A Complex MCDM Procedure for the Assessment of Economic Development of Units at Different Government Levels
Abstract
:1. Introduction
2. Materials and Methods
- classical standardization: for all variables that follow a normal or near-normal distribution (approach I):
- classical standardization for winsorized data: for a set of variables which includes extreme values (approach II):
- modified median standardization based on Weber spatial median: for a set of variables which includes variables that have extreme values and follow a strongly asymmetric distribution (approach IV) [35]:
- x1—own revenue of municipal budgets in the district (PLN per capita),
- x2—population per public pharmacy,
- x3—share of population served by water supply in the total population (%),
- x4—share of population served by a sewerage network in the total population (%),
- x5—entities of the national economy per 10,000 working-age population,
- x6—investment outlays in enterprises per capita (in current prices) (PLN),
- x7—average monthly gross wages and salaries (PLN),
- x8—registered unemployment rate (%).
3. Results
- classical TOPSIS with classical standardization of values of variables (approach I),
- classical TOPSIS with classical standardization of values of winsorized variables (approach II),
- positional TOPSIS with positional standardization of values of variables (approach III),
- positional TOPSIS with positional standardization of values of winsorized variables (approach IV).
4. Conclusions
5. Recommendations
- The hybrid positional approach: analyzing the MEF graphs and using the positional TOPSIS method with winsorized data, if the variables follow an asymmetrical distribution and include extreme values.
- The hybrid approach: analyzing the MEF graphs and using the classical TOPSIS method with winsorized data, if the distribution of the variables includes extreme values.
- The positional approach: using the positional TOPSIS method with positional standardization based on Weber spatial median, if the variables follow an asymmetric distribution without extreme values.
- The classical approach: using the classical TOPSIS method based on classical standardization, if all variables follow a normal or near-normal distribution.
Author Contributions
Funding
Conflicts of Interest
References
- Reese, L.A.; Rosenfeld, R.A. Local Economic Development in the United States and Canada: Institutionalizing Policy Approaches. Am. Rev. Public Adm. 2004, 34, 277–292. [Google Scholar] [CrossRef]
- Morgan, J.Q. The Role of Local Government in Economic Development: Survey Findings from North Carolina; UNC School of Government: Chapel Hill, NC, USA, 2009. [Google Scholar]
- Stanny, M.; Rosner, A.; Kozdroń, E. Changes in the Spatial Distribution of the Level and Dynamics of Socio-Economic Development of Rural Areas in Poland. Village Agric. 2016, 4, 29–47. [Google Scholar]
- Schumpeter, J.A. Development. J. Econ. Lit. 2005, 43, 108–120. [Google Scholar] [CrossRef]
- Agarwal, S.; Rahman, S.; Errington, A. Measuring the determinants of relative economic performance of rural areas. J. Rural Stud. 2009, 25, 309–321. [Google Scholar] [CrossRef]
- Parysek, J.J. Foundations of Local Economy; Adam Mickiewicz University in Poznań: Poznan, Poland, 1997. (In Polish) [Google Scholar]
- Eraydin, A. Changing importance of quantitative methods in regional development and planning. A|Z ITU J. Fac. Archit. 2011, 8, 4–16. [Google Scholar]
- Anselin, L. Spatial Econometrics: Methods and Models; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Stewart, T.J. A critical survey on the status of multiple criteria decision making theory and practice. OMEGA Int. J. Manag. Sci. 1992, 20, 569–586. [Google Scholar]
- Xu, L.; Yang, J.-B. Introduction to Multi-Criteria Decision Making and the Evidential Reasoning Approach; Working Paper, No. 0106; Manchester School of Management, University of Manchester Institute of Science and Technology: Manchester, UK, 2001; Available online: https://phps.portals.mbs.ac.uk/Portals/49/docs/jyang/XuYang_MSM_WorkingPaperFinal.pdf (accessed on 5 December 2013).
- Timmreck, T.C. Planning, Program Development, and Evaluation: A Handbook for Health Promotion, Aging, and Health Services; Jones & Bartlett Learning: London, UK, 2003. [Google Scholar]
- Local Data Bank, Central Statistical Office of Poland. Available online: www.stat.gov.pl (accessed on 22 July 2019).
- Wang, J.-J.; Jing, Y.-Y.; Zhang, C.-F.; Zhao, J.-H. Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew. Sustain. Energy. Rev. 2009, 13, 2263–2278. [Google Scholar] [CrossRef]
- Pourjavad, E.; Shirouyehzad, H. A MCDM Approach for Prioritizing Production Lines: A Case Study. Int. J. Bus. Manag. 2011, 6, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Pedrycz, W.; Ekel, P.; Parreiras, R. Fuzzy Multicriteria Decision-Making: Models. Methods and Applications; John Wiley & Sons: Chichester, UK, 2011. [Google Scholar]
- Velasquez, M.; Hester, P.T. An Analysis of Multi-Criteria Decision Making Methods. Int. J. Oper. Res. 2013, 10, 56–66. [Google Scholar]
- Mardani, A.; Jusoh, A.; Zavadskas, E.K. Fuzzy multiple criteria decision-making techniques and applications—Two decades review from 1994 to 2014. Expert Syst. Appl. 2015, 42, 4126–4148. [Google Scholar] [CrossRef]
- Behzadian, M.; Otaghsars, S.K.; Yazdani, M.; Ignatius, J. A state-of the-art survey of TOPSIS applications. Expert Syst. Appl. 2012, 39, 13051–13069. [Google Scholar] [CrossRef]
- Zyoud, S.H.; Kaufmann, L.G.; Shaheen, H.; Samhan, S.; Fuchs-Hanusch, D. A framework for water loss management in developing countries under fuzzy environment: Integration of Fuzzy AHP with Fuzzy TOPSIS. Expert Syst. Appl. 2016, 61, 86–105. [Google Scholar] [CrossRef]
- Han, H.; Trimi, S. A fuzzy TOPSIS method for performance evaluation of reverse logistics in social commerce platforms. Expert Syst. Appl. 2018, 103, 133–145. [Google Scholar] [CrossRef]
- Hatami-Marbini, A.; Kangi, F. An extension of fuzzy TOPSIS for a group decision making with an application to Tehran stock exchange. Appl. Soft Comput. 2017, 52, 1084–1097. [Google Scholar] [CrossRef]
- Palczewski, K.; Sałabun, W. The fuzzy TOPSIS applications in the last decade. Procedia Comput. Sci. 2019, 159, 2294–2303. [Google Scholar] [CrossRef]
- Salih, M.M.; Zaidan, B.B.; Zaidan, A.A.; Ahmed, M.A. Survey on fuzzy TOPSIS state-of-the-art between 2007 and 2017. Comput. Oper. Res. 2019, 104, 207–227. [Google Scholar] [CrossRef]
- Wu, T.; Liu, X.; Liu, F. An interval type-2 fuzzy TOPSIS model for large scale group decision making problems with social network information. Inf. Sci. 2018, 432, 392–410. [Google Scholar] [CrossRef]
- Yucesan, M.; Mete, S.; Serin, F.; Celik, E.; Gul, M. An Integrated Best-Worst and Interval Type-2 Fuzzy TOPSIS Methodology for Green Supplier Selection. Mathematics 2019, 7, 182. [Google Scholar] [CrossRef] [Green Version]
- Shen, F.; Ma, X.; Li, Z.; Xu, Z.; Cai, D. An extended intuitionistic fuzzy TOPSIS method based on a new distance measure with an application to credit risk evaluation. Inf. Sci. 2018, 428, 105–119. [Google Scholar] [CrossRef]
- Gündoğdu, F.K.; Kahraman, C. A novel fuzzy TOPSIS method using emerging interval-valued spherical fuzzy sets. Eng. Appl. Artif. Intell. 2019, 85, 307–323. [Google Scholar] [CrossRef]
- Li, J.; Fang, H.; Song, W. Sustainable supplier selection based on SSCM practices: A rough cloud TOPSIS approach. J. Clean. Prod. 2019, 222, 606–621. [Google Scholar] [CrossRef]
- de Lima Silva, D.F.; de Almeida Filho, A.T. Sorting with TOPSIS through boundary and characteristic profiles. Comput. Ind. Eng. 2020, 141, 106328. [Google Scholar] [CrossRef]
- Zhu, G.-N.; Hu, J.; Ren, H. A fuzzy rough number-based AHP-TOPSIS for design concept evaluation under uncertain environments. Appl. Soft Comput. 2020, 91, 106228. [Google Scholar] [CrossRef]
- Zhang, X.; Su, J. A combined fuzzy DEMATEL and TOPSIS approach for estimating participants in knowledge-intensive crowdsourcing. Comput. Ind. Eng. 2019, 137, 106085. [Google Scholar] [CrossRef]
- Rajak, M.; Shaw, K. Evaluation and selection of mobile health (mHealth) applications using AHP and fuzzy TOPSIS. Technol. Soc. 2019, 59, 101186. [Google Scholar] [CrossRef]
- Chou, T.-Y.; Chen, Y.-T. Applying Fuzzy AHP and TOPSIS Method to Identify Key Organizational Capabilities. Mathematics 2020, 8, 836. [Google Scholar] [CrossRef]
- Dhiman, H.S.; Deb, D. Fuzzy TOPSIS and fuzzy COPRAS based multi-criteria decision making for hybrid wind farms. Energy 2020, 202, 117755. [Google Scholar] [CrossRef]
- Łuczak, A.; Just, M. The positional MEF-TOPSIS method for the assessment of complex economic phenomena in territorial units. Stat. Transit. New Ser. 2020, 21, 157–172. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision-Making: Methods and Applications; Springer: Berlin, Germany, 1981. [Google Scholar]
- Coles, S.G. An Introduction to Statistical Modeling of Extreme Values; Springer: London, UK, 2001. [Google Scholar]
- Walesiak, M. Variable selection and weighting problems in cluster analysis. Res. Pap. Acad. Econ. Wrocław 2005, 1076, 106–118. (In Polish) [Google Scholar]
- Malina, A.; Zeliaś, A. Taxonomic analysis of the spatial diversity of the quality of life of the population in Poland in 1994. Stat. Rev. 1997, 1, 11–127. (In Polish) [Google Scholar]
- McNeil, A.J. Extreme Value Theory for Risk Management; Department Mathematics ETH Zentrum: Zurich, Switzerland, 1999. [Google Scholar]
- Młodak, A. Taxonomic Analysis in Regional Statistics; Difin: Warsaw, Poland, 2006. (In Polish) [Google Scholar]
- Młodak, A. History of the Weber problem. Appl. Math. 2009, 10, 3–21. (In Polish) [Google Scholar]
- Stahel, W.; Maechler, M. robustX: eXperimental eXtraneous eXtraordinary. Functionality for Robust Statistics; R package, Version 1.1–3; 2012; Available online: https://cran.r-project.org/web/packages/robustX (accessed on 3 July 2012).
- Wysocki, F. The Methods of Taxonomy for Recognition of Economic Types in Agriculture and Rural Areas; Poznań University of Life Sciences: Poznan, Poland, 2010. (In Polish) [Google Scholar]
- Hubert, L.J.; Levin, J.R. A general statistical framework for assessing categorical clustering in free recall. Psychol. Bull. 1976, 83, 1072–1080. [Google Scholar] [CrossRef]
- Wuertz, D.; Setz, T.; Chalabi, Y. fExtremes: Rmetrics—Modelling Extreme Events in Finance; R package, Version 3042.82; 2017; Available online: https://cran.r-project.org/web/packages/fExtremes/index.html (accessed on 15 March 2018).
Class (c) | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Level of economic development | very high | high | medium-high | medium-low | low | very low |
[0.8, 1.0] | [0.6, 0.8) | [0.5, 0.6) | [0.4, 0.5) | [0.2, 0.4) | [0.0, 0.2) |
Specification | Variables | |||||||
---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | |
Input Data | ||||||||
Mean | 1802.7 | 3389.2 | 90.0 | 58.5 | 1426.2 | 2774.1 | 3780.9 | 9.3 |
Median | 1688.6 | 3208.0 | 93.5 | 60.4 | 1354.4 | 2020.0 | 3693.6 | 8.3 |
Max | 4621.5 | 8989.0 | 99.9 | 95.2 | 3051.7 | 23 687.0 | 7516.0 | 25.8 |
Min | 951.6 | 2176.0 | 31.1 | 11.6 | 796.1 | 250.0 | 2960.2 | 1.7 |
Range | 3669.8 | 6813.0 | 68.8 | 83.6 | 2255.6 | 23 437.0 | 4555.8 | 24.1 |
St. dev. | 552.2 | 926.0 | 10.6 | 16.0 | 354.2 | 2660.1 | 439.2 | 4.3 |
Ex. kurtosis | 5.0 | 8.1 | 8.1 | −0.5 | 3.4 | 21.6 | 18.9 | 0.2 |
Skewness | 1.7 | 2.3 | −2.6 | −0.3 | 1.4 | 3.8 | 3.1 | 0.7 |
Var. coef. | 30.6 | 27.3 | 11.8 | 27.3 | 24.8 | 95.9 | 11.6 | 47.0 |
Winsorized Data | ||||||||
Mean | 1740.3 | 3298.2 | 91.1 | 58.5 | 1394.1 | 2432.1 | 3746.3 | 9.3 |
Median | 1688.6 | 3208.0 | 93.5 | 60.4 | 1354.4 | 2020.0 | 3693.6 | 8.3 |
Max | 2402.1 | 4622.0 | 99.9 | 95.2 | 1861.0 | 5268.0 | 4429.0 | 25.8 |
Min | 951.6 | 2176.0 | 75.3 | 11.6 | 796.1 | 250.0 | 2960.2 | 1.7 |
Range | 1450.5 | 2446.0 | 24.6 | 83.6 | 1064.9 | 5018.0 | 1468.8 | 24.1 |
St. dev. | 391.1 | 645.4 | 7.0 | 16.0 | 271.1 | 1456.1 | 310.1 | 4.3 |
Ex. kurtosis | −0.8 | −0.5 | 0.1 | −0.5 | −1.0 | −0.7 | −0.2 | 0.2 |
Skewness | 0.2 | 0.5 | −1.1 | −0.3 | 0.1 | 0.7 | 0.5 | 0.7 |
Var. coef. | 22.5 | 19.6 | 7.7 | 27.3 | 19.4 | 59.9 | 8.3 | 47.0 |
llk | × | × | 75.3 | × | × | × | × | × |
ulk | 2402.1 | 4622.0 | × | × | 1861.0 | 5268.0 | 4429.0 | × |
Specification | Variables | |||||||
---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | |
Input Data | ||||||||
Mean | 1871.1 | 3042.3 | 95.9 | 64.0 | 1577.7 | 3429.5 | 3711.6 | 4.7 |
Median | 1856.1 | 2968.0 | 96.5 | 65.6 | 1561.5 | 3465.0 | 3713.5 | 4.3 |
Max | 2940.5 | 5542.0 | 99.3 | 82.7 | 2507.8 | 8524.0 | 4482.7 | 11.1 |
Min | 1376.2 | 2176.0 | 90.4 | 34.3 | 1200.5 | 884.0 | 2960.2 | 1.7 |
Range | 1564.3 | 3366.0 | 8.9 | 48.4 | 1307.3 | 7640.0 | 1522.5 | 9.4 |
St. dev. | 313.7 | 652.3 | 2.3 | 11.8 | 247.0 | 1881.1 | 316.5 | 2.1 |
Ex. kurtosis | 3.4 | 5.8 | −0.2 | 0.1 | 5.2 | 1.0 | 0.2 | 1.3 |
Skewness | 1.5 | 2.0 | −0.8 | −0.6 | 1.5 | 1.1 | 0.1 | 1.0 |
Var. coef. | 16.8 | 21.4 | 2.4 | 18.4 | 15.7 | 54.9 | 8.5 | 45.0 |
Specification | Variables | |||||||
---|---|---|---|---|---|---|---|---|
x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | |
Input Data | ||||||||
Mean | 1691.3 | 3486.6 | 96.7 | 54.8 | 1480.3 | 3438.6 | 3561.4 | 5.1 |
Median | 1739.1 | 3231.0 | 97.2 | 56.2 | 1457.7 | 2917.5 | 3521.7 | 3.8 |
Max | 1932.6 | 5542.0 | 98.2 | 78.6 | 1795.3 | 8111.0 | 3928.6 | 11.1 |
Min | 1376.2 | 2482.0 | 94.8 | 34.3 | 1262.7 | 884.0 | 3340.7 | 2.9 |
Range | 556.4 | 3060.0 | 3.4 | 44.3 | 532.6 | 7227.0 | 587.8 | 8.2 |
St. dev. | 175.0 | 901.6 | 1.2 | 13.0 | 163.2 | 2390.6 | 191.5 | 2.8 |
Ex. kurtosis | −0.5 | 2.8 | −1.4 | 0.4 | 0.3 | −0.2 | −0.1 | 1.6 |
Skewness | −0.4 | 1.6 | −0.5 | 0.1 | 0.7 | 0.8 | 0.8 | 1.6 |
Var. coef. | 10.3 | 25.9 | 1.2 | 23.6 | 11.0 | 69.5 | 5.4 | 53.6 |
Class (c) | Level of Economic Development | Si | Approaches | |||||||
---|---|---|---|---|---|---|---|---|---|---|
I (CT) | II (CT & W) | III (PT) | IV (PT & W) | |||||||
Nc | % | Nc | % | Nc | % | Nc | % | |||
1 | very high | [0.8, 1.0] | 0 | 0.00 | 1 | 0.32 | 0 | 0.00 | 1 | 0.32 |
2 | high | [0.6, 0.8) | 1 | 0.32 | 64 | 20.38 | 1 | 0.32 | 66 | 21.02 |
3 | medium-high | [0.5, 0.6) | 4 | 1.27 | 104 | 33.12 | 5 | 1.59 | 101 | 32.17 |
4 | medium-low | [0.4, 0.5) | 20 | 6.37 | 78 | 24.84 | 9 | 2.87 | 82 | 26.11 |
5 | low | [0.2, 0.4) | 276 | 87.90 | 66 | 21.02 | 275 | 87.58 | 63 | 20.06 |
6 | very low | [0.0, 0.2) | 13 | 4.14 | 1 | 0.32 | 24 | 7.64 | 1 | 0.32 |
Class (c) | Level of Economic Development | Si | Approaches | |||||||
---|---|---|---|---|---|---|---|---|---|---|
I (CT) | II (CT & W) | III (PT) | IV (PT & W) | |||||||
Nc | % | Nc | % | Nc | % | Nc | % | |||
1 | very high | [0.8, 1.0] | 0 | 0.00 | × | × | 0 | 0.00 | × | × |
2 | high | [0.6, 0.8) | 1 | 3.23 | × | × | 1 | 3.23 | × | × |
3 | medium-high | [0.5, 0.6) | 2 | 6.45 | × | × | 0 | 0.00 | × | × |
4 | medium-low | [0.4, 0.5) | 12 | 38.71 | × | × | 9 | 29.03 | × | × |
5 | low | [0.2, 0.4) | 16 | 51.61 | × | × | 21 | 67.74 | × | × |
6 | very low | [0.0, 0.2) | 0 | 0.00 | × | × | 0 | 0.00 | × | × |
Class (c) | Level of Economic Development | Si | Approaches | |||||||
---|---|---|---|---|---|---|---|---|---|---|
I (CT) | II (CT & W) | III (PT) | IV (PT & W) | |||||||
Nc | % | Nc | % | Nc | % | Nc | % | |||
1 | very high | [0.8, 1.0] | 0 | 0.00 | × | × | 0 | 0.00 | × | × |
2 | high | [0.6, 0.8) | 1 | 12.50 | × | × | 0 | 0.00 | × | × |
3 | medium-high | [0.5, 0.6) | 2 | 25.00 | × | × | 2 | 25.00 | × | × |
4 | medium-low | [0.4, 0.5) | 1 | 12.50 | × | × | 1 | 12.5 | × | × |
5 | low | [0.2, 0.4) | 4 | 50.00 | × | × | 5 | 62.5 | × | × |
6 | very low | [0.0, 0.2) | 0 | 0.00 | × | × | 0 | 0.00 | × | × |
Specification | Approaches | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
National Level | Regional Level | Sub-Regional Level | ||||||||||
I | II | III | IV | I | II | III | IV | I | II | III | IV | |
Max | 0.60 | 0.83 | 0.64 | 0.84 | 0.63 | × | 0.61 | × | 0.66 | × | 0.57 | × |
Min | 0.15 | 0.15 | 0.13 | 0.15 | 0.28 | × | 0.27 | × | 0.21 | × | 0.27 | × |
Range | 0.45 | 0.69 | 0.51 | 0.69 | 0.35 | × | 0.35 | × | 0.45 | × | 0.30 | × |
Median | 0.31 | 0.51 | 0.29 | 0.51 | 0.39 | × | 0.37 | × | 0.41 | × | 0.38 | × |
Mean | 0.31 | 0.50 | 0.29 | 0.50 | 0.39 | × | 0.38 | × | 0.42 | × | 0.40 | × |
Skewness | 0.63 | −0.16 | 0.97 | −0.16 | 0.89 | × | 0.99 | × | 0.33 | × | 0.40 | × |
Ex. kurtosis | 2.05 | −0.40 | 3.49 | −0.37 | 1.23 | × | 1.76 | × | −0.57 | × | −1.39 | × |
Methods | Advantages | Disadvantages |
---|---|---|
classical TOPSIS |
|
|
classical TOPSIS with winsorized data |
|
|
positional TOPSIS |
|
|
positional TOPSIS with winsorized data |
|
|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łuczak, A.; Just, M. A Complex MCDM Procedure for the Assessment of Economic Development of Units at Different Government Levels. Mathematics 2020, 8, 1067. https://doi.org/10.3390/math8071067
Łuczak A, Just M. A Complex MCDM Procedure for the Assessment of Economic Development of Units at Different Government Levels. Mathematics. 2020; 8(7):1067. https://doi.org/10.3390/math8071067
Chicago/Turabian StyleŁuczak, Aleksandra, and Małgorzata Just. 2020. "A Complex MCDM Procedure for the Assessment of Economic Development of Units at Different Government Levels" Mathematics 8, no. 7: 1067. https://doi.org/10.3390/math8071067
APA StyleŁuczak, A., & Just, M. (2020). A Complex MCDM Procedure for the Assessment of Economic Development of Units at Different Government Levels. Mathematics, 8(7), 1067. https://doi.org/10.3390/math8071067