423 (0.0146) | 4.8574 (0.0825) | 6.2275 (0.6006) | 1.67E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 20.2234 (0.1947) | |
EARSDE | 1.0000 (0.0000) | 0.1765 (0.0002) | 4.7471 (0.0009) | 6.2540 (0.6985) | 1.67E−01 | 0.00E+00 | 1.9827e+05 (104,111.6689) | 7.2288 (0.9528) | |
RM | 1.1600 (0.3703) | 0.1375 (0.0513) | 4.8846 (0.2907) | 6.1834 (0.7370) | 1.95E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 11.8541 (0.0930) | |
MCCO | 6.0000 (0.0000) | 0.9942 (0.0585) | 0.3756 (0.3233) | 0.1208 (0.0878) | 1.00E+00 | 1.00E+00 | 5.0000e+04 (0.0000) | 5.5784 (0.3712) | |
DCGA | 17.3800 (4.1349) | 0.2295 (0.0752) | 53.7829 (5.2159) | 81.5710 (15.9520) | 4.89E−01 | 0.00E+00 | 5.2699e+06 (406.6097) | 4.4611 (0.3421) | |
CSA | 1.6400 (1.3962) | 1.2028 (1.9805) | 31.2207 (1.8519) | 157.2020 (0.5684) | 7.78E−03 | 0.00E+00 | 1.0020e+03 (0.0000) | 3.7716 (0.4670) | |
FSDE | 5.5800 (2.0711) | 0.1564 (0.0552) | 58.8156 (3.8439) | 114.5919 (10.6299) | 1.58E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 11.0075 (0.2962) | |
LIPSM | 18.5000 (6.9818) | 0.1415 (0.1798) | 59.9756 (12.3843) | 102.5510 (32.2349) | 5.14E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 0.0719 (0.0026) | |
LoINDE | 31.0400 (5.5401) | −0.8857 (0.1576) | 131.4681 (10.9899) | 82.3903 (13.1937) | 8.14E−01 | 8.00E−02 | 5.0000e+04 (0.0000) | 6.3637 (0.0051) | |
MGSA | 1.0000 (0.0000) | −0.0025 (0.0147) | 69.8919 (1.0264) | 154.1091 (1.0567) | 2.78E−02 | 0.00E+00 | 5.0000e+04 (0.0000) | 14.4385 (0.1911) | |
PNPCDE | 34.5200 (2.3408) | −0.9657 (0.0670) | 137.0452 (4.6695) | 80.5974 (5.9311) | 9.62E−01 | 4.00E−02 | 5.0000e+04 (0.0000) | 13.4963 (0.0070) | |
HTS | 22.6400 (8.8865) | 0.0025 (0.0017) | 69.5456 (0.1159) | 111.9837 (18.2089) | 6.14E−01 | 4.00E−02 | 4.7138e+06 (482,108.0580) | 88.7629 (3.5432) | |
MOMMOP | 27.0000 (6.8243) | 0.5971 (0.1727) | 28.5716 (11.5581) | 70.6105 (8.6683) | 8.79E−01 | 1.60E−01 | 5.0000e+04 (0.0000) | 20.8947 (0.8648) | |
EARSDE | 0.4400 (1.8534) | 1.4477 (10.4475) | 39.4683 (11.8950) | 156.7319 (3.1499) | 7.78E−03 | 0.00E+00 | 2.1237e+05 (118,498.9689) | 7.8712 (1.3295) | |
RM | 23.3400 (10.6342) | 0.2915 (0.3093) | 49.8345 (20.9848) | 99.8005 (35.7264) | 5.61E−03 | 0.00E+00 | 5.0000e+04 (0.0000) | 13.7253 (0.6319) | |
MCCO | 25.0000 (0.0000) | 0.7064 (0.0127) | 21.1987 (0.7800) | 35.8584 (1.1774) | 6.94e−01 | 0.00e+00 | 5.0000e+04 (0.0000) | 4.1574 (0.3804) | |
DCGA | 32.5400 (2.0723) | 0.2892 (0.1015) | 50.3347 (6.7100) | 25.6746 (3.7450) | 8.26E−01 | 2.00E−02 | 5.2702e+06 (452.3383) | 4.3025 (0.4210) | |
CSA | 14.7600 (10.3541) | 0.1603 (0.1122) | 58.2375 (7.7804) | 79.9445 (4.5951) | 2.85E−01 | 0.00E+00 | 1.0020e+03 (0.0000) | 3.8122 (0.8740) | |
FSDE | 33.3600 (1.4394) | 0.9261 (0.0387) | 20.9214 (1.8189) | 25.7048 (2.3848) | 8.26E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 11.3063 (0.7670) | |
LIPSM | 33.2800 (2.8287) | −0.0845 (0.2927) | 75.7633 (19.7202) | 24.0068 (4.8334) | 8.51E−01 | 2.00E−02 | 5.0000e+04 (0.0000) | 0.0701 (0.0013) | |
LoINDE | 30.8600 (5.7924) | −1.8075 (0.3318) | 194.7076 (23.0088) | 54.7586 (3.9624) | 7.76E−01 | 4.00E−02 | 5.0000e+04 (0.0000) | 6.3762 (0.0169) | |
MGSA | 1.0000 (0.0000) | −0.0128 (0.0084) | 70.2408 (0.5795) | 81.8813 (0.4700) | 2.50E−02 | 0.00E+00 | 5.0000e+04 (0.0000) | 14.0801 (0.0271) | |
PNPCDE | 16.7400 (10.8624) | −0.2905 (0.1866) | 89.5021 (12.9423) | 77.3101 (5.0775) | 3.99E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 13.4828 (0.0089) | |
HTS | 23.3400 (11.3616) | 1.6178 (0.9708) | 98.8315 (34.8418) | 121.6556 (25.5682) | 5.95E−01 | 4.00E−02 | 5.3787e+06 (1,538,699.7330) | 114.3261 (40.2107) | |
MOMMOP | 29.9400 (6.6253) | 0.8442 (0.2780) | 37.8543 (7.4293) | 65.4402 (4.8254) | 7.03E−01 | 1.20E−01 | 5.0000e+04 (0.0000) | 18.9512 (0.5326) | |
EARSDE | 0.0000 (0.0000) | 0.0000 (0.0000) | 69.3526 (0.0000) | 81.7565 (0.0000) | 0.00E+00 | 0.00E+00 | 2.2695e+05 (22,116.5083) | 7.7541 (0.5658) | |
RM | 32.5000 (4.2964) | 0.1675 (0.3229) | 59.8485 (19.3763) | 51.7364 (6.1193) | 8.16E−01 | 4.27E−02 | 5.0000e+04 (0.0000) | 12.1458 (0.3897) | |
MCCO | 24.6000 (1.1402) | 0.3816 (0.0327) | 43.1790 (1.9530) | 37.2566 (3.2108) | 6.15e−01 | 0.00e+00 | 5.0000e+04 (0.0000) | 4.5769 (0.1642) | |
DCGA | 3.5600 (1.2149) | 0.4143 (0.1232) | 18.9560 (3.9532) | 44.4814 (12.2185) | 4.68E−01 | 0.00E+00 | 5.2700e+06 (512.5000) | 4.4157 (0.1919) | |
CSA | 0.0000 (0.0000) | 0.0000 (0.0000) | 32.1222 (0.0000) | 74.7141 (0.0000) | 8.75E−02 | 0.00E+00 | 1.0020e+03 (0.0000) | 3.5020 (0.0492) | |
FSDE | 2.0000 (0.0000) | 0.3800 (0.0012) | 19.9148 (0.0371) | 56.3252 (0.0584) | 2.50E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 11.5497 (0.5992) | |
LIPSM | 3.6000 (1.1429) | 0.4405 (0.1499) | 17.9719 (4.8161) | 48.2005 (10.5583) | 4.55E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 0.0692 (0.0007) | |
LoINDE | 6.4800 (1.0349) | −0.8734 (0.1161) | 60.1790 (3.7304) | 31.5892 (6.1687) | 7.70E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 6.4375 (0.0281) | |
MGSA | 1.0000 (0.0000) | −0.0262 (0.0667) | 32.9630 (2.1425) | 68.4868 (1.3019) | 1.25E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 14.0832 (0.0301) | |
PNPCDE | 7.1000 (0.3030) | −0.6212 (0.1318) | 52.0763 (4.2339) | 26.1353 (2.7162) | 8.88E−01 | 1.00E−01 | 5.0000e+04 (0.0000) | 13.5545 (0.0269) | |
HTS | 4.5400 (1.1988) | 0.4554 (0.3582) | 26.5703 (4.0784) | 47.7845 (8.3195) | 5.40E−01 | 0.00E+00 | 3.4108e+06 (546,220.0657) | 83.3420 (18.7297) | |
MOMMOP | 7.7800 (0.4647) | 0.8766 (0.1026) | 5.8293 (2.7242) | 10.1018 (4.9705) | 9.75E−01 | 8.00E−01 | 5.0000e+04 (0.0000) | 19.0711 (0.7056) | |
EARSDE | 0.8200 (0.3881) | 0.0900 (0.1135) | 30.0505 (2.7604) | 70.7956 (3.0980) | 8.75E−02 | 0.00E+00 | 3.4856e+05 (128,156.0640) | 11.1211 (1.9141) | |
RM | 4.5200 (0.6465) | 0.4752 (0.0674) | 16.8572 (2.1657) | 42.4463 (6.8784) | 5.87E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 11.6824 (0.6375) | |
MCCO | 8.0000 (0.0000) | 0.9997 (0.0002) | 0.0159 (0.0074) | 0.2078 (0.0242) | 1.00E+00 | 1.00E+00 | 5.0000e+04 (0.0000) | 4.2497 (0.3921) | |
DCGA | 1.0000 (0.0000) | −0.1474 (0.0011) | 1.7324 (0.0008) | 5.7077 (0.1723) | 8.33E−02 | 0.00E+00 | 5.2700e+06 (396.7548) | 4.0571 (0.2988) | |
CSA | 1.0000 (0.0000) | −0.1337 (0.0295) | 1.7442 (0.0249) | 5.7767 (0.1971) | 8.33E−02 | 0.00E+00 | 1.0020e+03 (0.0000) | 3.1997 (0.0902) | |
FSDE | 1.0000 (0.0000) | −0.1462 (0.0024) | 1.7332 (0.0020) | 5.6966 (0.1770) | 8.33E−02 | 0.00E+00 | 5.0000e+04 (0.0000) | 11.5354 (0.2906) | |
LIPSM | 1.0800 (0.2740) | −0.0513 (0.2371) | 1.7869 (0.1180) | 5.7190 (0.1694) | 8.67E−02 | 0.00E+00 | 5.0000e+04 (0.0000) | 0.0679 (0.0007) | |
LoINDE | 1.0000 (0.0000) | 2.0893 (0.0181) | 3.6384 (0.0155) | 6.8529 (0.1807) | 8.33E−02 | 0.00E+00 | 5.0000e+04 (0.0000) | 5.8972 (0.0177) | |
MGSA | 1.0000 (0.0000) | 0.1255 (0.1769) | 1.9647 (0.1507) | 5.8757 (0.1979) | 8.33E−02 | 0.00E+00 | 5.0000e+04 (0.0000) | 14.7684 (0.0800) | |
PNPCDE | 1.0000 (0.0000) | 1.7767 (0.3247) | 3.3719 (0.2768) | 6.7406 (0.1949) | 8.33E−02 | 0.00E+00 | 5.0000e+04 (0.0000) | 13.5227 (0.0248) | |
HTS | 1.0000 (0.0000) | −0.1479 (0.0000) | 1.7324 (0.0000) | 5.7680 (0.1847) | 8.33E−02 | 0.00E+00 | 4.2065e+05 (67,438.1820) | 12.4227 (0.2386) | |
MOMMOP | 1.0000 (0.0000) | −0.1310 (0.0224) | 1.7460 (0.0191) | 5.7757 (0.1697) | 8.33E−02 | 0.00E+00 | 5.0000e+04 (0.0000) | 18.8628 (0.3494) | |
EARSDE | 1.0000 (0.0000) | −0.1479 (0.0000) | 1.7324 (0.0000) | 5.7823 (0.1738) | 8.33E−02 | 0.00E+00 | 2.4215e+05 (104,975.1893) | 7.8763 (1.4696) | |
RM | 1.0000 (0.0000) | −0.0915 (0.0558) | 1.7797 (0.0475) | 5.8308 (0.1042) | 8.33E−02 | 0.00E+00 | 5.0000e+04 (0.0000) | 12.2543 (0.4314) | |
MCCO | 4.8000 (0.4472) | −0.6356 (0.0321) | 1.8985 (0.0279) | 5.3181 (0.1704) | 4.00e−01 | 0.00e+00 | 5.0000e+04 (0.0000) | 4.4547 (0.4962) | |
DCGA | 1.0000 (0.0000) | 0.0000 (0.0000) | 114.3627 (0.0000) | 28.8892 (0.0000) | 1.11E−01 | 0.00E+00 | 5.2702e+06 (408.7596) | 3.6593 (0.0113) | |
CSA | 1.0000 (0.0000) | 0.0000 (0.0000) | 114.3627 (0.0000) | 28.8892 (0.0000) | 1.11E−01 | 0.00E+00 | 1.0020e+03 (0.0000) | 3.4427 (0.3641) | |
FSDE | 1.0000 (0.0000) | 0.0001 (0.0002) | 114.3570 (0.0160) | 28.8916 (0.0126) | 1.11E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 12.3678 (0.1444) | |
LIPSM | 5.4400 (1.8201) | 0.6144 (0.2655) | 65.6156 (23.4835) | 14.7539 (6.0802) | 5.69E−01 | 4.00E−02 | 5.0000e+04 (0.0000) | 0.0677 (0.0005) | |
LoINDE | 4.0400 (0.1979) | 3.3509 (0.0956) | 348.3661 (6.7529) | 23.1722 (0.8612) | 4.44E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 6.3759 (0.0272) | |
MGSA | 1.0000 (0.0000) | 0.2210 (0.1169) | 139.5238 (13.3732) | 30.2407 (0.7448) | 1.11E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 14.6457 (0.0936) | |
PNPCDE | 6.0000 (0.0000) | 2.8921 (0.0033) | 292.6285 (0.3751) | 22.4646 (0.0682) | 6.67E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 13.5294 (0.0155) | |
HTS | 1.2400 (0.8221) | 0.0276 (0.0916) | 112.8990 (5.3421) | 28.7942 (0.6401) | 1.24E−01 | 0.00E+00 | 2.5309e+06 (674,403.9839) | 83.0052 (10.2085) | |
MOMMOP | 6.0800 (0.8291) | 0.7335 (0.1540) | 54.9871 (7.7088) | 19.7481 (2.6027) | 7.16E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 18.9710 (0.3317) | |
EARSDE | 1.0000 (0.0000) | 0.0000 (0.0000) | 114.3627 (0.0000) | 28.8892 (0.0001) | 1.11E−01 | 0.00E+00 | 2.0328e+05 (107,472.8440) | 8.7347 (2.4919) | |
RM | 7.3000 (1.0351) | 1.3945 (0.4019) | 105.6598 (30.2145) | 13.0871 (3.4396) | 8.01E−01 | 0.00E+00 | 5.0000e+04 (0.0000) | 11.6824 (0.6375) | |
MCCO | 9.0000 (0.0000) | 0.9323 (0.1354) | 0.4787 (0.0089) | 0.4281 (0.0235) | 1.00E+00 | 1.00E+00 | 5.0000e+04 (0.0000) | 4.0872 (0.2458) |
MCCO vs. | DCGA | CSA | FSDE | LIPSM | LoINDE | MGSA | PNPCDE | HTS | MOMMOP | EARS DE | RM |
---|---|---|---|---|---|---|---|---|---|---|---|
1.47E-13▲ | 8.01E-05▲ | 1.35E-04▲ | 2.78E-13▲ | 2.69E-13▲ | 2.69E-13▲ | 1.22E-05▲ | 3.97E-07▲ | 0.00E+00► | 2.69E-13▲ | 1.14E-04▲ | |
1.41E-04▲ | 2.50E-13▲ | 0.00E+00► | 5.80E-07▲ | 3.26E-03▲ | 2.50E-13▲ | 9.48E-07▲ | 1.29E-04▲ | 1.15E-04▲ | 2.50E-13▲ | 7.47E-06▲ | |
2.14E-04▲ | 2.66E-13▲ | 1.33E-03▲ | 5.23E-06▲ | 1.01E-04▲ | 5.81E-08▲ | 7.40E-05▲ | 1.34E-04▲ | 5.69E-05▲ | 2.66E-13▲ | 2.87E-10▲ | |
3.08E-10▲ | 2.69E-13▲ | 2.69E-13▲ | 3.36E-11▲ | 2.69E-13▲ | 2.69E-13▲ | 1.18E-05▲ | 2.69E-13▲ | 1.48E-04▲ | 2.69E-13▲ | 4.48E-09▲ | |
1.65E-04▲ | 2.65E-13▲ | 1.50E-08▲ | 1.33E-08▲ | 2.65E-13▲ | 2.65E-13▲ | 1.62E-11▲ | 1.20E-09▲ | 0.00E+00► | 2.65E-13▲ | 1.87E-07▲ | |
1.43E-05▲ | 0.00E+00► | 0.00E+00► | 8.00E-06▲ | 2.50E-13▲ | 2.50E-13▲ | 6.85E-08▲ | 0.00E+00► | 0.00E+00► | 2.50E-13▲ | 6.87E-07▲ | |
1.71E-07▲ | 2.50E-13▲ | 2.50E-13▲ | 4.32E-08▲ | 2.50E-13▲ | 2.50E-13▲ | 2.50E-13▲ | 2.50E-13▲ | 2.50E-13▲ | 2.50E-13▲ | 5.24E-14▲ | |
5.21E-03▲ | 2.50E-13▲ | 4.32E-01▲ | 1.28E-09▲ | 2.50E-13▲ | 2.50E-13▲ | 2.50E-13▲ | 2.50E-13▲ | 2.50E-13▲ | 2.50E-13▲ | 8.45E-18▲ | |
3.31E-03▲ | 2.50E-13▲ | 1.81E-01▲ | 5.92E-08▲ | 1.37E-05▲ | 2.50E-13▲ | 7.15E-06▲ | 2.50E-13▲ | 2.50E-13▲ | 2.50E-13▲ | 7.13E-11▲ | |
5.94E-03▲ | 4.54E-07▲ | 1.33E-04▲ | 2.02E-04▲ | 1.24E-02▼ | 2.68E-13▲ | 5.33E-06▼ | 7.24E-08▲ | 9.32E-04▼ | 3.20E-05▲ | 9.67E-08▲ | |
2.44E-04▲ | 2.27E-03▲ | 2.33E-04▲ | 2.43E-04▼ | 1.59E-02▼ | 2.69E-13▲ | 7.98E-07▲ | 3.95E-07▲ | 4.06E-02▼ | 2.69E-13▲ | 2.58E-07▼ | |
2.80E-04▲ | 2.65E-13▲ | 2.65E-13▲ | 3.54E-04▲ | 6.40E-08▲ | 2.65E-13▲ | 1.45E-04▲ | 8.08E-04▲ | 2.85E-05▲ | 5.91E-05▲ | 7.59E-13▲ | |
2.68E-13▲ | 2.68E-13▲ | 2.68E-13▲ | 2.77E-09▲ | 2.68E-13▲ | 2.68E-13▲ | 2.68E-13▲ | 2.68E-13▲ | 2.68E-13▲ | 2.68E-13▲ | 1.57E-17▲ | |
2.66E-13▲ | 2.66E-13▲ | 2.66E-13▲ | 2.68E-02▲ | 2.66E-13▲ | 2.66E-13▲ | 7.89E-06▲ | 2.74E-09▲ | 1.33E-08▲ | 2.66E-13▲ | 6.31E-18▲ | |
▲ | 14 | 13 | 12 | 13 | 12 | 14 | 13 | 13 | 9 | 14 | 13 |
▼ | 0 | 0 | 0 | 1 | 2 | 0 | 1 | 0 | 2 | 0 | 1 |
► | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 1 | 3 | 0 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gálvez, J.; Cuevas, E.; Gopal Dhal, K. A Competitive Memory Paradigm for Multimodal Optimization Driven by Clustering and Chaos. Mathematics 2020, 8, 934. https://doi.org/10.3390/math8060934
Gálvez J, Cuevas E, Gopal Dhal K. A Competitive Memory Paradigm for Multimodal Optimization Driven by Clustering and Chaos. Mathematics. 2020; 8(6):934. https://doi.org/10.3390/math8060934
Chicago/Turabian StyleGálvez, Jorge, Erik Cuevas, and Krishna Gopal Dhal. 2020. "A Competitive Memory Paradigm for Multimodal Optimization Driven by Clustering and Chaos" Mathematics 8, no. 6: 934. https://doi.org/10.3390/math8060934
APA StyleGálvez, J., Cuevas, E., & Gopal Dhal, K. (2020). A Competitive Memory Paradigm for Multimodal Optimization Driven by Clustering and Chaos. Mathematics, 8(6), 934. https://doi.org/10.3390/math8060934