Establishing New Criteria for Oscillation of Odd-Order Nonlinear Differential Equations
Abstract
:1. Introduction
2. Preliminary Results
3. Nonexistence Criteria of Non-Oscillatory Solutions
4. Asymptotic and Oscillatory Properties
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hale, J.K. Theory of Functional Differential Equations; Springer: New York, NY, USA, 1977. [Google Scholar]
- Bazighifan, O.; Ruggieri, M.; Scapellato, A. An Improved Criterion for the Oscillation of Fourth-Order Differential Equations. Mathematics 2020, 8, 610. [Google Scholar] [CrossRef]
- Bohner, M.; Grace, S.R.; Jadlovska, I. Oscillation criteria for second-order neutral delay differential equations. Electron. J. Qual. Theory Differ. Equ. 2017, 1–12. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Grace, S.R.; Jadlovska, I. Oscillation criteria for third-order delay differential equations. Adv. Differ. Equ. 2017, 330. [Google Scholar] [CrossRef] [Green Version]
- Dzurina, J.; Grace, S.R.; Jadlovska, I. On nonexistence of Kneser solutions of third-order neutral delay differential equations. Appl. Math. Lett. 2019, 88, 193–200. [Google Scholar] [CrossRef]
- Moaaz, O.; Baleanu, D.; Muhib, A. New Aspects for Non-Existence of Kneser Solutions of Neutral Differential Equations with Odd-Order. Mathematics 2020, 8, 494. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Chalishajar, D.; Bazighifan, O. Asymptotic behavior of solutions of the third order nonlinear mixed type neutral differential equations. Mathematics 2020, 8, 485. [Google Scholar] [CrossRef] [Green Version]
- Moaaz, O.; Elabbasy, E.M.; Shaaban, E. Oscillation criteria for a class of third order damped differential equations. Arab J. Math. Sci. 2018, 24, 16–30. [Google Scholar] [CrossRef]
- Moaaz, O.; Muhib, A. New oscillation criteria for nonlinear delay differential equations of fourth-order. Appl. Math. Comput. 2020, 377, 125192. [Google Scholar] [CrossRef]
- Baculikova, B.; Dzurina, J. Oscillation of third-order neutral differential equations. Math. Comput. Model. 2010, 52, 215–226. [Google Scholar] [CrossRef]
- Baculikova, B.; Dzurina, J. Oscillation of third-order nonlinear differential equations. Appl. Math. Lett. 2011, 24, 466–470. [Google Scholar] [CrossRef] [Green Version]
- Dzurina, J.; Thandapani, E.; Tamilvanan, S. Oscillation of solutions to third-order half-linear neutral differential equations. Electron. J. Differ. Equ. 2012, 2012, 1–9. [Google Scholar]
- Graef, J.R.; Tunc, E.; Grace, S.R. Oscillatory and asymptotic behavior of a third-order nonlinear neutral differential equation. Opusc. Math. 2017, 37, 839–852. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, T. Asymptotic behavior of a third-order nonlinear neutral delay differential equation. J. Inequal. Appl. 2014, 2014, 512. [Google Scholar] [CrossRef] [Green Version]
- Kitamura, Y.; Kusano, T. Oscillation of first-order nonlinear differential equations with deviating arguments. Proc. Am. Math. Soc. 1980, 78, 64–68. [Google Scholar] [CrossRef]
- Li, T.; Zhang, C.; Xing, G. Oscillation of third-order neutral delay differential equations. In Abstract and Applied Analysis; Hindawi: London, UK, 2012; Volume 2012. [Google Scholar]
- Thandapani, E.; Tamilvanan, S.; Jambulingam, E.; Tech, V.T.M. Oscillation of third order half linear neutral delay differential equations. Int. J. Pure Appl. Math. 2012, 77, 359–368. [Google Scholar]
- Tunc, E. Oscillatory and asymptotic behavior of third-order neutral differential equations with distributed deviating arguments. Electron. J. Differ. Equ. 2017. [Google Scholar] [CrossRef] [Green Version]
- Thandapani, E.; Li, T. On the oscillation of third-order quasi-linear neutral functional differential equations. Arch. Math. 2011, 47, 181–199. [Google Scholar]
- Xing, G.; Li, T.; Zhang, C. Oscillation of higher-order quasi-linear neutral differential equations. Adv. Differ. Equ. 2011, 2011, 45. [Google Scholar] [CrossRef] [Green Version]
- Baculikova, B.; Dzurina, J. Oscillation theorems for second-order nonlinear neutral differential equations. Comput. Math. Appl. 2011, 62, 4472–4478. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Difference and Functional Differential Equations; Marcel Dekker, Kluwer Academic: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Philos, C. On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delays. Arch. Math. 1981, 36, 168–178. [Google Scholar] [CrossRef]
- Vidhyaa, K.S.; Graef, J.R.; Thandapani, E. New oscillation results for third-order half-linear neutral differential equations. Mathematics 2020, 8, 325. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moaaz, O.; Awrejcewicz, J.; Muhib, A. Establishing New Criteria for Oscillation of Odd-Order Nonlinear Differential Equations. Mathematics 2020, 8, 937. https://doi.org/10.3390/math8060937
Moaaz O, Awrejcewicz J, Muhib A. Establishing New Criteria for Oscillation of Odd-Order Nonlinear Differential Equations. Mathematics. 2020; 8(6):937. https://doi.org/10.3390/math8060937
Chicago/Turabian StyleMoaaz, Osama, Jan Awrejcewicz, and Ali Muhib. 2020. "Establishing New Criteria for Oscillation of Odd-Order Nonlinear Differential Equations" Mathematics 8, no. 6: 937. https://doi.org/10.3390/math8060937
APA StyleMoaaz, O., Awrejcewicz, J., & Muhib, A. (2020). Establishing New Criteria for Oscillation of Odd-Order Nonlinear Differential Equations. Mathematics, 8(6), 937. https://doi.org/10.3390/math8060937