Clustering-Based Binarization Methods Applied to the Crow Search Algorithm for 0/1 Combinatorial Problems
Abstract
:1. Introduction
2. Related Work
3. Binarization
3.1. Two Step Binarization
3.1.1. First Step—Transfer Functions
3.1.2. Second Step—Binarization
3.2. KMeans
Algorithm 1: KMeans pseudo-code |
3.3. DBscan
- Epsilon (): Sets how close points should be regarded as part of a cluster to each other.
- Minimum points (MinPts): The minimum number of points to form a dense region.
Algorithm 2: DBscan pseudo-code |
4. Crow Search Algorithm
- N: Population.
- AP: Awareness probability.
- : Flight length.
- : Maximum number of iterations.
- and are random numbers with uniform distribution between 0 and 1.
- denotes the flight length of crows.
- denotes the awareness probability of crows (intensification and diversification).
Algorithm 3: CSA pseudo-code |
5. Integration: Binarizations on CSA
- Two-steps: in t + 1 is binarized column by column applying the first step getting a continuous solution that enters as an input to the second step making the binarization evaluate the solution in the Objective function.
- KMeans: In this case, in t + 1 is clustered. Then each cluster is assigned to a cluster transition value already defined as a parameter. Small centroids get the small cluster transition value and a high centroid value gets a high value of transition. It is necessary to evaluate every point in the clusters, asking if random values between 0 an 1 are equal or greater than a cluster transition value. If we get the position and apply the complement to the in t, then the objective function is evaluated.
Algorithm 4: CSA + Two-steps and Kmeans binarization techniques pseudo-code |
- Calculate the mean of the points to every cluster.
- Sort the clusters from least to greatest taking into account the average value of each cluster.
- Evaluate each point in the clusters by checking if a random value between 0 and 1 is equal to or greater than the average of each cluster; if it is, then we get the position and we apply the complement to the replica of the matrix (). Then the objective function is evaluated.
Algorithm 5: CSA + DBscan binarization technique pseudo-code |
6. Experimental Results
6.1. Methodology
6.2. Set Covering Problem (SCP)
- All the columns are ordered according to their cost in ascending order.
- If there are equal cost columns, these are sorted in descending order by the number of rows that the column j covers.
- Verify if the column j whose rows can be covered by a set of other columns with a cost less than (cost of the column j).
- It is said that column j is dominated and can be eliminated from the problem.
6.3. Knapsack (KP)
6.4. Comparison Results and Strategies
Set Covering Problem Results
- Score
- Two-steps got 51/65 BKS.
- DBscan got 25/65 BKS.
- KMeans got 16/65 BKS.
- The three strategies got BKS in the same instances: 4.1-4.3-4.6-4.7-5.1-5.4-5.5-5.6-5.7-5.8-5.9-6.2-6.4-a.5
6.5. Knapsack Problem Results
- Score
- -
- Two-steps got 6/10 BKS.
- -
- DBscan got 5/10 BKS.
- -
- KMeans got 4/10 BKS.
- The three strategies got BKS in the same instances: f3-f4-f7-f9
7. Statistical Test
- -
- : states that / follows a normal distribution.
- -
- : states the opposite.
- -
- : Two-steps is better than KMeans
- -
- : states the opposite.
- -
- : Two-steps is better than DBscan
- -
- : states the opposite.
- -
- : KMeans is better than DBscan
- -
- : states the opposite.
- SWS = Statistically without significance.
- D/A = Does not apply.
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix A.1. Set Covering Problem Results
Appendix A.1.1. SCP—Crow Search Algorithm
Instance | BKS | S1+Stand. | S1+Comp. | S1+Static | S1+Elitist | KMeans | DBscan | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | ||
4.1 | 429 | 438 | 444.81 | 459 | 463.32 | 465 | 494.87 | 432 | 443.74 | 429 | 430 | 429 | 430.38 |
4.2 | 512 | 522 | 550.35 | 579 | 586.39 | 612 | 698.06 | 528 | 551.10 | 513 | 515.84 | 512 | 514.77 |
4.3 | 516 | 520 | 532.58 | 552 | 564.19 | 587 | 620.47 | 564 | 578.36 | 516 | 520.61 | 516 | 518.87 |
4.4 | 494 | 513 | 524.58 | 544 | 555.26 | 566 | 620.13 | 496 | 515.84 | 495 | 498.87 | 494 | 496.10 |
4.5 | 512 | 518 | 529.23 | 554 | 570.45 | 601 | 680.39 | 518 | 529.55 | 514 | 514.90 | 512 | 513.23 |
4.6 | 560 | 577 | 590.23 | 614 | 626.23 | 661 | 798.55 | 566 | 590 | 560 | 562.35 | 560 | 560.19 |
4.7 | 430 | 436 | 445.90 | 485 | 492.81 | 498 | 558.90 | 438 | 451.68 | 430 | 432.26 | 430 | 430.81 |
4.8 | 492 | 501 | 513.74 | 532 | 540.29 | 585 | 680.61 | 499 | 508.52 | 493 | 496.13 | 492 | 494.10 |
4.9 | 641 | 675 | 690.42 | 722 | 745.06 | 807 | 911.65 | 657 | 687.94 | 645 | 657.90 | 641 | 647.50 |
4.10 | 514 | 534 | 554.74 | 569 | 578.90 | 595 | 678.27 | 528 | 550.23 | 516 | 519.9 | 514 | 515.81 |
5.1 | 253 | 265 | 275.29 | 291 | 296.26 | 309 | 352.61 | 258 | 271.32 | 253 | 255.74 | 253 | 255.52 |
5.2 | 302 | 310 | 327.55 | 352 | 363.68 | 421 | 471.19 | 317 | 326.74 | 308 | 309.81 | 302 | 306.68 |
5.3 | 226 | 230 | 240.19 | 249 | 252.65 | 278 | 310.35 | 229 | 239.74 | 228 | 228.68 | 226 | 227.32 |
5.4 | 242 | 242 | 249.43 | 263 | 264.90 | 301 | 354.12 | 254 | 269.84 | 242 | 242.23 | 242 | 243.29 |
5.5 | 211 | 211 | 223.13 | 242 | 245.97 | 247 | 301.87 | 245 | 268.21 | 211 | 212.03 | 211 | 213.90 |
5.6 | 213 | 222 | 235.71 | 251 | 254.39 | 267 | 309.87 | 226 | 237.87 | 213 | 215.10 | 213 | 213.04 |
5.7 | 293 | 305 | 314.61 | 327 | 335.29 | 360 | 408.94 | 305 | 315.10 | 293 | 297.68 | 293 | 295.35 |
5.8 | 288 | 302 | 310.06 | 342 | 348.48 | 370 | 424.65 | 299 | 310.84 | 288 | 290.35 | 288 | 290.39 |
5.9 | 279 | 283 | 303.23 | 321 | 331.29 | 357 | 381.28 | 287 | 305.68 | 279 | 280.52 | 279 | 279.90 |
5.10 | 265 | 271 | 277.45 | 294 | 298.45 | 335 | 376.16 | 273 | 277.10 | 267 | 268.77 | 265 | 267.97 |
6.1 | 138 | 146 | 152.03 | 159 | 166 | 210 | 287.13 | 145 | 151.71 | 140 | 142.90 | 140 | 143.42 |
6.2 | 146 | 152 | 157.29 | 163 | 169 | 308 | 401.10 | 150 | 156.10 | 146 | 148.87 | 146 | 149.71 |
6.3 | 154 | 148 | 156.52 | 162 | 167.23 | 268 | 379.39 | 148 | 156.65 | 147 | 148.16 | 145 | 149.65 |
6.4 | 131 | 131 | 138.26 | 137 | 141.94 | 247 | 359.87 | 138 | 147.64 | 131 | 131.68 | 131 | 133.03 |
6.5 | 161 | 171 | 181.35 | 186 | 194.50 | 267 | 419.94 | 173 | 181.42 | 163 | 164.68 | 162 | 165.39 |
AVG | 336.08 | 344.92 | 356.75 | 373.96 | 382.11 | 420.88 | 491.21 | 346.92 | 360.91 | 336.80 | 339.43 | 335.84 | 346.80 |
a.1 | 253 | 257 | 263.74 | 269 | 272.48 | 474 | 584.81 | 256 | 261.81 | 254 | 255.55 | 254 | 256 |
a.2 | 252 | 262 | 274.42 | 300 | 305.23 | 439 | 565.55 | 267 | 274.74 | 257 | 259.48 | 256 | 260.65 |
a.3 | 232 | 242 | 251 | 256 | 258.16 | 410 | 525.81 | 242 | 250.35 | 235 | 237.10 | 233 | 237.35 |
a.4 | 234 | 239 | 250.71 | 264 | 268.35 | 409 | 523.32 | 236 | 250.97 | 235 | 237.39 | 236 | 239.97 |
a.5 | 236 | 239 | 243.32 | 258 | 263.03 | 421 | 540.65 | 238 | 241.84 | 236 | 237.06 | 236 | 237.52 |
b.1 | 69 | 75 | 81.61 | 82 | 86.10 | 347 | 518.13 | 72 | 81.58 | 74 | 79.61 | 69 | 76.48 |
b.2 | 76 | 84 | 90.26 | 92 | 94.19 | 411 | 549.61 | 81 | 88.35 | 83 | 90.03 | 81 | 86.81 |
b.3 | 80 | 80 | 85.94 | 91 | 91.90 | 507 | 535.9 | 85 | 87.65 | 84 | 88.55 | 82 | 88.81 |
b.4 | 79 | 83 | 89.10 | 96 | 100.26 | 517 | 660.52 | 84 | 88.55 | 84 | 87.90 | 83 | 88.16 |
b.5 | 72 | 72 | 78.92 | 82 | 84.55 | 498 | 587.58 | 76 | 80.35 | 72 | 77.68 | 78 | 76.03 |
c.1 | 227 | 232 | 237.65 | 263 | 264.65 | 512 | 718.52 | 233 | 236.71 | 228 | 230.29 | 233 | 238.77 |
c.2 | 219 | 228 | 236.61 | 259 | 263.13 | 617 | 782.81 | 226 | 235.58 | 226 | 222.71 | 226 | 232.74 |
c.3 | 243 | 257 | 270.55 | 297 | 302.32 | 738 | 939.94 | 261 | 271 | 254 | 256.68 | 253 | 264 |
c.4 | 219 | 231 | 243.45 | 256 | 260.17 | 618 | 783.23 | 233 | 243.58 | 225 | 227.97 | 224 | 233.10 |
c.5 | 215 | 219 | 226.81 | 245 | 250.29 | 529 | 713.77 | 218 | 226.06 | 215 | 216.35 | 222 | 230.42 |
d.1 | 60 | 61 | 68.29 | 70 | 70.87 | 600 | 889.42 | 63 | 67.23 | 66 | 66 | 68 | 79.65 |
d.2 | 66 | 70 | 73.52 | 77 | 78.68 | 686 | 1001.55 | 68 | 74.19 | 71 | 71 | 73 | 89.71 |
d.3 | 72 | 77 | 81.68 | 83 | 86.74 | 881 | 1114.29 | 78 | 82.13 | 82 | 82 | 82 | 100.84 |
d.4 | 66 | 65 | 68.29 | 71 | 71.81 | 644 | 945 | 65 | 68.23 | 67 | 67 | 70 | 81.74 |
d.5 | 61 | 64 | 67.74 | 69 | 69.97 | 631 | 909.13 | 63 | 67.39 | 66 | 66 | 72 | 81.29 |
AVG | 151.55 | 156.85 | 164.18 | 174 | 177.14 | 544.45 | 719.47 | 157.25 | 163.91 | 155.70 | 157.81 | 156.55 | 164 |
nre.1 | 29 | 30 | 33.23 | 32 | 33 | 1354 | 1643.54 | 30 | 32.68 | 30 | 30 | 70 | 80.03 |
nre.2 | 30 | 33 | 37.45 | 36 | 37.61 | 1405 | 1732.55 | 33 | 36.19 | 34 | 34 | 83 | 128.32 |
nre.3 | 27 | 28 | 33.61 | 32 | 34.61 | 1137 | 1416.77 | 30 | 33.61 | 34 | 34 | 74 | 112.35 |
nre.4 | 28 | 31 | 34 | 34 | 34 | 1210 | 1712.48 | 30 | 33.90 | 33 | 34 | 83 | 177.45 |
nre.5 | 28 | 30 | 32.94 | 33 | 33.87 | 1292 | 1860.23 | 30 | 32.77 | 30 | 30 | 92 | 150.52 |
nrf.1 | 14 | 17 | 19 | 17 | 17.03 | 667 | 903.48 | 15 | 18.42 | 17 | 17 | 372 | 444.19 |
nrf.2 | 15 | 16 | 18.71 | 18 | 18 | 607 | 836.29 | 16 | 18.61 | 18 | 18 | 74 | 404.58 |
nrf.3 | 14 | 17 | 19.39 | 19 | 19.90 | 858 | 1034.90 | 17 | 19.29 | 19 | 19 | 335 | 487.25 |
nrf.4 | 14 | 15 | 18.45 | 17 | 18.61 | 667 | 902.97 | 16 | 18.29 | 18 | 18 | 52 | 420.52 |
nrf.5 | 13 | 15 | 18.29 | 16 | 16.32 | 653 | 844.23 | 15 | 17.61 | 16 | 16 | 65 | 371.03 |
nrg.1 | 176 | 201 | 208.26 | 230 | 233.48 | 4473 | 5588.65 | 192 | 203.39 | 197 | 197 | 287 | 385.13 |
nrg.2 | 154 | 172 | 181.06 | 187 | 190.48 | 3848 | 4648.48 | 166 | 174.16 | 168 | 168 | 208 | 284.29 |
nrg.3 | 166 | 180 | 190.55 | 196 | 197.84 | 4319 | 5026.55 | 180 | 185.19 | 183 | 183 | 211 | 347.23 |
nrg.4 | 168 | 187 | 200.03 | 216 | 219.26 | 4142 | 4935.29 | 180 | 192.10 | 186 | 186 | 250 | 345.77 |
nrg.5 | 168 | 191 | 201.10 | 213 | 217.32 | 4198 | 5155 | 181 | 193.84 | 186 | 186 | 230 | 353.97 |
nrh.1 | 63 | 102 | 124.68 | 82 | 83.65 | 9080 | 10,028.42 | 72 | 77.42 | 77 | 77 | t.o. | t.o. |
nrh.2 | 63 | 92 | 120.10 | 81 | 81.81 | 9085 | 10,332.71 | 71 | 76.48 | 71 | 71 | t.o. | t.o. |
nrh.3 | 59 | 89 | 120.23 | 74 | 75 | 8101 | 9886.68 | 67 | 73.61 | 69 | 69 | t.o. | t.o. |
nrh.4 | 58 | 91 | 116.52 | 73 | 74.97 | 8592 | 9899.26 | 67 | 70.94 | 68 | 68 | t.o. | t.o. |
nrh.5 | 55 | 88 | 105.13 | 68 | 68.74 | 7786 | 9318.55 | 62 | 67.16 | 61 | 61 | t.o. | t.o. |
AVG | 67.10 | 81.25 | 91.63 | 83.70 | 85.27 | 3673.70 | 4385.35 | 73.50 | 78.78 | 75.75 | 75.80 | t.o. | t.o. |
Instance | BKS | S2+Stand. | S2+Comp. | S2+Static | S2+Elitist | KMeans | DBscan | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | ||
4.1 | 429 | 432 | 443.48 | 457 | 462.81 | 622 | 686.58 | 431 | 439.73 | 429 | 430 | 429 | 430.38 |
4.2 | 512 | 517 | 549.26 | 578 | 587.26 | 929 | 1084.16 | 522 | 549.50 | 513 | 515.84 | 512 | 514.77 |
4.3 | 516 | 519 | 532 | 555 | 564.23 | 789 | 987.25 | 578 | 687.47 | 516 | 520.61 | 516 | 518.87 |
4.4 | 494 | 500 | 520.55 | 542 | 555.81 | 861 | 963.39 | 501 | 517.03 | 495 | 498.87 | 494 | 496.10 |
4.5 | 512 | 518 | 531.84 | 557 | 573.48 | 901 | 1101.97 | 514 | 529.40 | 514 | 514.90 | 512 | 513.23 |
4.6 | 560 | 566 | 588.48 | 610 | 624.81 | 1194 | 1320.35 | 568 | 588.70 | 560 | 562.35 | 560 | 560.19 |
4.7 | 430 | 436 | 447.13 | 479 | 491.35 | 821 | 892.06 | 437 | 448.60 | 430 | 432.26 | 430 | 430.81 |
4.8 | 492 | 499 | 514.74 | 525 | 539.52 | 946 | 1095.10 | 493 | 506.97 | 493 | 496.13 | 492 | 494.10 |
4.9 | 641 | 641 | 652.16 | 722 | 743.39 | 1368 | 1499.48 | 662 | 682.20 | 645 | 657.90 | 641 | 647.50 |
4.10 | 514 | 523 | 550.52 | 560 | 575.35 | 873 | 1064.16 | 518 | 546.53 | 516 | 519.9 | 514 | 515.81 |
5.1 | 253 | 257 | 273.52 | 287 | 295.26 | 490 | 556.81 | 260 | 270.27 | 253 | 255.74 | 253 | 255.52 |
5.2 | 302 | 312 | 325.23 | 352 | 361.77 | 717 | 800.55 | 308 | 321.53 | 308 | 309.81 | 302 | 306.68 |
5.3 | 226 | 231 | 240.77 | 250 | 253.23 | 466 | 522.19 | 229 | 237.13 | 228 | 228.68 | 226 | 227.32 |
5.4 | 242 | 244 | 249.13 | 261 | 264.68 | 357 | 487.25 | 247 | 278.64 | 242 | 242.23 | 242 | 243.29 |
5.5 | 211 | 215 | 223.77 | 242 | 245.87 | 287 | 359.25 | 287 | 301.07 | 211 | 212.03 | 211 | 213.90 |
5.6 | 213 | 217 | 235.61 | 245 | 253.68 | 422 | 498.10 | 224 | 234 | 213 | 215.10 | 213 | 213.04 |
5.7 | 293 | 307 | 312.90 | 331 | 334.16 | 563 | 650.16 | 299 | 311.40 | 293 | 297.68 | 293 | 295.35 |
5.8 | 288 | 291 | 310.71 | 339 | 346.74 | 575 | 654.52 | 298 | 308.57 | 288 | 290.35 | 288 | 290.39 |
5.9 | 279 | 288 | 306.16 | 320 | 331.23 | 487 | 587.37 | 297 | 357.26 | 279 | 280.52 | 279 | 279.90 |
5.10 | 265 | 269 | 276.58 | 290 | 297.55 | 553 | 609.87 | 272 | 278 | 267 | 268.77 | 265 | 267.97 |
6.1 | 138 | 148 | 151.67 | 161 | 165.26 | 569 | 732.77 | 143 | 150.77 | 140 | 142.90 | 140 | 143.42 |
6.2 | 146 | 150 | 158.58 | 166 | 169 | 774 | 995.52 | 151 | 157.90 | 146 | 148.87 | 146 | 149.71 |
6.3 | 154 | 150 | 157.65 | 162 | 167.77 | 766 | 949.35 | 150 | 155.27 | 147 | 148.16 | 145 | 149.65 |
6.4 | 131 | 134 | 138.65 | 139 | 142.06 | 778 | 954.21 | 147 | 157.28 | 131 | 131.68 | 131 | 133.03 |
6.5 | 161 | 175 | 181.94 | 186 | 192.58 | 792 | 1000.87 | 170 | 179.47 | 163 | 164.68 | 162 | 165.39 |
AVG | 336.08 | 341.56 | 354.92 | 372.64 | 381.55 | 716 | 842.13 | 348.24 | 367.78 | 336.80 | 339.43 | 335.84 | 338.25 |
a.1 | 253 | 258 | 264.39 | 270 | 273.16 | 981 | 1126.26 | 257 | 262.60 | 254 | 255.55 | 254 | 256 |
a.2 | 252 | 263 | 275.06 | 301 | 305.32 | 943 | 1066.48 | 266 | 274.33 | 257 | 259.48 | 256 | 260.65 |
a.3 | 232 | 247 | 250.35 | 256 | 257.87 | 812 | 998.84 | 241 | 250.03 | 235 | 237.10 | 233 | 237.35 |
a.4 | 234 | 234 | 240.06 | 265 | 268.90 | 848 | 977.29 | 241 | 251.03 | 235 | 237.39 | 236 | 239.97 |
a.5 | 236 | 238 | 244.26 | 259 | 264.29 | 834 | 971.19 | 239 | 242.90 | 236 | 237.06 | 236 | 237.52 |
b.1 | 69 | 72 | 80.58 | 82 | 85.26 | 1068 | 1196.61 | 76 | 80.83 | 74 | 79.61 | 69 | 76.48 |
b.2 | 76 | 76 | 81.45 | 93 | 94 | 1039 | 1179.84 | 80 | 88.30 | 83 | 90.03 | 81 | 86.81 |
b.3 | 80 | 82 | 86.55 | 91 | 91.84 | 1054 | 1178.89 | 86 | 91.04 | 84 | 88.55 | 82 | 88.81 |
b.4 | 79 | 84 | 88.68 | 95 | 100.23 | 1153 | 1353.97 | 83 | 87.57 | 84 | 87.90 | 83 | 88.16 |
b.5 | 72 | 73 | 79.55 | 82 | 84.52 | 1127 | 1201.31 | 78 | 84.89 | 72 | 77.68 | 78 | 76.03 |
c.1 | 227 | 233 | 240.23 | 262 | 264.68 | 1128 | 1308.87 | 230 | 236.47 | 228 | 230.29 | 233 | 238.77 |
c.2 | 219 | 219 | 2225.10 | 254 | 262.68 | 1359 | 1470.74 | 230 | 237.47 | 226 | 222.71 | 226 | 232.74 |
c.3 | 243 | 260 | 272.03 | 295 | 301.52 | 1447 | 1734.35 | 259 | 269.80 | 254 | 256.68 | 253 | 264 |
c.4 | 219 | 235 | 243.74 | 254 | 259.42 | 1365 | 1463.19 | 233 | 243.40 | 225 | 227.97 | 224 | 233.10 |
c.5 | 215 | 219 | 225.65 | 246 | 249.77 | 1253 | 1364.74 | 219 | 225.50 | 215 | 216.35 | 222 | 230.42 |
d.1 | 60 | 63 | 68.77 | 70 | 70.87 | 1483 | 1682.68 | 62 | 67.67 | 66 | 66 | 68 | 79.65 |
d.2 | 66 | 69 | 74.45 | 77 | 78.23 | 1608 | 1893.90 | 69 | 73.57 | 71 | 71 | 73 | 89.71 |
d.3 | 72 | 78 | 82.06 | 83 | 86.68 | 1900 | 2102.94 | 77 | 80.40 | 82 | 82 | 82 | 100.84 |
d.4 | 66 | 64 | 68.65 | 70 | 71.81 | 1531 | 1698.81 | 64 | 68.27 | 67 | 67 | 70 | 81.74 |
d.5 | 61 | 62 | 67.94 | 69 | 69.90 | 1521 | 1699.13 | 64 | 66.87 | 66 | 66 | 72 | 81.29 |
AVG | 151.55 | 156.45 | 262.97 | 173.70 | 177.05 | 1222.70 | 1383.50 | 157.70 | 164.15 | 155.70 | 157.81 | 156.55 | 164 |
nre.1 | 29 | 29 | 33.14 | 32 | 33 | 2147 | 2147.65 | 30 | 33.85 | 30 | 30 | 70 | 80.03 |
nre.2 | 30 | 32 | 37.29 | 36 | 37.61 | 2652 | 2897.61 | 33 | 37 | 34 | 34 | 83 | 128.32 |
nre.3 | 27 | 31 | 34.23 | 33 | 34.52 | 2242 | 2510.84 | 30 | 33.20 | 34 | 34 | 74 | 112.35 |
nre.4 | 28 | 29 | 34.32 | 33 | 33.97 | 2519 | 2804.13 | 31 | 33.97 | 33 | 34 | 83 | 177.45 |
nre.5 | 28 | 30 | 33.58 | 33 | 33.94 | 2697 | 2965.90 | 29 | 32.67 | 30 | 30 | 92 | 150.52 |
nrf.1 | 14 | 16 | 18.16 | 17 | 17 | 1438 | 1688.13 | 16 | 18.53 | 17 | 17 | 372 | 444.19 |
nrf.2 | 15 | 16 | 19.23 | 17 | 17.97 | 1335 | 1516.13 | 17 | 18.47 | 18 | 18 | 74 | 404.58 |
nrf.3 | 14 | 17 | 19.77 | 19 | 19.87 | 1540 | 1825.87 | 17 | 19.50 | 19 | 19 | 335 | 487.25 |
nrf.4 | 14 | 16 | 18.68 | 17 | 18.71 | 1524 | 1664.94 | 16 | 18.37 | 18 | 18 | 52 | 420.52 |
nrf.5 | 13 | 16 | 18.10 | 16 | 16.32 | 1313 | 1445.74 | 15 | 17.83 | 16 | 16 | 65 | 371.03 |
nrg.1 | 176 | 327 | 371.45 | 230 | 233.13 | 7127 | 7506.23 | 192 | 203.50 | 197 | 197 | 287 | 385.13 |
nrg.2 | 154 | 233 | 279.13 | 185 | 189.77 | 5994 | 6340.61 | 167 | 175.87 | 168 | 168 | 208 | 284.29 |
nrg.3 | 166 | 281 | 315.81 | 195 | 197.71 | 6580 | 6997.29 | 178 | 186.17 | 183 | 183 | 211 | 347.23 |
nrg.4 | 168 | 272 | 303.65 | 215 | 218.90 | 6601 | 7007.48 | 183 | 192.27 | 186 | 186 | 250 | 345.77 |
nrg.5 | 168 | 276 | 329 | 216 | 217.55 | 6778 | 7198.52 | 184 | 194.33 | 186 | 186 | 230 | 353.97 |
nrh.1 | 63 | 1165 | 1405.97 | 83 | 83.77 | 12,353 | 12,926.58 | 72 | 77.97 | 71 | 71 | t.o. | t.o. |
nrh.2 | 63 | 1153 | 1326.81 | 79 | 81.77 | 11,778 | 12,818.74 | 73 | 78.57 | 71 | 71 | t.o. | t.o. |
nrh.3 | 59 | 1199 | 1361.74 | 74 | 74.87 | 11,992 | 12,604.52 | 69 | 73.53 | 69 | 69 | t.o. | t.o. |
nrh.4 | 58 | 1187 | 1334.77 | 73 | 74.84 | 12,295 | 12,797.39 | 66 | 71.03 | 68 | 68 | t.o. | t.o. |
nrh.5 | 55 | 1011 | 1181.94 | 67 | 68.71 | 11,477 | 12,064.84 | 63 | 68.87 | 61 | 61 | t.o. | t.o. |
AVG | 67.10 | 366.80 | 423.83 | 83.50 | 85.19 | 5619.10 | 5986.45 | 74.05 | 79.27 | 75.45 | 75.50 | t.o. | t.o. |
Instance | BKS | S3+Stand. | S3+Comp. | S3+Static | S3+Elitist | KMeans | DBscan | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | ||
4.1 | 429 | 431 | 442.52 | 452 | 461.10 | 587 | 667.32 | 432 | 439.45 | 429 | 430 | 429 | 430.38 |
4.2 | 512 | 515 | 542.26 | 576 | 585.35 | 906 | 1028.52 | 515 | 545.26 | 513 | 515.84 | 512 | 514.77 |
4.3 | 516 | 516 | 529.13 | 554 | 564.97 | 798 | 869.54 | 579 | 602.32 | 516 | 520.61 | 516 | 518.87 |
4.4 | 494 | 495 | 518.71 | 544 | 553.81 | 828 | 914.39 | 501 | 513.42 | 495 | 498.87 | 494 | 496.10 |
4.5 | 512 | 517 | 527.61 | 559 | 568.74 | 863 | 1036 | 514 | 525.35 | 514 | 514.90 | 512 | 513.23 |
4.6 | 560 | 565 | 585.53 | 618 | 624.13 | 1082 | 1239.10 | 566 | 587.68 | 560 | 562.35 | 560 | 560.19 |
4.7 | 430 | 434 | 445.52 | 484 | 491.16 | 728 | 830.16 | 438 | 447 | 430 | 432.26 | 430 | 430.81 |
4.8 | 492 | 498 | 508.68 | 529 | 539.26 | 942 | 1075.97 | 497 | 506.26 | 493 | 496.13 | 492 | 494.10 |
4.9 | 641 | 654 | 684.03 | 726 | 741.90 | 1145 | 1399.77 | 656 | 677.03 | 645 | 657.90 | 641 | 647.50 |
4.10 | 514 | 518 | 540.97 | 568 | 578.26 | 852 | 1017.61 | 517 | 537.58 | 516 | 519.9 | 514 | 515.81 |
5.1 | 253 | 260 | 270.84 | 289 | 294.16 | 471 | 519.52 | 257 | 268.13 | 253 | 255.74 | 253 | 255.52 |
5.2 | 302 | 313 | 325.77 | 349 | 360.81 | 694 | 761.77 | 314 | 323.06 | 308 | 309.81 | 302 | 306.68 |
5.3 | 226 | 229 | 237 | 249 | 252.81 | 419 | 476.16 | 228 | 234.52 | 228 | 228.68 | 226 | 227.32 |
5.4 | 242 | 243 | 248.53 | 261 | 264.45 | 368 | 589.12 | 302 | 317.22 | 242 | 242.23 | 242 | 243.29 |
5.5 | 211 | 214 | 221.10 | 241 | 244.97 | 358 | 475.74 | 235 | 247.54 | 211 | 212.03 | 211 | 213.90 |
5.6 | 213 | 221 | 233.32 | 250 | 253.84 | 383 | 469.61 | 222 | 234 | 213 | 215.10 | 213 | 213.04 |
5.7 | 293 | 301 | 311.84 | 327 | 332.84 | 558 | 622.35 | 302 | 311.52 | 293 | 297.68 | 293 | 295.35 |
5.8 | 288 | 298 | 307.87 | 338 | 345.74 | 545 | 631.48 | 294 | 307.29 | 288 | 290.35 | 288 | 290.39 |
5.9 | 279 | 281 | 303.13 | 315 | 329.26 | 4412 | 506.06 | 301 | 387.31 | 279 | 280.52 | 279 | 279.90 |
5.10 | 265 | 271 | 276.39 | 294 | 297.97 | 497 | 573.84 | 268 | 275.19 | 267 | 268.77 | 265 | 267.97 |
6.1 | 138 | 145 | 151.55 | 159 | 164.97 | 701 | 874.98 | 144 | 148.90 | 140 | 142.90 | 140 | 143.42 |
6.2 | 146 | 151 | 157.61 | 166 | 169.19 | 803 | 941.94 | 148 | 156.29 | 146 | 148.87 | 146 | 149.71 |
6.3 | 154 | 148 | 155.68 | 160 | 166.71 | 788 | 892.10 | 148 | 152.84 | 147 | 148.16 | 145 | 149.65 |
6.4 | 131 | 132 | 137 | 139 | 141.81 | 814 | 912.32 | 139 | 150.01 | 131 | 131.68 | 131 | 133.03 |
6.5 | 161 | 170 | 180.42 | 183 | 192 | 816 | 916.68 | 165 | 177.97 | 163 | 164.68 | 162 | 165.39 |
AVG | 336.08 | 340.80 | 353.72 | 373.20 | 380.81 | 854.32 | 809.68 | 347.28 | 362.93 | 336.80 | 339.44 | 335.84 | 338.25 |
a.1 | 253 | 257 | 262.13 | 270 | 273.10 | 903 | 1039.42 | 256 | 262.06 | 254 | 255.55 | 254 | 256 |
a.2 | 252 | 261 | 274.94 | 301 | 305.19 | 861 | 980.68 | 264 | 271.61 | 257 | 259.48 | 256 | 260.65 |
a.3 | 232 | 241 | 249.94 | 255 | 257.55 | 812 | 924.23 | 242 | 249.35 | 235 | 237.10 | 233 | 237.35 |
a.4 | 234 | 243 | 251.97 | 246 | 268.48 | 828 | 921.84 | 240 | 249.87 | 235 | 237.39 | 236 | 239.97 |
a.5 | 236 | 238 | 242.10 | 260 | 264.74 | 846 | 926.26 | 237 | 241.97 | 236 | 237.06 | 236 | 237.52 |
b.1 | 69 | 74 | 80.68 | 82 | 84.90 | 962 | 1110.10 | 73 | 80.58 | 74 | 79.61 | 69 | 76.48 |
b.2 | 76 | 83 | 88.68 | 90 | 93.71 | 961 | 1083.71 | 81 | 88.68 | 83 | 90.03 | 81 | 86.81 |
b.3 | 80 | 84 | 87.13 | 90 | 91.71 | 987 | 1087.36 | 86 | 89.78 | 84 | 88.55 | 82 | 88.81 |
b.4 | 79 | 84 | 89.32 | 95 | 99 | 1105 | 1265.16 | 81 | 88.03 | 84 | 87.90 | 83 | 88.16 |
b.5 | 72 | 74 | 79.61 | 80 | 84.13 | 1187 | 1398.65 | 80 | 81.27 | 72 | 77.68 | 78 | 76.03 |
c.1 | 227 | 232 | 237.48 | 262 | 264.52 | 1098 | 1230.23 | 233 | 236.48 | 228 | 230.29 | 233 | 238.77 |
c.2 | 219 | 225 | 236.58 | 256 | 262.45 | 1193 | 1351.26 | 225 | 232.90 | 226 | 222.71 | 226 | 232.74 |
c.3 | 243 | 257 | 270.03 | 298 | 301.10 | 1466 | 1621.74 | 262 | 270.23 | 254 | 256.68 | 253 | 264 |
c.4 | 219 | 230 | 242.74 | 256 | 259.45 | 1220 | 1346.16 | 233 | 243.19 | 225 | 227.97 | 224 | 233.10 |
c.5 | 215 | 218 | 225.13 | 243 | 249.65 | 1118 | 1289.65 | 219 | 225.03 | 215 | 216.35 | 222 | 230.42 |
d.1 | 60 | 63 | 68.61 | 79 | 70.90 | 1367 | 1563.39 | 61 | 66.58 | 66 | 66 | 68 | 79.65 |
d.2 | 66 | 70 | 74.26 | 77 | 78.35 | 1415 | 1757.35 | 69 | 73.39 | 71 | 71 | 73 | 89.71 |
d.3 | 72 | 78 | 81 | 85 | 86.71 | 1665 | 1942.03 | 78 | 81.13 | 82 | 82 | 82 | 100.84 |
d.4 | 66 | 67 | 68.68 | 71 | 71.90 | 1458 | 1610 | 65 | 67.84 | 67 | 67 | 70 | 81.74 |
d.5 | 61 | 64 | 67.94 | 69 | 69.84 | 1443 | 1599.94 | 63 | 66.87 | 66 | 66 | 72 | 81.29 |
AVG | 151.55 | 126.86 | 133.19 | 142.20 | 144.55 | 1243 | 1417.11 | 127.26 | 132.79 | 126.46 | 128.65 | 127.73 | 136.57 |
nre.1 | 29 | 30 | 33.45 | 32 | 33 | 2224 | 2478.47 | 35 | 36.21 | 30 | 30 | 70 | 80.03 |
nre.2 | 30 | 33 | 37.26 | 35 | 37.10 | 2535 | 2724.68 | 32 | 36 | 34 | 34 | 83 | 128.32 |
nre.3 | 27 | 30 | 33.65 | 33 | 34.29 | 2016 | 2332.48 | 30 | 32.87 | 34 | 34 | 74 | 112.35 |
nre.4 | 28 | 32 | 34.58 | 34 | 34 | 2386 | 2632.77 | 31 | 34.29 | 33 | 34 | 83 | 177.45 |
nre.5 | 28 | 30 | 33.16 | 33 | 33.94 | 2573 | 2762.35 | 28 | 32.03 | 30 | 30 | 92 | 150.52 |
nrf.1 | 14 | 15 | 19.35 | 16 | 17 | 1348 | 1565.77 | 15 | 17.87 | 17 | 17 | 372 | 444.19 |
nrf.2 | 15 | 16 | 18.77 | 18 | 18 | 1265 | 1442.90 | 16 | 18.10 | 18 | 18 | 74 | 404.58 |
nrf.3 | 14 | 17 | 20.29 | 19 | 19.68 | 1578 | 1739.68 | 16 | 19.52 | 19 | 19 | 335 | 487.25 |
nrf.4 | 14 | 17 | 19.06 | 17 | 18.68 | 1386 | 1546.10 | 15 | 17.97 | 18 | 18 | 52 | 420.52 |
nrf.5 | 13 | 16 | 18.74 | 16 | 16.26 | 1229 | 1367.84 | 15 | 17.61 | 16 | 16 | 65 | 371.03 |
nrg.1 | 176 | 585 | 702 | 231 | 233.42 | 6483 | 7083.65 | 200 | 210.65 | 197 | 197 | 287 | 385.13 |
nrg.2 | 154 | 441 | 506.13 | 186 | 190.19 | 5619 | 5953.74 | 166 | 177 | 168 | 168 | 208 | 284.29 |
nrg.3 | 166 | 484 | 570.19 | 196 | 198.16 | 5920 | 6475.87 | 180 | 188.23 | 183 | 183 | 211 | 347.23 |
nrg.4 | 168 | 506 | 571.71 | 217 | 219.74 | 5971 | 6549.42 | 185 | 196.81 | 186 | 186 | 250 | 345.77 |
nrg.5 | 168 | 515 | 620.45 | 213 | 218.13 | 6572 | 6799.97 | 186 | 198.19 | 186 | 186 | 230 | 353.97 |
nrh.1 | 63 | 2043 | 2305.06 | 83 | 83.97 | 11,391 | 12,133.23 | 119 | 156.13 | 77 | 77 | t.o. | t.o. |
nrh.2 | 63 | 1942 | 2188.55 | 81 | 81.77 | 11,644 | 12,162.52 | 112 | 141.13 | 71 | 71 | t.o. | t.o. |
nrh.3 | 59 | 1870 | 2244.55 | 75 | 75 | 11,169 | 11,969.55 | 100 | 141.81 | 69 | 69 | t.o. | t.o. |
nrh.4 | 58 | 2102 | 2259.94 | 74 | 75.10 | 11,577 | 12,029.13 | 109 | 143.13 | 68 | 68 | t.o. | t.o. |
nrh.5 | 55 | 1778 | 2010.26 | 67 | 68.90 | 10,952 | 11,382.81 | 93 | 118.71 | 61 | 61 | t.o. | t.o. |
AVG | 67.10 | 625.10 | 712.35 | 83.80 | 85.31 | 5291.90 | 5656.64 | 84.15 | 96.71 | 75.75 | 75.80 | t.o. | t.o. |
Instance | BKS | S4+Stand. | S4+Comp. | S4+Static | S4+Elitist | KMeans | DBscan | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | ||
4.1 | 429 | 432 | 440.45 | 456 | 461.06 | 440 | 455.10 | 429 | 430.61 | 429 | 430 | 429 | 430.38 |
4.2 | 512 | 515 | 542.77 | 571 | 583.74 | 561 | 598.77 | 512 | 515.74 | 513 | 515.84 | 512 | 514.77 |
4.3 | 516 | 516 | 530.25 | 554 | 564.32 | 523 | 587.21 | 516 | 518.87 | 516 | 520.61 | 516 | 518.87 |
4.4 | 494 | 507 | 517.45 | 541 | 553.48 | 518 | 551.81 | 494 | 500.10 | 495 | 498.87 | 494 | 496.10 |
4.5 | 512 | 516 | 527.71 | 551 | 568.74 | 547 | 578.55 | 512 | 514.61 | 514 | 514.90 | 512 | 513.23 |
4.6 | 560 | 569 | 586.65 | 612 | 624.77 | 607 | 643.74 | 560 | 563.61 | 560 | 562.35 | 560 | 560.19 |
4.7 | 430 | 434 | 444.84 | 483 | 491.55 | 451 | 487.13 | 430 | 432.26 | 430 | 432.26 | 430 | 430.81 |
4.8 | 492 | 493 | 508.06 | 529 | 539 | 516 | 558.61 | 492 | 494.19 | 493 | 496.13 | 492 | 494.10 |
4.9 | 641 | 668 | 682.74 | 728 | 743.71 | 705 | 766.61 | 647 | 654.68 | 645 | 657.90 | 641 | 647.50 |
4.10 | 514 | 522 | 541.81 | 564 | 576.52 | 558 | 589.06 | 514 | 517.19 | 516 | 519.9 | 514 | 515.81 |
5.1 | 253 | 254 | 268.74 | 288 | 294.55 | 279 | 298.19 | 253 | 256.74 | 253 | 255.74 | 253 | 255.52 |
5.2 | 302 | 315 | 326.68 | 349 | 360.74 | 335 | 368.16 | 302 | 308.39 | 308 | 309.81 | 302 | 306.68 |
5.3 | 226 | 228 | 235.97 | 246 | 252.32 | 244 | 261.71 | 226 | 227.32 | 228 | 228.68 | 226 | 227.32 |
5.4 | 242 | 242 | 247.74 | 262 | 264.87 | 268 | 278.36 | 243 | 246.23 | 242 | 242.23 | 242 | 243.29 |
5.5 | 211 | 212 | 220.29 | 241 | 245.32 | 250 | 238.07 | 212 | 214.32 | 211 | 212.03 | 211 | 213.90 |
5.6 | 213 | 223 | 232.84 | 247 | 253.65 | 236 | 260.35 | 213 | 213.90 | 213 | 215.10 | 213 | 213.04 |
5.7 | 293 | 301 | 311.48 | 327 | 331.61 | 322 | 344.13 | 293 | 295.03 | 293 | 297.68 | 293 | 295.35 |
5.8 | 288 | 296 | 309.32 | 336 | 344.90 | 323 | 348.68 | 288 | 289.90 | 288 | 290.35 | 288 | 290.39 |
5.9 | 279 | 279 | 300.32 | 314 | 329.32 | 280 | 301.24 | 280 | 281.34 | 279 | 280.52 | 279 | 279.90 |
5.10 | 265 | 272 | 276.23 | 292 | 297.48 | 288 | 306.77 | 265 | 267.87 | 267 | 268.77 | 265 | 267.97 |
6.1 | 138 | 145 | 150.90 | 158 | 164.29 | 157 | 183.84 | 138 | 143.13 | 140 | 142.90 | 140 | 143.42 |
6.2 | 146 | 150 | 155.58 | 165 | 168.71 | 180 | 225.68 | 146 | 150.61 | 146 | 148.87 | 146 | 149.71 |
6.3 | 154 | 148 | 154.19 | 162 | 166.77 | 170 | 213.39 | 145 | 150.32 | 147 | 148.16 | 145 | 149.65 |
6.4 | 131 | 133 | 136.55 | 138 | 141.32 | 148 | 154.24 | 132 | 134.23 | 131 | 131.68 | 131 | 133.03 |
6.5 | 161 | 171 | 179.71 | 187 | 191.94 | 208 | 239.29 | 161 | 167 | 163 | 164.68 | 162 | 165.39 |
AVG | 336.08 | 341.64 | 353.17 | 372.04 | 380.58 | 364.56 | 393.54 | 336.12 | 339.52 | 336.80 | 339.43 | 335.84 | 338.25 |
a.1 | 253 | 253 | 257.65 | 270 | 273.13 | 322 | 367.97 | 254 | 257.26 | 254 | 255.55 | 254 | 256 |
a.2 | 252 | 262 | 272.58 | 299 | 304.87 | 326 | 381.03 | 252 | 260.13 | 257 | 259.48 | 256 | 260.65 |
a.3 | 232 | 242 | 249.81 | 255 | 257.81 | 310 | 348.26 | 232 | 236.52 | 235 | 237.10 | 233 | 237.35 |
a.4 | 234 | 241 | 250.10 | 264 | 267.94 | 299 | 348.39 | 235 | 240.65 | 235 | 237.39 | 236 | 239.97 |
a.5 | 236 | 239 | 243.87 | 261 | 266.13 | 295 | 350.74 | 236 | 237.74 | 236 | 237.06 | 236 | 237.52 |
b.1 | 69 | 74 | 80.16 | 82 | 85 | 176 | 246.52 | 69 | 72.97 | 74 | 79.61 | 69 | 76.48 |
b.2 | 76 | 79 | 87.81 | 92 | 93.74 | 183 | 261.26 | 77 | 81.45 | 83 | 90.03 | 81 | 86.81 |
b.3 | 80 | 81 | 86.06 | 90 | 91.58 | 174 | 257.03 | 81 | 82.34 | 84 | 88.55 | 82 | 88.81 |
b.4 | 79 | 85 | 89.68 | 95 | 99.13 | 161 | 297.45 | 79 | 82.55 | 84 | 87.90 | 83 | 88.16 |
b.5 | 72 | 72 | 78.58 | 82 | 83.90 | 189 | 247.98 | 73 | 74.32 | 72 | 77.68 | 78 | 76.03 |
c.1 | 227 | 231 | 237.90 | 262 | 264.55 | 371 | 424.48 | 227 | 232.77 | 228 | 230.29 | 233 | 238.77 |
c.2 | 219 | 224 | 234.55 | 258 | 262.90 | 372 | 461.16 | 220 | 225.10 | 226 | 222.71 | 226 | 232.74 |
c.3 | 243 | 258 | 270.42 | 294 | 300.68 | 434 | 560.23 | 243 | 252.81 | 254 | 256.68 | 253 | 264 |
c.4 | 219 | 233 | 241.48 | 256 | 259.55 | 353 | 445.23 | 219 | 225.74 | 225 | 227.97 | 224 | 233.10 |
c.5 | 215 | 219 | 225.55 | 245 | 250.42 | 374 | 444.32 | 216 | 220.55 | 215 | 216.35 | 222 | 230.42 |
d.1 | 60 | 63 | 67.97 | 69 | 70.74 | 376 | 440.77 | 60 | 63 | 66 | 66 | 68 | 79.65 |
d.2 | 66 | 70 | 74.32 | 77 | 78.45 | 397 | 493.06 | 66 | 68.39 | 71 | 71 | 73 | 89.71 |
d.3 | 72 | 76 | 81.32 | 85 | 86.58 | 439 | 560.29 | 72 | 75.52 | 82 | 82 | 82 | 100.84 |
d.4 | 66 | 67 | 68.42 | 71 | 71.81 | 319 | 450.90 | 62 | 65.58 | 67 | 67 | 70 | 81.74 |
d.5 | 61 | 62 | 68 | 69 | 69.94 | 317 | 422.81 | 61 | 63.84 | 66 | 66 | 72 | 81.29 |
AVG | 151.55 | 156.55 | 163.31 | 173.80 | 176.94 | 309.35 | 390.49 | 151.70 | 155.96 | 155.70 | 157.81 | 156.55 | 164 |
nre.1 | 29 | 30 | 34.23 | 32 | 32.84 | 687 | 748.32 | 31 | 31.65 | 30 | 30 | 70 | 80.03 |
nre.2 | 30 | 36 | 39.94 | 35 | 37.26 | 741 | 904.42 | 31 | 33.55 | 34 | 34 | 83 | 128.32 |
nre.3 | 27 | 31 | 34.45 | 33 | 34.58 | 622 | 751.81 | 27 | 29.77 | 34 | 34 | 74 | 112.35 |
nre.4 | 28 | 33 | 35.52 | 34 | 34 | 688 | 860.13 | 28 | 30.81 | 33 | 34 | 83 | 177.45 |
nre.5 | 28 | 31 | 36.13 | 33 | 33.94 | 781 | 936.06 | 28 | 29.74 | 30 | 30 | 92 | 150.52 |
nrf.1 | 14 | 15 | 18.58 | 17 | 17.03 | 362 | 444 | 14 | 15.65 | 17 | 17 | 372 | 444.19 |
nrf.2 | 15 | 16 | 19.26 | 17 | 17.97 | 268 | 394.61 | 15 | 16.19 | 18 | 18 | 74 | 404.58 |
nrf.3 | 14 | 17 | 19.61 | 19 | 19.68 | 355 | 500 | 15 | 16.61 | 19 | 19 | 335 | 487.25 |
nrf.4 | 14 | 15 | 18.19 | 18 | 18.61 | 334 | 429.77 | 15 | 15.71 | 18 | 18 | 52 | 420.52 |
nrf.5 | 13 | 16 | 18.35 | 16 | 16.10 | 272 | 377.81 | 14 | 15 | 16 | 16 | 65 | 371.03 |
nrg.1 | 176 | 1071 | 1186.32 | 229 | 234.16 | 2757 | 3176.94 | 179 | 189.55 | 197 | 197 | 287 | 385.13 |
nrg.2 | 154 | 758 | 861.84 | 189 | 190.58 | 2226 | 2669.29 | 160 | 166.23 | 168 | 168 | 208 | 284.29 |
nrg.3 | 166 | 850 | 1008.58 | 197 | 198.39 | 2574 | 2898.26 | 168 | 177.65 | 183 | 183 | 211 | 347.23 |
nrg.4 | 168 | 860 | 1008.48 | 217 | 219.29 | 2569 | 2951.26 | 175 | 180.74 | 186 | 186 | 250 | 345.77 |
nrg.5 | 168 | 974 | 1078.77 | 216 | 219.39 | 2732 | 3081.35 | 174 | 181.13 | 186 | 186 | 230 | 353.97 |
nrh.1 | 63 | 3065 | 3318.32 | 82 | 84.10 | 5294 | 6065.26 | 71 | 74.19 | 77 | 77 | t.o. | t.o. |
nrh.2 | 63 | 2962 | 3254.03 | 81 | 81.97 | 5486 | 5997.68 | 67 | 73.48 | 71 | 71 | t.o. | t.o. |
nrh.3 | 59 | 3034 | 3253.35 | 75 | 75.39 | 4853 | 5984.23 | 64 | 69.03 | 69 | 69 | t.o. | t.o. |
nrh.4 | 58 | 3010 | 3255.65 | 73 | 75.55 | 5002 | 6163.90 | 62 | 67.71 | 68 | 68 | t.o. | t.o. |
nrh.5 | 55 | 2655 | 2934.16 | 68 | 69.10 | 4773 | 5589.06 | 58 | 62.45 | 61 | 61 | t.o. | t.o. |
AVG | 67.10 | 973.95 | 1071.68 | 84.05 | 85.49 | 2168.80 | 2546.21 | 69.80 | 73.84 | 75.75 | 75.80 | t.o. | t.o. |
Instance | BKS | V1+Stand. | V1+Comp. | V1+Static | V1+Elitist | KMeans | DBscan | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | ||
4.1 | 429 | 639 | 699.94 | 454 | 463.13 | 647 | 723.19 | 540 | 600.03 | 429 | 430 | 429 | 430.38 |
4.2 | 512 | 959 | 1086.65 | 573 | 584.39 | 953 | 1127.10 | 742 | 881.45 | 513 | 515.84 | 512 | 514.77 |
4.3 | 516 | 1040 | 1172.58 | 665 | 754.21 | 754 | 845.32 | 701 | 732.21 | 516 | 520.61 | 516 | 518.87 |
4.4 | 494 | 869 | 985.39 | 539 | 553.61 | 817 | 986.74 | 723 | 792.35 | 495 | 498.87 | 494 | 496.10 |
4.5 | 512 | 925 | 1102.23 | 554 | 561.52 | 964 | 1143.55 | 824 | 904.32 | 514 | 514.90 | 512 | 513.23 |
4.6 | 560 | 1259 | 1357.42 | 614 | 624.45 | 1119 | 1371.90 | 939 | 1038.55 | 560 | 562.35 | 560 | 560.19 |
4.7 | 430 | 751 | 875.52 | 481 | 493.45 | 800 | 913.26 | 590 | 710.81 | 430 | 432.26 | 430 | 430.81 |
4.8 | 492 | 1010 | 1144.26 | 530 | 539.45 | 1028 | 1175.71 | 796 | 902.58 | 493 | 496.13 | 492 | 494.10 |
4.9 | 641 | 1315 | 1513.10 | 720 | 740.29 | 1192 | 1616.90 | 1051 | 1193.26 | 645 | 657.90 | 641 | 647.50 |
4.10 | 514 | 975 | 1108.10 | 566 | 572.26 | 987 | 1131.74 | 748 | 863.19 | 516 | 519.9 | 514 | 515.81 |
5.1 | 253 | 506 | 566.03 | 288 | 296.23 | 477 | 557.65 | 385 | 446.97 | 253 | 255.74 | 253 | 255.52 |
5.2 | 302 | 730 | 821.42 | 350 | 359.68 | 726 | 849.23 | 545 | 622.29 | 308 | 309.81 | 302 | 306.68 |
5.3 | 226 | 454 | 502.19 | 246 | 251.19 | 450 | 537.45 | 366 | 407.32 | 228 | 228.68 | 226 | 227.32 |
5.4 | 242 | 438 | 519.26 | 321 | 354.78 | 451 | 534.21 | 369 | 409.99 | 242 | 242.23 | 242 | 243.29 |
5.5 | 211 | 363 | 402.84 | 254 | 2987.54 | 458 | 587.32 | 370 | 411.21 | 211 | 212.03 | 211 | 213.90 |
5.6 | 213 | 435 | 490.16 | 248 | 254.16 | 454 | 516.84 | 354 | 397.32 | 213 | 215.10 | 213 | 213.04 |
5.7 | 293 | 565 | 658.52 | 329 | 336.03 | 518 | 666.68 | 449 | 526.74 | 293 | 297.68 | 293 | 295.35 |
5.8 | 288 | 598 | 668.61 | 337 | 345.42 | 585 | 676.74 | 483 | 527.29 | 288 | 290.35 | 288 | 290.39 |
5.9 | 279 | 580 | 673.10 | 398 | 401.05 | 547 | 654.21 | 489 | 531.07 | 279 | 280.52 | 279 | 279.90 |
5.10 | 265 | 539 | 608.13 | 291 | 296.48 | 555 | 615.87 | 398 | 472.52 | 267 | 268.77 | 265 | 267.97 |
6.1 | 138 | 625 | 702.68 | 161 | 165 | 628 | 744.58 | 413 | 504.45 | 140 | 142.90 | 140 | 143.42 |
6.2 | 146 | 708 | 1013.94 | 161 | 167.13 | 923 | 1047.35 | 576 | 694.87 | 146 | 148.87 | 146 | 149.71 |
6.3 | 154 | 783 | 946.39 | 198 | 209.19 | 849 | 1021.68 | 529 | 641.48 | 147 | 148.16 | 145 | 149.65 |
6.4 | 131 | 534 | 618.55 | 180 | 185.98 | 847 | 1035.65 | 584 | 601.25 | 131 | 131.68 | 131 | 133.03 |
6.5 | 161 | 860 | 1012.23 | 189 | 194.06 | 840 | 1009.48 | 548 | 682.58 | 163 | 164.68 | 162 | 165.39 |
AVG | 336.08 | 738.40 | 849.97 | 385.88 | 507.63 | 742.76 | 883.61 | 580.48 | 659.84 | 336.80 | 339.44 | 335.84 | 338.25 |
a.1 | 253 | 1030 | 1148.10 | 269 | 271.06 | 992 | 1181.42 | 703 | 810.94 | 254 | 255.55 | 254 | 256 |
a.2 | 252 | 903 | 1068.74 | 294 | 303.16 | 950 | 1085.06 | 612 | 766.45 | 257 | 259.48 | 256 | 260.65 |
a.3 | 232 | 838 | 998.48 | 254 | 258.10 | 951 | 1019.65 | 598 | 714.74 | 235 | 237.10 | 233 | 237.35 |
a.4 | 234 | 908 | 995.32 | 263 | 266.90 | 925 | 1026.77 | 635 | 706.06 | 235 | 237.39 | 236 | 239.97 |
a.5 | 236 | 930 | 1017.94 | 252 | 259.16 | 848 | 1043.42 | 653 | 732.81 | 236 | 237.06 | 236 | 237.52 |
b.1 | 69 | 1092 | 1205.55 | 82 | 85.42 | 1091 | 1235.58 | 656 | 781.48 | 74 | 79.61 | 69 | 76.48 |
b.2 | 76 | 1093 | 1215.06 | 92 | 93.65 | 1108 | 1225.10 | 639 | 798.13 | 83 | 90.03 | 81 | 86.81 |
b.3 | 80 | 1375 | 1546.65 | 96 | 100.28 | 1153 | 1482.72 | 689 | 799.25 | 84 | 88.55 | 82 | 88.81 |
b.4 | 79 | 1250 | 1380.39 | 95 | 100.19 | 1194 | 1402.32 | 713 | 914.65 | 84 | 87.90 | 83 | 88.16 |
b.5 | 72 | 1108 | 1209.35 | 87 | 98.21 | 1201 | 1403.21 | 721 | 915.41 | 72 | 77.68 | 78 | 76.03 |
c.1 | 227 | 1163 | 1349.45 | 258 | 262.32 | 1209 | 1358.77 | 804 | 925.77 | 228 | 230.29 | 233 | 238.77 |
c.2 | 219 | 1356 | 1502.10 | 258 | 261.97 | 1311 | 1534.29 | 837 | 1018.81 | 226 | 222.71 | 226 | 232.74 |
c.3 | 243 | 1660 | 1769.61 | 295 | 301.03 | 1675 | 1832.58 | 1069 | 1218.94 | 254 | 256.68 | 253 | 264 |
c.4 | 219 | 1354 | 1476.10 | 255 | 258.23 | 1331 | 1500.71 | 854 | 1014 | 225 | 227.97 | 224 | 233.10 |
c.5 | 215 | 1283 | 1403.81 | 240 | 246.81 | 1265 | 1448.26 | 757 | 980.29 | 215 | 216.35 | 222 | 230.42 |
d.1 | 60 | 1494 | 1743.97 | 69 | 70.58 | 1602 | 1790.90 | 942 | 1139.16 | 66 | 66 | 68 | 79.65 |
d.2 | 66 | 1832 | 1982.32 | 76 | 77.90 | 1784 | 2016.32 | 1121 | 1287.32 | 71 | 71 | 73 | 89.71 |
d.3 | 72 | 1955 | 2154.87 | 83 | 86.45 | 1985 | 2192.74 | 1187 | 1421.10 | 82 | 82 | 82 | 100.84 |
d.4 | 66 | 1549 | 1779.29 | 68 | 76.26 | 1634 | 1786.94 | 1045 | 1184.48 | 67 | 67 | 70 | 81.74 |
d.5 | 61 | 1628 | 1772.13 | 69 | 69.55 | 1542 | 1781.55 | 963 | 1165.39 | 66 | 66 | 72 | 81.29 |
AVG | 151.55 | 1290.05 | 1435.96 | 172.75 | 177.36 | 1287.55 | 1467.41 | 809.90 | 964.76 | 155.70 | 157.82 | 156.55 | 164 |
nre.1 | 29 | 2335 | 2506.26 | 31 | 39.36 | 2501 | 2975.21 | 1625 | 1825.21 | 30 | 30 | 70 | 80.03 |
nre.2 | 30 | 2782 | 3022.13 | 35 | 37.77 | 2687 | 3002.68 | 1716 | 1929.81 | 34 | 34 | 83 | 128.32 |
nre.3 | 27 | 2244 | 2547.81 | 32 | 34.61 | 2263 | 2628.39 | 1507 | 1700.26 | 34 | 34 | 74 | 112.35 |
nre.4 | 28 | 2763 | 2912 | 34 | 34 | 2681 | 2944.87 | 1663 | 1917.81 | 33 | 34 | 83 | 177.45 |
nre.5 | 28 | 2850 | 3078.26 | 33 | 33.97 | 2728 | 3036.26 | 1674 | 2017.84 | 30 | 30 | 92 | 150.52 |
nrf.1 | 14 | 1570 | 1722.10 | 17 | 17 | 1566 | 1782.81 | 986 | 1139.03 | 17 | 17 | 372 | 444.19 |
nrf.2 | 15 | 1376 | 1566 | 18 | 18 | 1450 | 1578.03 | 931 | 1063.00 | 18 | 18 | 74 | 404.58 |
nrf.3 | 14 | 1733 | 1933.13 | 19 | 19.84 | 1716 | 1903.77 | 1126 | 1275.97 | 19 | 19 | 335 | 487.25 |
nrf.4 | 14 | 1543 | 1729.35 | 18 | 18.90 | 1489 | 1718.84 | 1019 | 1134.26 | 18 | 18 | 52 | 420.52 |
nrf.5 | 13 | 1334 | 1488.71 | 16 | 16.29 | 1332 | 1500.13 | 820 | 988.39 | 16 | 16 | 65 | 371.03 |
nrg.1 | 176 | 7156 | 7696.32 | 230 | 232.68 | 7405 | 7914.90 | 4673 | 5041.81 | 197 | 197 | 287 | 385.13 |
nrg.2 | 154 | 6109 | 6442.68 | 185 | 189.29 | 6155 | 6470.32 | 3935 | 4351.13 | 168 | 168 | 208 | 284.29 |
nrg.3 | 166 | 6507 | 7098.19 | 195 | 197.42 | 6542 | 7166.68 | 4375 | 4740.77 | 183 | 183 | 211 | 347.23 |
nrg.4 | 168 | 6460 | 7072.45 | 215 | 218.19 | 6792 | 7302.13 | 4086 | 4713.61 | 186 | 186 | 250 | 345.77 |
nrg.5 | 168 | 6837 | 7458.77 | 214 | 216.81 | 6712 | 7387.65 | 4416 | 4919.71 | 186 | 186 | 230 | 353.97 |
nrh.1 | 63 | 12,515 | 13,137.26 | 82 | 83.71 | 12,574 | 13,310.87 | 8001 | 8869 | 77 | 77 | t.o. | t.o. |
nrh.2 | 63 | 12,381 | 13,125.45 | 81 | 81.94 | 12,227 | 13,093.87 | 7802 | 8797.23 | 71 | 71 | t.o. | t.o. |
nrh.3 | 59 | 12,241 | 13,122.81 | 74 | 74.97 | 12,180 | 13,132.84 | 7957 | 8662.29 | 69 | 69 | t.o. | t.o. |
nrh.4 | 58 | 12,464 | 13,209.45 | 73 | 74.97 | 12,097 | 12,974.87 | 7934 | 8595.19 | 68 | 68 | t.o. | t.o. |
nrh.5 | 55 | 11,626 | 12,348.52 | 67 | 68.55 | 11,558 | 12,356.23 | 7339 | 8103.61 | 61 | 61 | t.o. | t.o. |
AVG | 67.10 | 5741.30 | 6160.88 | 83.45 | 85.41 | 5732.75 | 6209.07 | 3679.25 | 4089.29 | 75.75 | 75.80 | t.o. | t.o. |
Instance | BKS | V2+Stand. | V2+Comp. | V2+Static | V2+Elitist | KMeans | DBscan | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | ||
4.1 | 429 | 616 | 687.77 | 453 | 462.45 | 637 | 706.10 | 498 | 582.52 | 429 | 430 | 429 | 430.38 |
4.2 | 512 | 925 | 1074.84 | 577 | 585.19 | 968 | 1084.70 | 769 | 851.81 | 513 | 515.84 | 512 | 514.77 |
4.3 | 516 | 999 | 1129.90 | 512 | 548.09 | 812 | 987.63 | 725 | 974.15 | 516 | 520.61 | 516 | 518.87 |
4.4 | 494 | 841 | 946.16 | 541 | 553.32 | 834 | 946.37 | 681 | 774.26 | 495 | 498.87 | 494 | 496.10 |
4.5 | 512 | 997 | 1082.71 | 557 | 568.26 | 959 | 1089.29 | 748 | 875.52 | 514 | 514.90 | 512 | 513.23 |
4.6 | 560 | 1161 | 1305.23 | 614 | 625.03 | 1148 | 1310.87 | 849 | 990.03 | 560 | 562.35 | 560 | 560.19 |
4.7 | 430 | 762 | 847.39 | 478 | 495.52 | 751 | 869.77 | 665 | 704.06 | 430 | 432.26 | 430 | 430.81 |
4.8 | 492 | 997 | 1105.65 | 532 | 540.29 | 900 | 1128.16 | 749 | 863.55 | 493 | 496.13 | 492 | 494.10 |
4.9 | 641 | 1265 | 1501.42 | 736 | 745.16 | 1345 | 1512.90 | 1026 | 1141.94 | 645 | 657.90 | 641 | 647.50 |
4.10 | 514 | 889 | 1045.52 | 566 | 574.10 | 973 | 1103.13 | 756 | 844.03 | 516 | 519.9 | 514 | 515.81 |
5.1 | 253 | 504 | 552.81 | 289 | 295.29 | 488 | 556.55 | 390 | 430.32 | 253 | 255.74 | 253 | 255.52 |
5.2 | 302 | 708 | 790.77 | 351 | 360.06 | 732 | 816.40 | 520 | 602.45 | 308 | 309.81 | 302 | 306.68 |
5.3 | 226 | 427 | 499.35 | 245 | 251.35 | 426 | 506.33 | 356 | 401.32 | 228 | 228.68 | 226 | 227.32 |
5.4 | 242 | 462 | 507.42 | 297 | 301.02 | 398 | 547.14 | 398 | 409.94 | 242 | 242.23 | 242 | 243.29 |
5.5 | 211 | 347 | 395.90 | 287 | 304.21 | 421 | 568.96 | 371 | 419.36 | 211 | 212.03 | 211 | 213.90 |
5.6 | 213 | 438 | 483.77 | 249 | 254.45 | 424 | 499.13 | 346 | 382.42 | 213 | 215.10 | 213 | 213.04 |
5.7 | 293 | 588 | 644.39 | 329 | 334.81 | 538 | 654.47 | 426 | 504.13 | 293 | 297.68 | 293 | 295.35 |
5.8 | 288 | 580 | 665.32 | 337 | 345.74 | 602 | 675.07 | 470 | 523.06 | 288 | 290.35 | 288 | 290.39 |
5.9 | 279 | 567 | 652.19 | 338 | 354.32 | 413 | 501.06 | 487 | 524.98 | 279 | 280.52 | 279 | 279.90 |
5.10 | 265 | 544 | 598.87 | 294 | 298.23 | 508 | 598.17 | 419 | 468.97 | 267 | 268.77 | 265 | 267.97 |
6.1 | 138 | 588 | 701.55 | 159 | 164.06 | 613 | 711.50 | 388 | 474.45 | 140 | 142.90 | 140 | 143.42 |
6.2 | 146 | 777 | 962.42 | 160 | 167.03 | 885 | 1034.29 | 502 | 654.45 | 146 | 148.87 | 146 | 149.71 |
6.3 | 154 | 802 | 931.32 | 157 | 166.39 | 807 | 956.61 | 475 | 603.71 | 147 | 148.16 | 145 | 149.65 |
6.4 | 131 | 518 | 602.61 | 154 | 187.17 | 420 | 508.36 | 576 | 672.19 | 131 | 131.68 | 131 | 133.03 |
6.5 | 161 | 870 | 973.77 | 188 | 193.90 | 760 | 991.13 | 539 | 652.29 | 163 | 164.68 | 162 | 165.39 |
AVG | 336.08 | 726.88 | 827.56 | 376 | 387.02 | 710.48 | 834.56 | 565.16 | 653.04 | 336.80 | 339.43 | 335.84 | 338.25 |
a.1 | 253 | 1009 | 1141.32 | 268 | 271.23 | 999 | 1159.06 | 706 | 781.26 | 254 | 255.55 | 254 | 256 |
a.2 | 252 | 911 | 1045.35 | 297 | 303.90 | 900 | 1039.52 | 589 | 744.06 | 257 | 259.48 | 256 | 260.65 |
a.3 | 232 | 899 | 995.65 | 256 | 257.90 | 876 | 967.77 | 593 | 688.20 | 235 | 237.10 | 233 | 237.35 |
a.4 | 234 | 875 | 972.06 | 266 | 268.42 | 805 | 990.94 | 585 | 694.43 | 235 | 237.39 | 236 | 239.97 |
a.5 | 236 | 862 | 977.81 | 254 | 260.26 | 836 | 985.77 | 533 | 690.83 | 236 | 237.06 | 236 | 237.52 |
b.1 | 69 | 1072 | 1178.35 | 82 | 85.58 | 1089 | 1186.58 | 633 | 732.90 | 74 | 79.61 | 69 | 76.48 |
b.2 | 76 | 1037 | 1157.16 | 92 | 93.77 | 984 | 1174.29 | 636 | 753.30 | 83 | 90.03 | 81 | 86.81 |
b.3 | 80 | 1263 | 1475.23 | 100 | 132.14 | 1258 | 1748.19 | 716 | 845.14 | 84 | 88.55 | 82 | 88.81 |
b.4 | 79 | 1170 | 1346.77 | 95 | 100.16 | 1191 | 1348.10 | 730 | 853.63 | 84 | 87.90 | 83 | 88.16 |
b.5 | 72 | 1017 | 1200.29 | 98 | 111.12 | 1098 | 1569.02 | 730 | 784.96 | 72 | 77.68 | 78 | 76.03 |
c.1 | 227 | 1106 | 1313.23 | 260 | 263.29 | 1165 | 1315.68 | 761 | 906.87 | 228 | 230.29 | 233 | 238.77 |
c.2 | 219 | 1295 | 1461.61 | 258 | 262.35 | 1299 | 1479.65 | 811 | 980.50 | 226 | 222.71 | 226 | 232.74 |
c.3 | 243 | 1513 | 1710.23 | 296 | 301.29 | 1552 | 1728.39 | 1024 | 1130.37 | 254 | 256.68 | 253 | 264 |
c.4 | 219 | 1270 | 1418.29 | 256 | 258.97 | 1284 | 1447.32 | 784 | 937.70 | 225 | 227.97 | 224 | 233.10 |
c.5 | 215 | 1230 | 1372.42 | 244 | 247.81 | 1229 | 1385.45 | 828 | 933.03 | 215 | 216.35 | 222 | 230.42 |
d.1 | 60 | 1504 | 1693.84 | 70 | 70.81 | 1509 | 1685.35 | 935 | 1068.37 | 66 | 66 | 68 | 79.65 |
d.2 | 66 | 1640 | 1890.45 | 77 | 78.52 | 1750 | 1912.71 | 1058 | 1226.83 | 71 | 71 | 73 | 89.71 |
d.3 | 72 | 1799 | 2083.48 | 85 | 86.84 | 1807 | 2091.03 | 1153 | 1321.50 | 82 | 82 | 82 | 100.84 |
d.4 | 66 | 1638 | 1721.70 | 71 | 71.68 | 1424 | 1718.71 | 899 | 1108.30 | 67 | 67 | 70 | 81.74 |
d.5 | 61 | 1489 | 1693.55 | 69 | 69.68 | 1585 | 1703.68 | 946 | 1103.57 | 66 | 66 | 72 | 81.29 |
AVG | 151.55 | 1229.95 | 1392.4395 | 174.70 | 179.786 | 1232 | 1431.86 | 782.50 | 914.29 | 155.70 | 157.82 | 156.55 | 164 |
nre.1 | 29 | 2176 | 2403.26 | 36 | 36.87 | 2548 | 2857.31 | 1578 | 1987.47 | 30 | 30 | 70 | 80.03 |
nre.2 | 30 | 2695 | 2918.32 | 37 | 37.84 | 2619 | 2923.84 | 1672 | 1889.33 | 34 | 34 | 83 | 128.32 |
nre.3 | 27 | 2334 | 2521.45 | 33 | 34.74 | 2296 | 2500.48 | 1435 | 1614.57 | 34 | 34 | 74 | 112.35 |
nre.4 | 28 | 2553 | 2828.48 | 34 | 34 | 2526 | 2793.87 | 1614 | 1813.67 | 33 | 34 | 83 | 177.45 |
nre.5 | 28 | 2711 | 2938.65 | 33 | 33.87 | 2654 | 2970.90 | 1614 | 1909.20 | 30 | 30 | 92 | 150.52 |
nrf.1 | 14 | 1468 | 1682.45 | 17 | 17 | 1514 | 1659.13 | 925 | 1069.30 | 17 | 17 | 372 | 444.19 |
nrf.2 | 15 | 1402 | 1536.06 | 18 | 18 | 1398 | 1531.61 | 855 | 978 | 18 | 18 | 74 | 404.58 |
nrf.3 | 14 | 1701 | 1855.81 | 19 | 19.97 | 1628 | 1858.19 | 1029 | 1200.63 | 19 | 19 | 335 | 487.25 |
nrf.4 | 14 | 1488 | 1644.90 | 18 | 18.77 | 1542 | 1674.55 | 915 | 1058.73 | 18 | 18 | 52 | 420.52 |
nrf.5 | 13 | 1296 | 1442.48 | 16 | 16.35 | 1287 | 1475.16 | 782 | 919.70 | 16 | 16 | 65 | 371.03 |
nrg.1 | 176 | 7041 | 7478.61 | 231 | 233.19 | 6869 | 7443.55 | 4523 | 4843.27 | 197 | 197 | 287 | 385.13 |
nrg.2 | 154 | 5984 | 6380.45 | 185 | 189.77 | 5805 | 6303.19 | 3737 | 4111.17 | 168 | 168 | 208 | 284.29 |
nrg.3 | 166 | 6452 | 6925.32 | 193 | 196.97 | 6559 | 6929.65 | 3983 | 4468.67 | 183 | 183 | 211 | 347.23 |
nrg.4 | 168 | 6442 | 6891.16 | 214 | 218.90 | 6441 | 6973.35 | 4130 | 4511.93 | 186 | 186 | 250 | 345.77 |
nrg.5 | 168 | 6906 | 7285.71 | 215 | 217.35 | 6755 | 7169.55 | 4273 | 4642.87 | 186 | 186 | 230 | 353.97 |
nrh.1 | 63 | 12,063 | 12,811.13 | 83 | 83.90 | 11,907 | 12,923.58 | 7492 | 8301.20 | 77 | 77 | t.o. | t.o. |
nrh.2 | 63 | 11,862 | 12,769.65 | 81 | 81.61 | 12,413 | 12,925.84 | 7687 | 8235.53 | 71 | 71 | t.o. | t.o. |
nrh.3 | 59 | 11,860 | 12,599.94 | 75 | 75 | 12,040 | 12,671.87 | 7463 | 8225.97 | 69 | 69 | t.o. | t.o. |
nrh.4 | 58 | 12,029 | 12,719.58 | 73 | 74.81 | 11,741 | 12,699.65 | 7657 | 8212.10 | 68 | 68 | t.o. | t.o. |
nrh.5 | 55 | 11,348 | 11,962.68 | 66 | 68.52 | 11,376 | 11,968.42 | 7284 | 7840.06 | 61 | 61 | t.o. | t.o. |
AVG | 67.10 | 5590.55 | 5979.80 | 83.85 | 85.37 | 5595.90 | 6012.68 | 3532.40 | 3891.67 | 75.75 | 75.80 | t.o. | t.o. |
Instance | BKS | V3+Stand. | V3+Comp. | V3+Static | V3+Elitist | KMeans | DBscan | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | ||
4.1 | 429 | 598 | 655.43 | 457 | 462.13 | 602 | 664.40 | 513 | 566.07 | 429 | 430 | 429 | 430.38 |
4.2 | 512 | 867 | 1018.73 | 574 | 583.63 | 929 | 1028.10 | 746 | 805.20 | 513 | 515.84 | 512 | 514.77 |
4.3 | 516 | 982 | 1085.40 | 553 | 560.43 | 784 | 995.35 | 684 | 789.33 | 516 | 520.61 | 516 | 518.87 |
4.4 | 494 | 831 | 930.40 | 536 | 552.20 | 796 | 909.37 | 669 | 732.60 | 495 | 498.87 | 494 | 496.10 |
4.5 | 512 | 886 | 1036.67 | 557 | 568.50 | 858 | 1053.90 | 749 | 813.83 | 514 | 514.90 | 512 | 513.23 |
4.6 | 560 | 1108 | 1241.53 | 608 | 622.70 | 1095 | 1250.77 | 848 | 949.10 | 560 | 562.35 | 560 | 560.19 |
4.7 | 430 | 717 | 827.30 | 487 | 494.83 | 767 | 833.60 | 609 | 662.93 | 430 | 432.26 | 430 | 430.81 |
4.8 | 492 | 891 | 1045.40 | 533 | 538.27 | 949 | 1073.60 | 694 | 827.87 | 493 | 496.13 | 492 | 494.10 |
4.9 | 641 | 1243 | 1391.57 | 728 | 741.90 | 1279 | 1403.10 | 975 | 1075.33 | 645 | 657.90 | 641 | 647.50 |
4.10 | 514 | 917 | 1003.93 | 561 | 570.33 | 929 | 1026.50 | 709 | 804.67 | 516 | 519.9 | 514 | 515.81 |
5.1 | 253 | 463 | 515.40 | 285 | 294.80 | 462 | 512.10 | 363 | 407.90 | 253 | 255.74 | 253 | 255.52 |
5.2 | 302 | 714 | 762.50 | 352 | 361.23 | 620 | 759.07 | 520 | 570.77 | 308 | 309.81 | 302 | 306.68 |
5.3 | 226 | 436 | 471.43 | 248 | 251.13 | 403 | 481.77 | 338 | 373.47 | 228 | 228.68 | 226 | 227.32 |
5.4 | 242 | 433 | 493.33 | 261 | 263.67 | 485 | 501.02 | 336 | 489.30 | 242 | 242.23 | 242 | 243.29 |
5.5 | 211 | 359 | 388.10 | 243 | 246.50 | 478 | 503.31 | 333 | 401.01 | 211 | 212.03 | 211 | 213.90 |
5.6 | 213 | 423 | 458.60 | 249 | 253.17 | 415 | 459.23 | 334 | 362.60 | 213 | 215.10 | 213 | 213.04 |
5.7 | 293 | 541 | 603.30 | 326 | 332.40 | 541 | 613 | 431 | 476.60 | 293 | 297.68 | 293 | 295.35 |
5.8 | 288 | 552 | 608.03 | 339 | 346.10 | 576 | 635.13 | 412 | 492.63 | 288 | 290.35 | 288 | 290.39 |
5.9 | 279 | 549 | 630.70 | 319 | 328.03 | 541 | 587.01 | 444 | 498.21 | 279 | 280.52 | 279 | 279.90 |
5.10 | 265 | 519 | 566.27 | 294 | 298 | 506 | 558.87 | 402 | 442.03 | 267 | 268.77 | 265 | 267.97 |
6.1 | 138 | 545 | 650.13 | 160 | 164.10 | 496 | 638.97 | 355 | 417.13 | 140 | 142.90 | 140 | 143.42 |
6.2 | 146 | 824 | 937.90 | 161 | 166.10 | 682 | 917.63 | 466 | 593.47 | 146 | 148.87 | 146 | 149.71 |
6.3 | 154 | 778 | 879.17 | 162 | 166.07 | 737 | 869.20 | 430 | 539.07 | 147 | 148.16 | 145 | 149.65 |
6.4 | 131 | 488 | 554.37 | 141 | 142.23 | 714 | 842.36 | 441 | 478.85 | 131 | 131.68 | 131 | 133.03 |
6.5 | 161 | 807 | 938.37 | 186 | 191.83 | 781 | 904.33 | 469 | 584.17 | 163 | 164.68 | 162 | 165.39 |
AVG | 336.08 | 698.84 | 787.76 | 372.80 | 380.01 | 697 | 800.87 | 530.80 | 606.17 | 336.80 | 339.44 | 335.84 | 338.25 |
a.1 | 253 | 951 | 1070.40 | 269 | 271.50 | 952 | 1080 | 563 | 702.97 | 254 | 255.55 | 254 | 256 |
a.2 | 252 | 919 | 1003.17 | 300 | 304.80 | 897 | 995.60 | 570 | 667.50 | 257 | 259.48 | 256 | 260.65 |
a.3 | 232 | 791 | 913.70 | 256 | 257.70 | 856 | 936.30 | 525 | 627.07 | 235 | 237.10 | 233 | 237.35 |
a.4 | 234 | 805 | 901 | 265 | 268.23 | 773 | 907.73 | 497 | 619.87 | 235 | 237.39 | 236 | 239.97 |
a.5 | 236 | 828 | 925.97 | 257 | 262.07 | 826 | 933.07 | 523 | 630.43 | 236 | 237.06 | 236 | 237.52 |
b.1 | 69 | 979 | 1084.37 | 83 | 85.43 | 988 | 1091.90 | 520 | 653.60 | 74 | 79.61 | 69 | 76.48 |
b.2 | 76 | 870 | 1094.33 | 92 | 93.73 | 975 | 1107.30 | 563 | 671.77 | 83 | 90.03 | 81 | 86.81 |
b.3 | 80 | 1193 | 1379.63 | 90 | 91.73 | 1172 | 1854.32 | 687 | 761.87 | 84 | 88.55 | 82 | 88.81 |
b.4 | 79 | 1076 | 1238.70 | 97 | 99.87 | 1053 | 1226 | 646 | 769.07 | 84 | 87.90 | 83 | 88.16 |
b.5 | 72 | 1065 | 1149.37 | 81 | 84.03 | 1254 | 1425.65 | 666 | 701.35 | 72 | 77.68 | 78 | 76.03 |
c.1 | 227 | 1089 | 1238.87 | 261 | 263.87 | 1088 | 1228.87 | 663 | 784.23 | 228 | 230.29 | 233 | 238.77 |
c.2 | 219 | 1205 | 1382.37 | 259 | 262.17 | 1245 | 1386.47 | 759 | 873.50 | 226 | 222.71 | 226 | 232.74 |
c.3 | 243 | 1432 | 1609.63 | 296 | 300.67 | 1477 | 1613.73 | 875 | 1029.33 | 254 | 256.68 | 253 | 264 |
c.4 | 219 | 1207 | 1342.40 | 258 | 259.40 | 1197 | 1333.23 | 656 | 842.50 | 225 | 227.97 | 224 | 233.10 |
c.5 | 215 | 1036 | 1276.17 | 247 | 248.67 | 1148 | 1284.57 | 215 | 216.50 | 215 | 216.35 | 222 | 230.42 |
d.1 | 60 | 1355 | 1578.83 | 70 | 70.90 | 1434 | 1562.33 | 773 | 967.23 | 66 | 66 | 68 | 79.65 |
d.2 | 66 | 1597 | 1747.63 | 77 | 78.53 | 1558 | 1770.80 | 957 | 1081.63 | 71 | 71 | 73 | 89.71 |
d.3 | 72 | 1728 | 1964.13 | 83 | 86.67 | 1648 | 1923.90 | 1010 | 1174.70 | 82 | 82 | 82 | 100.84 |
d.4 | 66 | 1477 | 1592.73 | 71 | 71.77 | 1472 | 1603.60 | 835 | 966.50 | 67 | 67 | 70 | 81.74 |
d.5 | 61 | 1292 | 1579.23 | 69 | 70 | 1470 | 1588.57 | 809 | 959.03 | 66 | 66 | 72 | 81.29 |
AVG | 151.55 | 1144.75 | 1303.63 | 174.05 | 176.59 | 1174.15 | 1342.70 | 665.60 | 785.03 | 155.70 | 157.82 | 156.55 | 164 |
nre.1 | 29 | 2053 | 2254.20 | 33 | 33 | 2147 | 2457.32 | 1111 | 1365.21 | 30 | 30 | 70 | 80.03 |
nre.2 | 30 | 2527 | 2711.20 | 36 | 37.37 | 2386 | 2741.63 | 1378 | 1644.57 | 34 | 34 | 83 | 128.32 |
nre.3 | 27 | 2074 | 2322.83 | 33 | 34.60 | 2185 | 2346.80 | 1211 | 1414.67 | 34 | 34 | 74 | 112.35 |
nre.4 | 28 | 2433 | 2608.93 | 33 | 33.97 | 2461 | 2614 | 1423 | 1610.63 | 33 | 34 | 83 | 177.45 |
nre.5 | 28 | 2609 | 2775.47 | 33 | 33.97 | 2516 | 2794.60 | 1528 | 1664.90 | 30 | 30 | 92 | 150.52 |
nrf.1 | 14 | 1416 | 1569.43 | 17 | 17.03 | 1340 | 1587.47 | 829 | 955.90 | 17 | 17 | 372 | 444.19 |
nrf.2 | 15 | 1321 | 1443.47 | 17 | 17.97 | 1271 | 1446.23 | 762 | 868.80 | 18 | 18 | 74 | 404.58 |
nrf.3 | 14 | 1567 | 1738.87 | 19 | 19.53 | 1475 | 1712.23 | 905 | 1045.07 | 19 | 19 | 335 | 487.25 |
nrf.4 | 14 | 1399 | 1552.83 | 17 | 18.47 | 1274 | 1547.93 | 792 | 935.03 | 18 | 18 | 52 | 420.52 |
nrf.5 | 13 | 1231 | 1354.60 | 16 | 16.13 | 1247 | 1361.70 | 689 | 824.87 | 16 | 16 | 65 | 371.03 |
nrg.1 | 176 | 6430 | 7032.93 | 229 | 234.50 | 6671 | 7135.37 | 3734 | 4242.67 | 197 | 197 | 287 | 385.13 |
nrg.2 | 154 | 5334 | 5918.47 | 189 | 191.03 | 5595 | 5990.23 | 3194 | 3623.40 | 168 | 168 | 208 | 284.29 |
nrg.3 | 166 | 6059 | 6399.60 | 197 | 198.53 | 5854 | 6377.47 | 3451 | 3881.77 | 183 | 183 | 211 | 347.23 |
nrg.4 | 168 | 6162 | 6558.77 | 215 | 219.80 | 6050 | 6507.13 | 3620 | 3956.83 | 186 | 186 | 250 | 345.77 |
nrg.5 | 168 | 6343 | 6718.60 | 216 | 219.80 | 6296 | 6798.60 | 3516 | 4139.43 | 186 | 186 | 230 | 353.97 |
nrh.1 | 63 | 11,013 | 11,981 | 82 | 84.37 | 11,191 | 12,000.60 | 6901 | 7398.43 | 77 | 77 | t.o. | t.o. |
nrh.2 | 63 | 11,607 | 12,096.40 | 81 | 82.40 | 11,396 | 12,110.83 | 6578 | 7364.83 | 71 | 71 | t.o. | t.o. |
nrh.3 | 59 | 11,473 | 11,903.43 | 75 | 75.83 | 11,155 | 11,836.20 | 6625 | 7112.07 | 69 | 69 | t.o. | t.o. |
nrh.4 | 58 | 11,435 | 12,043.30 | 75 | 75.77 | 11,313 | 11,985.40 | 6649 | 7158.20 | 68 | 68 | t.o. | t.o. |
nrh.5 | 55 | 10,618 | 11,222.19 | 69 | 69.26 | 10,486 | 11,328.03 | 6233 | 6871.97 | 61 | 61 | t.o. | t.o. |
AVG | 67.10 | 5255.20 | 5610.33 | 84.10 | 85.67 | 5215.45 | 5633.99 | 3056.45 | 3403.96 | 75.75 | 75.80 | t.o. | t.o. |
Instance | BKS | V4+Stand. | V4+Comp. | V4+Static | V4+Elitist | KMeans | DBscan | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | ||
4.1 | 429 | 605 | 664.50 | 453 | 459.93 | 588 | 636.33 | 514 | 535.30 | 429 | 430 | 429 | 430.38 |
4.2 | 512 | 903 | 1026.30 | 571 | 581.20 | 873 | 956.63 | 672 | 743.70 | 513 | 515.84 | 512 | 514.77 |
4.3 | 516 | 952 | 1078.60 | 552 | 558.87 | 802 | 879.87 | 655 | 748.21 | 516 | 520.61 | 516 | 518.87 |
4.4 | 494 | 820 | 908.53 | 530 | 546.47 | 801 | 858.87 | 657 | 702.67 | 495 | 498.87 | 494 | 496.10 |
4.5 | 512 | 870 | 1024.23 | 553 | 564.67 | 892 | 970.57 | 676 | 757.03 | 514 | 514.90 | 512 | 513.23 |
4.6 | 560 | 1087 | 1236.17 | 613 | 621.43 | 1048 | 1163 | 786 | 882.90 | 560 | 562.35 | 560 | 560.19 |
4.7 | 430 | 728 | 808.67 | 485 | 490.90 | 663 | 781.77 | 547 | 629.87 | 430 | 432.26 | 430 | 430.81 |
4.8 | 492 | 960 | 1045.10 | 525 | 536.23 | 884 | 986.07 | 706 | 761.53 | 493 | 496.13 | 492 | 494.10 |
4.9 | 641 | 1229 | 1415.40 | 726 | 737.37 | 1132 | 1305.30 | 909 | 995.10 | 645 | 657.90 | 641 | 647.50 |
4.10 | 514 | 905 | 1011.53 | 552 | 566.40 | 859 | 943.57 | 711 | 757.73 | 516 | 519.9 | 514 | 515.81 |
5.1 | 253 | 474 | 524.30 | 288 | 292.70 | 415 | 486.23 | 335 | 380.70 | 253 | 255.74 | 253 | 255.52 |
5.2 | 302 | 642 | 755.50 | 350 | 358.47 | 654 | 712.43 | 468 | 523.30 | 308 | 309.81 | 302 | 306.68 |
5.3 | 226 | 399 | 472 | 246 | 249.97 | 411 | 446.87 | 314 | 344.33 | 228 | 228.68 | 226 | 227.32 |
5.4 | 242 | 393 | 490.40 | 258 | 262.10 | 389 | 419.68 | 355 | 398.21 | 242 | 242.23 | 242 | 243.29 |
5.5 | 211 | 354 | 386.63 | 239 | 243.93 | 401 | 420.12 | 364 | 378.21 | 211 | 212.03 | 211 | 213.90 |
5.6 | 213 | 402 | 458.30 | 242 | 251.33 | 399 | 429.60 | 314 | 341.67 | 213 | 215.10 | 213 | 213.04 |
5.7 | 293 | 534 | 613.47 | 326 | 330.13 | 506 | 566.87 | 414 | 447.57 | 293 | 297.68 | 293 | 295.35 |
5.8 | 288 | 521 | 622.43 | 335 | 342.77 | 533 | 588.17 | 429 | 461.73 | 288 | 290.35 | 288 | 290.39 |
5.9 | 279 | 556 | 619.40 | 315 | 324.60 | 555 | 578.98 | 422 | 463.14 | 279 | 280.52 | 279 | 279.90 |
5.10 | 265 | 512 | 568.17 | 291 | 296.20 | 479 | 531.17 | 368 | 406.97 | 267 | 268.77 | 265 | 267.97 |
6.1 | 138 | 555 | 636.10 | 156 | 162.13 | 465 | 566.53 | 251 | 358.43 | 140 | 142.90 | 140 | 143.42 |
6.2 | 146 | 771 | 920.67 | 161 | 165 | 683 | 835.03 | 400 | 488.83 | 146 | 148.87 | 146 | 149.71 |
6.3 | 154 | 710 | 862.73 | 160 | 164.97 | 700 | 815.03 | 379 | 471.63 | 147 | 148.16 | 145 | 149.65 |
6.4 | 131 | 447 | 571.50 | 138 | 140.67 | 647 | 852.38 | 477 | 542.45 | 131 | 131.68 | 131 | 133.03 |
6.5 | 161 | 802 | 907.20 | 185 | 190.20 | 645 | 823.30 | 417 | 502.50 | 163 | 164.68 | 162 | 165.39 |
AVG | 336.08 | 685.24 | 776.24 | 370 | 394.93 | 656.96 | 763.27 | 501.60 | 573.14 | 336.80 | 430 | 335.84 | 338.25 |
a.1 | 253 | 861 | 1067.30 | 268 | 271.07 | 830 | 958.87 | 539 | 622.40 | 254 | 255.55 | 254 | 256 |
a.2 | 252 | 843 | 971 | 299 | 303.40 | 829 | 902.43 | 507 | 568.20 | 257 | 259.48 | 256 | 260.65 |
a.3 | 232 | 833 | 924.73 | 253 | 256.90 | 761 | 860.47 | 482 | 546.47 | 235 | 237.10 | 233 | 237.35 |
a.4 | 234 | 807 | 917.10 | 264 | 267.53 | 732 | 850.13 | 499 | 553.30 | 235 | 237.39 | 236 | 239.97 |
a.5 | 236 | 790 | 917.73 | 259 | 262.80 | 751 | 846.83 | 455 | 550.77 | 236 | 237.06 | 236 | 237.52 |
b.1 | 69 | 962 | 1099.53 | 83 | 84.73 | 896 | 1002.83 | 440 | 556.20 | 74 | 79.61 | 69 | 76.48 |
b.2 | 76 | 977 | 1078.37 | 92 | 93.87 | 912 | 1001.17 | 452 | 545.80 | 83 | 90.03 | 81 | 86.81 |
b.3 | 80 | 1217 | 1404 | 90 | 91.63 | 901 | 1000.25 | 547 | 682.44 | 84 | 88.55 | 82 | 88.81 |
b.4 | 79 | 1159 | 1273.37 | 94 | 98.63 | 992 | 1124.93 | 559 | 632.40 | 84 | 87.90 | 83 | 88.16 |
b.5 | 72 | 974 | 1119.90 | 82 | 84.23 | 999 | 1212.21 | 547 | 636.96 | 72 | 77.68 | 78 | 76.03 |
c.1 | 227 | 1143 | 1229 | 263 | 264.57 | 1011 | 1134.37 | 598 | 689.30 | 228 | 230.29 | 233 | 238.77 |
c.2 | 219 | 1221 | 1356.13 | 258 | 261.90 | 1176 | 1268.40 | 635 | 754.17 | 226 | 222.71 | 226 | 232.74 |
c.3 | 243 | 1317 | 1619.40 | 294 | 299.77 | 1343 | 1476.83 | 704 | 862.70 | 254 | 256.68 | 253 | 264 |
c.4 | 219 | 1186 | 1342.43 | 257 | 259.03 | 1084 | 1209.93 | 659 | 735.50 | 225 | 227.97 | 224 | 233.10 |
c.5 | 215 | 1196 | 1292.50 | 245 | 248.77 | 1024 | 1164.20 | 607 | 697.50 | 215 | 216.35 | 222 | 230.42 |
d.1 | 60 | 1455 | 1584.57 | 71 | 71 | 1306 | 1441.97 | 651 | 776.13 | 66 | 66 | 68 | 79.65 |
d.2 | 66 | 1657 | 1785.97 | 76 | 78.23 | 1444 | 1626.53 | 753 | 894.77 | 71 | 71 | 73 | 89.71 |
d.3 | 72 | 1791 | 1922.27 | 83 | 86.60 | 1574 | 1787.67 | 801 | 980.60 | 82 | 82 | 82 | 100.84 |
d.4 | 66 | 1456 | 1590.87 | 70 | 71.83 | 1307 | 1449.17 | 663 | 793.40 | 67 | 67 | 70 | 81.74 |
d.5 | 61 | 1459 | 1596.77 | 69 | 69.87 | 1296 | 1463.17 | 682 | 801.03 | 66 | 66 | 72 | 81.29 |
AVG | 151.55 | 1165.20 | 1347.83 | 173.50 | 176.32 | 1189.12 | 1198.33 | 589 | 697 | 155.70 | 157.82 | 156.55 | 164 |
nre.1 | 29 | 2025 | 2226.93 | 33 | 33.33 | 2168 | 2541.84 | 1147 | 1665.25 | 30 | 30 | 70 | 80.03 |
nre.2 | 30 | 2472 | 2763.80 | 37 | 38.10 | 2262 | 2471.93 | 1145 | 1360.57 | 34 | 34 | 83 | 128.32 |
nre.3 | 27 | 2140 | 2323.47 | 34 | 35.33 | 1951 | 2141.83 | 1025 | 1160.67 | 34 | 34 | 74 | 112.35 |
nre.4 | 28 | 2381 | 2647.10 | 34 | 34.60 | 2194 | 2398.90 | 1142 | 1344.43 | 33 | 34 | 83 | 177.45 |
nre.5 | 28 | 2465 | 2776.80 | 34 | 34.73 | 2231 | 2516.80 | 1188 | 1413.73 | 30 | 30 | 92 | 150.52 |
nrf.1 | 14 | 1467 | 1572.30 | 16 | 17.17 | 1264 | 1411.83 | 683 | 769.90 | 17 | 17 | 372 | 444.19 |
nrf.2 | 15 | 1218 | 1433.20 | 17 | 17.97 | 1123 | 1323.43 | 625 | 712.90 | 18 | 18 | 74 | 404.58 |
nrf.3 | 14 | 1591 | 1739.23 | 19 | 20.13 | 1463 | 1572.83 | 729 | 872.40 | 19 | 19 | 335 | 487.25 |
nrf.4 | 14 | 1446 | 1550.40 | 18 | 18.83 | 1287 | 1419.83 | 641 | 781.23 | 18 | 18 | 52 | 420.52 |
nrf.5 | 13 | 1169 | 1363.90 | 16 | 16.47 | 1125 | 1244.10 | 569 | 677.17 | 16 | 16 | 65 | 371.03 |
nrg.1 | 176 | 6422 | 7063.57 | 245 | 255.80 | 5962 | 6396.57 | 3202 | 3556.80 | 197 | 197 | 287 | 385.13 |
nrg.2 | 154 | 5598 | 5951.20 | 194 | 207.33 | 4949 | 5405.80 | 2708 | 3021.37 | 168 | 168 | 208 | 284.29 |
nrg.3 | 166 | 5967 | 6446.33 | 206 | 217.57 | 5561 | 5965.03 | 2886 | 3267.30 | 183 | 183 | 211 | 347.23 |
nrg.4 | 168 | 6148 | 6522.20 | 231 | 240.77 | 5393 | 5925.83 | 3007 | 3284.60 | 186 | 186 | 250 | 345.77 |
nrg.5 | 168 | 6460 | 6827.30 | 229 | 242.33 | 5786 | 6213.17 | 2984 | 3381.37 | 186 | 186 | 230 | 353.97 |
nrh.1 | 63 | 11,451 | 12,041.17 | 120 | 157.23 | 10,475 | 11,056.33 | 5678 | 6236.73 | 77 | 77 | t.o. | t.o. |
nrh.2 | 63 | 11,284 | 12,032.90 | 119 | 162.70 | 10,574 | 11,033.20 | 5389 | 6096.30 | 71 | 71 | t.o. | t.o. |
nrh.3 | 59 | 11,281 | 11,932.43 | 117 | 151.30 | 10,301 | 10,855.47 | 5542 | 6041.67 | 69 | 69 | t.o. | t.o. |
nrh.4 | 58 | 11,166 | 11,880.47 | 129 | 152.83 | 10,441 | 10,867.60 | 5682 | 6047.33 | 68 | 68 | t.o. | t.o. |
nrh.5 | 55 | 10,676 | 11,213.71 | 110 | 137.35 | 9538 | 10,217.13 | 4999 | 5777.45 | 61 | 61 | t.o. | t.o. |
AVG | 67.10 | 5241.35 | 5615.42 | 97.90 | 109.59 | 4802.40 | 5148.97 | 2548.55 | 2937.04 | 77.93 | 75.80 | t.o. | t.o. |
Appendix A.1.2. SCP—Two-Steps
Instance | Step 1 | Step 2 | BKS | MIN | MAX | AVG | RPD | TIME |
---|---|---|---|---|---|---|---|---|
4.1 | S-Shape 4 | Elitist | 429 | 429 | 433 | 438 | 0 | 22 |
4.2 | S-Shape 4 | Elitist | 512 | 512 | 564 | 515.74 | 0 | 25 |
4.3 | S-Shape 4 | Standard | 516 | 516 | 548 | 530.25 | 0 | 5.0 |
4.4 | S-Shape 4 | Elitist | 494 | 494 | 512 | 500.10 | 0 | 23 |
4.5 | S-Shape 4 | Elitist | 512 | 512 | 522 | 514.61 | 0 | 24 |
4.6 | S-Shape 4 | Elitist | 560 | 560 | 577 | 563.61 | 0 | 24 |
4.7 | S-Shape 4 | Elitist | 430 | 430 | 444 | 432.26 | 0 | 21 |
4.8 | S-Shape 4 | Elitist | 492 | 492 | 499 | 494.19 | 0 | 24 |
4.9 | S-Shape 2 | Standard | 641 | 641 | 664 | 652.16 | 0 | 95 |
4.10 | S-Shape 4 | Elitist | 514 | 514 | 525 | 517.19 | 0 | 22 |
5.1 | S-Shape 4 | Elitist | 253 | 253 | 262 | 256.74 | 0 | 24 |
5.2 | S-Shape 4 | Elitist | 302 | 302 | 324 | 308.39 | 0 | 27 |
5.3 | S-Shape 4 | Elitist | 226 | 226 | 231 | 227.32 | 0 | 24 |
5.4 | S-Shape 1 | Standard | 242 | 242 | 258 | 249.43 | 0 | 2.9 |
5.5 | S-Shape 1 | Standard | 211 | 211 | 239 | 223.13 | 0 | 2.5 |
5.6 | S-Shape 4 | Elitist | 213 | 213 | 223 | 213.90 | 0 | 23 |
5.7 | S-Shape 4 | Elitist | 293 | 293 | 308 | 295.03 | 0 | 24 |
5.8 | S-Shape 4 | Elitist | 288 | 288 | 295 | 289.90 | 0 | 26 |
5.9 | S-Shape 4 | Standard | 279 | 279 | 328 | 301.24 | 0 | 3.2 |
5.10 | S-Shape 4 | Elitist | 265 | 265 | 271 | 267.87 | 0 | 24 |
6.1 | S-Shape 4 | Elitist | 138 | 138 | 148 | 143.13 | 0 | 22 |
6.2 | S-Shape 4 | Elitist | 146 | 146 | 164 | 150.61 | 0 | 20 |
6.3 | S-Shape 4 | Elitist | 145 | 145 | 158 | 150.32 | 0 | 23 |
6.4 | S-Shape 1 | Standard | 131 | 131 | 144 | 138.34 | 0 | 2.4 |
6.5 | S-Shape 4 | Elitist | 161 | 161 | 175 | 167 | 0 | 23 |
a.1 | S-Shape 4 | Standard | 253 | 253 | 264 | 257.65 | 0 | 180 |
a.2 | S-Shape 4 | Elitist | 252 | 252 | 273 | 260.13 | 0 | 53 |
a.3 | S-Shape 4 | Elitist | 232 | 232 | 246 | 237.1 | 0 | 63 |
a.4 | S-Shape 2 | Standard | 234 | 234 | 249 | 240.06 | 0 | 170 |
a.5 | S-Shape 4 | Elitist | 236 | 236 | 242 | 273.74 | 0 | 55 |
b.1 | S-Shape 4 | Elitist | 69 | 69 | 77 | 72.97 | 0 | 49 |
b.2 | S-Shape 2 | Standard | 76 | 76 | 89 | 81.45 | 0 | 120 |
b.3 | S-Shape 1 | Standard | 80 | 80 | 98 | 86.99 | 0 | 8.9 |
b.4 | S-Shape 4 | Elitist | 79 | 79 | 87 | 8255 | 0 | 57 |
b.5 | S-Shape 1 | Standard | 72 | 72 | 87 | 78.92 | 0 | 5.8 |
c.1 | S-Shape 4 | Elitist | 227 | 227 | 241 | 232.77 | 0 | 96 |
c.2 | S-Shape 2 | Standard | 219 | 219 | 231 | 225.10 | 0 | 330 |
c.3 | S-Shape 4 | Elitist | 243 | 243 | 265 | 252.81 | 0 | 110 |
c.4 | S-Shape 4 | Elitist | 219 | 219 | 237 | 225.74 | 0 | 110 |
c.5 | V-Shape 3 | Elitist | 215 | 215 | 218 | 216.55 | 0 | 130 |
d.1 | S-Shape 4 | Elitist | 60 | 60 | 68 | 63 | 0 | 88 |
d.2 | S-Shape 4 | Elitist | 66 | 66 | 71 | 68.39 | 0 | 100 |
d.3 | S-Shape 4 | Elitist | 72 | 72 | 83 | 75.52 | 0 | 120 |
d.4 | S-Shape 4 | Elitist | 66 | 66 | 72 | 65.58 | 0 | 94 |
d.5 | S-Shape 4 | Elitist | 61 | 61 | 76 | 63.84 | 0 | 93 |
nre.1 | S-Shape 2 | Standard | 29 | 29 | 41 | 33.14 | 0 | 10.0 |
nre.2 | S-Shape 4 | Elitist | 30 | 31 | 39 | 33.55 | 0.033 | 160 |
nre.3 | S-Shape 4 | Elitist | 27 | 27 | 33 | 29.77 | 0 | 220 |
nre.4 | S-Shape 4 | Elitist | 28 | 28 | 35 | 30.81 | 0 | 150 |
nre.5 | S-Shape 4 | Elitist | 28 | 28 | 33 | 29.74 | 0 | 200 |
nrf.1 | S-Shape 4 | Elitist | 14 | 14 | 18 | 15.62 | 0 | 210 |
nrf.2 | S-Shape 4 | Elitist | 15 | 15 | 18 | 16.19 | 0 | 100 |
nrf.3 | S-Shape 4 | Elitist | 14 | 15 | 19 | 16.61 | 0.071 | 180 |
nrf.4 | S-Shape 4 | Elitist | 14 | 15 | 17 | 15.71 | 0.071 | 91 |
nrf.5 | S-Shape 4 | Elitist | 13 | 14 | 16 | 15 | 0.077 | 160 |
nrg.1 | S-Shape 4 | Elitist | 176 | 179 | 206 | 189.55 | 0.017 | 1100 |
nrg.2 | S-Shape 4 | Elitist | 154 | 160 | 187 | 166.23 | 0.039 | 1000 |
nrg.3 | S-Shape 4 | Elitist | 166 | 168 | 190 | 177.65 | 0.012 | 1200 |
nrg.4 | S-Shape 4 | Elitist | 168 | 175 | 189 | 180.74 | 0.042 | 1000 |
nrg.5 | S-Shape 4 | Elitist | 168 | 174 | 196 | 181.13 | 0.036 | 1000 |
nrh.1 | S-Shape 4 | Elitist | 63 | 71 | 83 | 74.19 | 0.127 | 560 |
nrh.2 | S-Shape 4 | Elitist | 63 | 67 | 86 | 73.48 | 0.063 | 1100 |
nrh.3 | S-Shape 4 | Elitist | 59 | 64 | 80 | 69.03 | 0.085 | 680 |
nrh.4 | S-Shape 4 | Elitist | 58 | 62 | 75 | 66.71 | 0.069 | 950 |
nrh.5 | S-Shape 4 | Elitist | 55 | 58 | 70 | 62.45 | 0.055 | 850 |
Appendix A.1.3. SCP—KMeans and DBscan
Ins. | BKS | MIN | MAX | AVG | RPD | TIME |
---|---|---|---|---|---|---|
4.1 | 429 | 429 | 430 | 430 | 0 | 47 |
4.2 | 512 | 513 | 522 | 515.84 | 0.002 | 30 |
4.3 | 516 | 516 | 526 | 520.61 | 0 | 32 |
4.4 | 494 | 495 | 505 | 498.87 | 0.002 | 30 |
4.5 | 512 | 514 | 522 | 514.90 | 0.003 | 30 |
4.6 | 560 | 560 | 565 | 562.35 | 0 | 33 |
4.7 | 430 | 430 | 434 | 432.26 | 0 | 27 |
4.8 | 492 | 493 | 499 | 496.13 | 0.002 | 30 |
4.9 | 641 | 645 | 666 | 657.90 | 0.006 | 33 |
4.10 | 514 | 516 | 526 | 519.9 | 0.003 | 28 |
5.1 | 253 | 253 | 259 | 255.74 | 0 | 30 |
5.2 | 302 | 308 | 312 | 309.81 | 0.019 | 36 |
5.3 | 226 | 228 | 230 | 228.68 | 0.008 | 29 |
5.4 | 242 | 242 | 244 | 242.23 | 0 | 31 |
5.5 | 211 | 211 | 214 | 212.03 | 0 | 26 |
5.6 | 213 | 213 | 219 | 215.10 | 0 | 28 |
5.7 | 293 | 293 | 301 | 297.68 | 0 | 30 |
5.8 | 288 | 288 | 295 | 290.35 | 0 | 31 |
5.9 | 279 | 279 | 281 | 280.52 | 0 | 31 |
5.10 | 265 | 267 | 271 | 268.77 | 0.007 | 31 |
6.1 | 138 | 140 | 145 | 142.90 | 0.014 | 14 |
6.2 | 146 | 146 | 151 | 148.87 | 0 | 14 |
6.3 | 145 | 147 | 151 | 148.16 | 0.013 | 15 |
6.4 | 131 | 131 | 135 | 131.68 | 0 | 18 |
6.5 | 161 | 163 | 168 | 164.68 | 0.012 | 29 |
a.1 | 253 | 254 | 257 | 255.55 | 0.004 | 71 |
a.2 | 252 | 257 | 262 | 259.48 | 0.019 | 68 |
a.3 | 232 | 235 | 240 | 237.10 | 0.012 | 71 |
a.4 | 234 | 235 | 244 | 237.39 | 0.004 | 66 |
a.5 | 236 | 236 | 238 | 237.06 | 0 | 71 |
b.1 | 69 | 74 | 80 | 79.61 | 0.072 | 13 |
b.2 | 76 | 83 | 93 | 90.03 | 0.092 | 14 |
b.3 | 80 | 84 | 89 | 88.55 | 0.050 | 14 |
b.4 | 79 | 84 | 89 | 87.90 | 0.063 | 15 |
b.5 | 72 | 72 | 79 | 77.68 | 0 | 13 |
c.1 | 227 | 228 | 233 | 230.29 | 0.004 | 130 |
c.2 | 219 | 220 | 226 | 222.71 | 0.004 | 94 |
c.3 | 243 | 254 | 260 | 256.68 | 0.045 | 110 |
c.4 | 219 | 225 | 232 | 227.97 | 0.027 | 90 |
c.5 | 215 | 215 | 218 | 216.35 | 0 | 140 |
d.1 | 60 | 66 | 66 | 66 | 0.100 | 24 |
d.2 | 66 | 71 | 71 | 71 | 0.075 | 26 |
d.3 | 72 | 82 | 82 | 82 | 0.138 | 27 |
d.4 | 62 | 67 | 67 | 67 | 0.080 | 24 |
d.5 | 61 | 66 | 66 | 66 | 0.082 | 24 |
nre.1 | 29 | 30 | 30 | 30 | 0.034 | 41 |
nre.2 | 30 | 34 | 34 | 34 | 0.133 | 41 |
nre.3 | 27 | 34 | 34 | 34 | 0.259 | 38 |
nre.4 | 28 | 33 | 33 | 33 | 0.179 | 47 |
nre.5 | 28 | 30 | 30 | 30 | 0.071 | 43 |
nrf.1 | 14 | 17 | 17 | 17 | 0.214 | 43 |
nrf.2 | 15 | 18 | 18 | 18 | 0.200 | 40 |
nrf.3 | 14 | 19 | 19 | 19 | 0.357 | 49 |
nrf.4 | 14 | 18 | 18 | 18 | 0.286 | 37 |
nrf.5 | 13 | 16 | 16 | 16 | 0.231 | 37 |
nrg.1 | 176 | 197 | 197 | 197 | 0.119 | 170 |
nrg.2 | 154 | 168 | 168 | 168 | 0.091 | 150 |
nrg.3 | 166 | 183 | 183 | 183 | 0.102 | 160 |
nrg.4 | 168 | 186 | 186 | 186 | 0.107 | 160 |
nrg.5 | 168 | 186 | 186 | 186 | 0.107 | 170 |
nrh.1 | 63 | 77 | 77 | 77 | 0.222 | 340 |
nrh.2 | 63 | 71 | 71 | 71 | 0.127 | 330 |
nrh.3 | 59 | 69 | 69 | 69 | 0.169 | 330 |
nrh.4 | 58 | 68 | 68 | 68 | 0.172 | 330 |
nrh.5 | 55 | 61 | 61 | 61 | 0.109 | 320 |
Ins. | BKS | MIN | MAX | AVG | RPD | TIME |
---|---|---|---|---|---|---|
4.1 | 429 | 429 | 432 | 430.38 | 0 | 3700 |
4.2 | 512 | 512 | 526 | 514.77 | 0 | 2400 |
4.3 | 516 | 516 | 533 | 518.87 | 0 | 2600 |
4.4 | 494 | 494 | 500 | 496.10 | 0 | 2400 |
4.5 | 512 | 512 | 514 | 513.23 | 0 | 2300 |
4.6 | 560 | 560 | 564 | 560.19 | 0 | 2500 |
4.7 | 430 | 430 | 435 | 430.81 | 0 | 7300 |
4.8 | 492 | 492 | 503 | 494.10 | 0 | 3900 |
4.9 | 641 | 641 | 658 | 647.50 | 0 | 4600 |
4.10 | 514 | 514 | 518 | 515.81 | 0 | 3900 |
5.1 | 253 | 253 | 258 | 255.52 | 0 | 4100 |
5.2 | 302 | 302 | 314 | 306.68 | 0 | 4500 |
5.3 | 226 | 226 | 229 | 227.32 | 0 | 3600 |
5.4 | 242 | 242 | 245 | 243.29 | 0 | 4100 |
5.5 | 211 | 211 | 218 | 213.90 | 0 | 3400 |
5.6 | 213 | 213 | 214 | 213.04 | 0 | 3700 |
5.7 | 293 | 293 | 300 | 295.35 | 0 | 4000 |
5.8 | 288 | 288 | 300 | 290.39 | 0 | 4300 |
5.9 | 279 | 279 | 280 | 279.90 | 0 | 3800 |
5.10 | 265 | 265 | 271 | 267.97 | 0 | 4300 |
6.1 | 138 | 140 | 147 | 143.42 | 0.014 | 2500 |
6.2 | 146 | 146 | 155 | 149.71 | 0 | 2900 |
6.3 | 145 | 145 | 154 | 149.65 | 0 | 2700 |
6.4 | 131 | 131 | 135 | 133.03 | 0 | 2400 |
6.5 | 161 | 162 | 169 | 165.39 | 0.006 | 2900 |
a.1 | 253 | 254 | 259 | 256 | 0.004 | 17,000 |
a.2 | 252 | 256 | 265 | 260.65 | 0.015 | 18,000 |
a.3 | 232 | 233 | 245 | 237.35 | 0.004 | 17,000 |
a.4 | 234 | 236 | 245 | 239.97 | 0.008 | 16,000 |
a.5 | 236 | 236 | 240 | 237.52 | 0 | 17,000 |
b.1 | 69 | 69 | 85 | 76.48 | 0 | 15,000 |
b.2 | 76 | 81 | 94 | 86.81 | 0.065 | 16,000 |
b.3 | 80 | 82 | 99 | 88.81 | 0.025 | 20,000 |
b.4 | 79 | 83 | 99 | 88.16 | 0.050 | 24,000 |
b.5 | 72 | 78 | 77 | 76.03 | 0.083 | 16,000 |
c.1 | 227 | 233 | 247 | 238.77 | 0.026 | 27,000 |
c.2 | 219 | 226 | 244 | 232.74 | 0.032 | 28,000 |
c.3 | 243 | 253 | 279 | 264 | 0.041 | 28,000 |
c.4 | 219 | 224 | 244 | 233.10 | 0.022 | 26,000 |
c.5 | 215 | 222 | 241 | 230.42 | 0.032 | 26,000 |
d.1 | 60 | 68 | 90 | 79.65 | 0.133 | 130,000 |
d.2 | 66 | 73 | 105 | 89.71 | 0.106 | 150,000 |
d.3 | 72 | 82 | 125 | 100.84 | 0.138 | 160,000 |
d.4 | 62 | 70 | 96 | 81.74 | 0.129 | 130,000 |
d.5 | 61 | 72 | 91 | 81.29 | 0.180 | 120,000 |
nre.1 | 29 | 70 | 103 | 80.03 | 1.413 | 260,000 |
nre.2 | 30 | 83 | 205 | 128.32 | 1.766 | 420,000 |
nre.3 | 27 | 74 | 152 | 112.35 | 1.740 | 350,000 |
nre.4 | 28 | 83 | 799 | 177.45 | 1.964 | 390,000 |
nre.5 | 28 | 92 | 813 | 150.52 | 2.285 | 490,000 |
nrf.1 | 14 | 372 | 508 | 444.19 | 25.571 | 250,000 |
nrf.2 | 15 | 74 | 468 | 404.58 | 3.933 | 210,000 |
nrf.3 | 14 | 335 | 551 | 487.25 | 22.928 | 240,000 |
nrf.4 | 14 | 52 | 493 | 420.52 | 2.714 | 190,000 |
nrf.5 | 13 | 65 | 416 | 371.03 | 4 | 170,000 |
nrg.1 | 176 | 287 | 436 | 385.13 | 0.630 | 230,000 |
nrg.2 | 154 | 208 | 327 | 284.29 | 0.350 | 220,000 |
nrg.3 | 166 | 211 | 417 | 347.23 | 0.271 | 240,000 |
nrg.4 | 168 | 250 | 402 | 345.77 | 0.488 | 220,000 |
nrg.5 | 168 | 230 | 398 | 353.97 | 0.369 | 240,000 |
nrh.1 | 63 | t.o. | t.o. | t.o. | t.o. | t.o. |
nrh.2 | 63 | t.o. | t.o. | t.o. | t.o. | t.o. |
nrh.3 | 59 | t.o. | t.o. | t.o. | t.o. | t.o. |
nrh.4 | 58 | t.o. | t.o. | t.o. | t.o. | t.o. |
nrh.5 | 55 | t.o. | t.o. | t.o. | t.o. | t.o. |
Appendix A.2. 0/1 Knapsack Problem Results
Appendix A.2.1. KP—Crow Search Algorithm
Instance | BKS | S1+Stand. | S1+Comp. | S1+Static | S1+Elitist | KMeans | DBscan | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAX | AVG | MAX | AVG | MAX | AVG | MAX | AVG | MAX | AVG | MAX | AVG | ||
f1 | 295 | 287 | 276.12 | 279 | 267.21 | 290 | 287.32 | 256 | 222.81 | 290 | 286.32 | 294 | 292 |
f2 | 1024 | 789 | 771.23 | 729 | 652.87 | 782.01 | 719.08 | 756 | 701.33 | 895 | 987.23 | 880 | 829.87 |
f3 | 35 | 34 | 34 | 35 | 35 | 34 | 34 | 35 | 35 | 35 | 35 | 35 | 35 |
f4 | 23 | 23 | 23 | 20 | 20 | 22 | 21.50 | 23 | 22.50 | 23 | 23 | 23 | 23 |
f5 | 481.06 | 327.15 | 310.14 | 300.47 | 276.34 | 312.23 | 309.93 | 299.76 | 280.80 | 377.07 | 354.65 | 436.82 | 412.19 |
f6 | 52 | 50 | 50 | 49 | 48.45 | 51 | 50.50 | 43 | 43 | 51 | 50.23 | 52 | 52 |
f7 | 107 | 100 | 94.23 | 90 | 85.32 | 99 | 97.43 | 105 | 90.32 | 107 | 107 | 107 | 107 |
f8 | 9767 | 8743 | 7843.32 | 8943 | 7332.05 | 9321 | 8883.45 | 6983 | 5574.45 | 5377 | 5377.54 | 5377 | 5262.35 |
f9 | 130 | 129 | 129 | 130 | 130 | 128 | 127.50 | 129 | 128.50 | 130 | 130 | 130 | 130 |
f10 | 1025 | 973 | 965.04 | 789 | 734.55 | 723 | 712.66 | 832 | 799.12 | 973 | 969.52 | 804 | 749.39 |
AVG | 1293.91 | 1145.52 | 1049.61 | 1136.45 | 958.18 | 1176.22 | 1124.34 | 946.185 | 789.78 | 825.81 | 832.05 | 813.88 | 789.28 |
Instance | BKS | S2+Stand. | S2+Comp. | S2+Static | S2+Elitist | KMeans | DBscan | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAX | AVG | MAX | AVG | MAX | AVG | MAX | AVG | MAX | AVG | MAX | AVG | ||
f1 | 295 | 234 | 222.03 | 189 | 176.29 | 162 | 150.32 | 178 | 168.20 | 290 | 286.32 | 294 | 292 |
f2 | 1024 | 900 | 850 | 732 | 699.81 | 823 | 800.10 | 809 | 771.25 | 895 | 987.23 | 880 | 829.87 |
f3 | 35 | 33 | 31.75 | 19 | 17.33 | 23 | 20.67 | 24 | 22.24 | 35 | 35 | 35 | 35 |
f4 | 23 | 21 | 19.34 | 18 | 13.38 | 18 | 16.25 | 17 | 16.50 | 23 | 23 | 23 | 23 |
f5 | 481.06 | 223.32 | 201.10 | 199.97 | 189.71 | 254.09 | 250.12 | 301.01 | 276.87 | 377.07 | 354.65 | 436.82 | 412.19 |
f6 | 52 | 51 | 49.23 | 50 | 47.66 | 50 | 49.50 | 42 | 40.01 | 51 | 50.23 | 52 | 52 |
f7 | 107 | 102 | 100.45 | 99 | 98.45 | 83 | 78.33 | 97 | 93.45 | 107 | 107 | 107 | 107 |
f8 | 9767 | 8231 | 7822.78 | 6432 | 5993.33 | 6982 | 6777.89 | 7014 | 6897.21 | 5377 | 5377.54 | 5377 | 5262.35 |
f9 | 130 | 102 | 98.76 | 95 | 93.34 | 89 | 85.25 | 102 | 97.33 | 130 | 130 | 130 | 130 |
f10 | 1025 | 865 | 763.67 | 701 | 678.88 | 799 | 740.01 | 732 | 699.65 | 973 | 969.52 | 804 | 749.39 |
AVG | 1293.91 | 1076.23 | 1015.91 | 853.49 | 800.82 | 928.31 | 896.84 | 931.60 | 908.27 | 825.81 | 832.05 | 813.88 | 789.28 |
Instance | BKS | S3+Stand. | S3+Comp. | S3+Static | S3+Elitist | KMeans | DBscan | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAX | AVG | MAX | AVG | MAX | AVG | MAX | AVG | MAX | AVG | MAX | AVG | ||
f1 | 295 | 289 | 245.33 | 282 | 254.33 | 276 | 232.76 | 281 | 276.34 | 290 | 286.32 | 294 | 292 |
f2 | 1024 | 991 | 937.35 | 934 | 900.45 | 876 | 835.25 | 766 | 750.66 | 895 | 987.23 | 880 | 829.87 |
f3 | 35 | 35 | 33.45 | 33 | 33 | 34 | 34.50 | 35 | 35 | 35 | 35 | 35 | 35 |
f4 | 23 | 22 | 20.75 | 21 | 20.33 | 23 | 22.50 | 23 | 23 | 23 | 23 | 23 | 23 |
f5 | 481.06 | 423.05 | 402.23 | 333.45 | 330.45 | 299.22 | 272.55 | 317.65 | 309.25 | 377.07 | 354.65 | 436.82 | 412.19 |
f6 | 52 | 49 | 48.23 | 50 | 47.33 | 47 | 44.35 | 51 | 48.66 | 51 | 50.23 | 52 | 52 |
f7 | 107 | 102 | 100.11 | 98 | 89.34 | 103 | 97.23 | 88 | 77.21 | 107 | 107 | 107 | 107 |
f8 | 9767 | 8653 | 8432.20 | 8933 | 8739.66 | 9001 | 8990.78 | 9112 | 9004.89 | 5377 | 5377.54 | 5377 | 5262.35 |
f9 | 130 | 111 | 101.10 | 116 | 109.47 | 127 | 119.39 | 121 | 118.33 | 130 | 130 | 130 | 130 |
f10 | 1025 | 970 | 960.05 | 897 | 865.87 | 749 | 718.88 | 969 | 939.24 | 973 | 969.52 | 804 | 749.39 |
AVG | 1293.91 | 1164.51 | 1128.06 | 1169.75 | 1139.02 | 1153.52 | 1136.82 | 1176.37 | 1158.26 | 825.81 | 832.05 | 813.88 | 789.28 |
Instance | BKS | S4+Stand. | S4+Comp. | S4+Static | S4+Elitist | KMeans | DBscan | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAX | AVG | MAX | AVG | MAX | AVG | MAX | AVG | MAX | AVG | MAX | AVG | ||
f1 | 295 | 276 | 256.22 | 273 | 242.31 | 222 | 218.23 | 250 | 245.66 | 290 | 286.32 | 294 | 292 |
f2 | 1024 | 990 | 934.75 | 943 | 913.13 | 893 | 833.90 | 881 | 843.29 | 895 | 987.23 | 880 | 829.87 |
f3 | 35 | 29 | 28.48 | 27 | 22.98 | 30 | 28.45 | 29 | 26.70 | 35 | 35 | 35 | 35 |
f4 | 23 | 21 | 19.20 | 22 | 20.70 | 13 | 11.18 | 19 | 17.26 | 23 | 23 | 23 | 23 |
f5 | 481.06 | 413.31 | 400.23 | 388.69 | 377.09 | 410.54 | 399.78 | 354.76 | 326.87 | 377.07 | 354.65 | 436.82 | 412.19 |
f6 | 52 | 42 | 38.48 | 49 | 45.09 | 51 | 50.17 | 52 | 52 | 51 | 50.23 | 52 | 52 |
f7 | 107 | 106 | 105.45 | 98 | 79 | 93 | 92.50 | 88 | 73.19 | 107 | 107 | 107 | 107 |
f8 | 9767 | 7823 | 7698.12 | 7901 | 7406.21 | 8432 | 8023.36 | 9301 | 9000.98 | 5377 | 5377.54 | 5377 | 5262.35 |
f9 | 130 | 123 | 109.33 | 114 | 110.20 | 126 | 112.33 | 101 | 110.34 | 130 | 130 | 130 | 130 |
f10 | 1025 | 872 | 762.98 | 899 | 843.21 | 901 | 862.23 | 962 | 943.32 | 973 | 969.52 | 804 | 749.39 |
AVG | 1293.91 | 1069.53 | 1035.32 | 1071.46 | 1005.99 | 1117.15 | 1063.21 | 1203.77 | 1163.96 | 825.81 | 832.05 | 813.88 | 789.28 |
Instance | BKS | V1+Stand. | V1+Comp. | V1+Static | V1+Elitist | KMeans | DBscan | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | ||
f1 | 295 | 222 | 210.12 | 212 | 199.33 | 203 | 193.45 | 208 | 193.66 | 290 | 286.32 | 294 | 292 |
f2 | 1024 | 777 | 732.23 | 789 | 745.10 | 798 | 755.33 | 801 | 790.65 | 895 | 987.23 | 880 | 829.87 |
f3 | 35 | 35 | 33.33 | 32 | 29.67 | 31 | 29.22 | 34 | 33.50 | 35 | 35 | 35 | 35 |
f4 | 23 | 23 | 23 | 23 | 22.50 | 22 | 20.50 | 19 | 17.66 | 23 | 23 | 23 | 23 |
f5 | 481.06 | 399.98 | 369.09 | 382.67 | 342.65 | 376.33 | 323.66 | 381.23 | 379.48 | 377.07 | 354.65 | 436.82 | 412.19 |
f6 | 52 | 49 | 48.23 | 50 | 49.32 | 51 | 50.50 | 47 | 46.33 | 51 | 50.23 | 52 | 52 |
f7 | 107 | 99 | 98.23 | 90 | 80.33 | 95 | 93.33 | 100 | 99.55 | 107 | 107 | 107 | 107 |
f8 | 9767 | 8010 | 7988.77 | 9343 | 9123.32 | 8990 | 8600.45 | 9734 | 9456.25 | 5377 | 5377.54 | 5377 | 5262.35 |
f9 | 130 | 121 | 120.33 | 119 | 118.50 | 128 | 125.77 | 130 | 130 | 130 | 130 | 130 | 130 |
f10 | 1025 | 970 | 967.23 | 955 | 943.32 | 961 | 933.89 | 896 | 869.08 | 973 | 969.52 | 804 | 749.39 |
AVG | 1293.91 | 1070.59 | 1059.06 | 1199.57 | 1165.40 | 1165.53 | 1112.61 | 1235.02 | 1201.62 | 825.81 | 832.05 | 813.88 | 789.28 |
Instance | BKS | V2+Stand. | V2+Comp. | V2+Static | V2+Elitist | KMeans | DBscan | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAX | AVG | MAX | AVG | MAX | AVG | MAX | AVG | MAX | AVG | MAX | AVG | ||
f1 | 295 | 295 | 294.14 | 294 | 293.41 | 229 | 219.47 | 286 | 278.88 | 290 | 286.32 | 294 | 292 |
f2 | 1024 | 990 | 985.66 | 987 | 866.62 | 798 | 774.44 | 888 | 8500.99 | 895 | 987.23 | 880 | 829.87 |
f3 | 35 | 33 | 32.45 | 35 | 35 | 25 | 22.66 | 29 | 28.33 | 35 | 35 | 35 | 35 |
f4 | 23 | 23 | 23 | 21 | 20.66 | 23 | 23 | 20 | 18.05 | 23 | 23 | 23 | 23 |
f5 | 481.06 | 288.54 | 240.11 | 301.78 | 252.56 | 297.23 | 283.11 | 334.98 | 319.56 | 377.07 | 354.65 | 436.82 | 412.19 |
f6 | 52 | 47 | 45.87 | 50 | 48.59 | 52 | 51.50 | 37 | 33.87 | 51 | 50.23 | 52 | 52 |
f7 | 107 | 87 | 86.23 | 100 | 100.76 | 99 | 87.78 | 96 | 96.06 | 107 | 107 | 107 | 107 |
f8 | 9767 | 6538 | 6234.90 | 6234 | 6002.76 | 5372 | 5008.66 | 500.986 | 4990.87 | 5377 | 5377.54 | 5377 | 5262.35 |
f9 | 130 | 129 | 127.77 | 126 | 126.76 | 101 | 109.87 | 101 | 99.7651 | 130 | 130 | 130 | 130 |
f10 | 1025 | 972 | 962.01 | 811 | 800.17 | 901 | 900.12 | 914 | 907.98 | 973 | 969.52 | 804 | 749.39 |
AVG | 1293.91 | 940.25 | 903.22 | 895.97 | 854.73 | 789.72 | 748.06 | 320.69 | 1617.22 | 825.81 | 832.05 | 813.88 | 789.28 |
Instance | BKS | V3+Stand. | V3+Comp. | V3+Static | V3+Elitist | KMeans | DBscan | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAX | AVG | MAX | AVG | MAX | AVG | MAX | AVG | MAX | AVG | MAX | AVG | ||
f1 | 295 | 287 | 264.78 | 279 | 255.55 | 190 | 181.21 | 257 | 231.84 | 290 | 286.32 | 294 | 292 |
f2 | 1024 | 787 | 754.33 | 888 | 854.25 | 901 | 890.50 | 954 | 927.99 | 895 | 987.23 | 880 | 829.87 |
f3 | 35 | 35 | 34.50 | 35 | 35 | 35 | 33.25 | 34 | 33.50 | 35 | 35 | 35 | 35 |
f4 | 23 | 23 | 23 | 23 | 20.33 | 20 | 17.45 | 23 | 24.25 | 23 | 23 | 23 | 23 |
f5 | 481.06 | 214.32 | 200.21 | 398.35 | 345.32 | 401.39 | 395.75 | 436.29 | 426.35 | 377.07 | 354.65 | 436.82 | 412.19 |
f6 | 52 | 51 | 48.25 | 51 | 43.33 | 37 | 36.87 | 48 | 45.50 | 51 | 50.23 | 52 | 52 |
f7 | 107 | 107 | 100.55 | 107 | 99.10 | 106 | 103.98 | 104 | 100.66 | 107 | 107 | 107 | 107 |
f8 | 9767 | 9701 | 9688.40 | 8997 | 8787.23 | 9565 | 9333.88 | 9487 | 9221.91 | 5377 | 5377.54 | 5377 | 5262.35 |
f9 | 130 | 130 | 126.67 | 129 | 129.33 | 129 | 128.50 | 130 | 130 | 130 | 130 | 130 | 130 |
f10 | 1025 | 971 | 965.10 | 970 | 969.22 | 971 | 966.32 | 899 | 890.78 | 973 | 969.52 | 804 | 749.39 |
AVG | 1293.91 | 1230.63 | 1220.57 | 1187.74 | 1153.86 | 1235.54 | 1208.77 | 1237.23 | 1203.28 | 825.81 | 832.05 | 813.88 | 789.28 |
Instance | BKS | V4+Stand. | V4+Comp. | V4+Static | V4+Elitist | KMeans | DBscan | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAX | AVG | MAX | AVG | MAX | AVG | MAX | AVG | MAX | AVG | MAX | AVG | ||
f1 | 295 | 222 | 210.58 | 284 | 264.58 | 290 | 289.98 | 278 | 266.66 | 290 | 286.32 | 294 | 292 |
f2 | 1024 | 990 | 987.21 | 988 | 980.21 | 850 | 876.58 | 884 | 821.12 | 895 | 987.23 | 880 | 829.87 |
f3 | 35 | 35 | 35 | 35 | 34.50 | 34 | 33.25 | 35 | 34.58 | 35 | 35 | 35 | 35 |
f4 | 23 | 22 | 20.33 | 24 | 23.09 | 23 | 23.56 | 23 | 24.50 | 23 | 23 | 23 | 23 |
f5 | 481.06 | 410.25 | 408.84 | 378.99 | 368.29 | 413.39 | 410.14 | 399.36 | 387.41 | 377.07 | 354.65 | 436.82 | 412.19 |
f6 | 52 | 52 | 50.21 | 52 | 50.65 | 50 | 47.99 | 52 | 52 | 51 | 50.23 | 52 | 52 |
f7 | 107 | 107 | 106.50 | 107 | 105.82 | 100 | 98.47 | 107 | 107 | 107 | 107 | 107 | 107 |
f8 | 9767 | 7888 | 7784.57 | 8745 | 8654.25 | 8932 | 8774.77 | 6544 | 6533.63 | 5377 | 5377.54 | 5377 | 5262.35 |
f9 | 130 | 129 | 121.69 | 130 | 127.87 | 119 | 110.77 | 128 | 126.33 | 130 | 130 | 130 | 130 |
f10 | 1025 | 874 | 865.22 | 855 | 850.26 | 847 | 835.66 | 701 | 699.50 | 973 | 969.52 | 804 | 749.39 |
AVG | 1293.91 | 1072.92 | 1059.02 | 1159.89 | 1145.95 | 1165.83 | 1150.12 | 915.13 | 905.27 | 825.81 | 832.05 | 813.88 | 789.28 |
Appendix A.2.2. KP—Two-Steps
Instance | Step 1 | Step 2 | BKS | MIN | MAX | AVG | RPD | TIME |
---|---|---|---|---|---|---|---|---|
f1 | vShape 2 | Standard | 295 | 287 | 295 | 294.14 | 0 | 4.35 |
f2 | sShape3 | Standard | 1024 | 821 | 991 | 937.35 | 0.032 | 4.35 |
f3 | sShape3 | elitist | 35 | 35 | 35 | 35 | 0 | 4.35 |
f4 | sShape3 | elitist | 23 | 23 | 23 | 23 | 0 | 0.2 |
f5 | vShape 3 | elitist | 481.06 | 413.36 | 436.29 | 426.35 | 0.093 | 0.19 |
f6 | vShape4 | elitist | 52 | 52 | 52 | 52 | 0 | 0.07 |
f7 | vShape4 | elitist | 107 | 105 | 107 | 106 | 0 | 0.48 |
f8 | vShape1 | elitist | 9767 | 8754 | 9734 | 9456.25 | 0.003 | 2.6 |
f9 | vShape1 | elitist | 130 | 130 | 130 | 130 | 0 | 0.1 |
f10 | sShape1 | Standard | 1025 | 954 | 973 | 965.04 | 0.051 | 1.2 |
Appendix A.2.3. KP—KMeans and DBscan
Instance | BKS | MIN | MAX | AVG | RPD | TIME |
---|---|---|---|---|---|---|
f1 | 295 | 274 | 290 | 286.32 | 0.017 | 0.27 |
f2 | 1024 | 745 | 895 | 987.23 | 0.126 | 0.39 |
f3 | 35 | 35 | 35 | 35 | 0 | 0.25 |
f4 | 23 | 23 | 23 | 23 | 0 | 0.28 |
f5 | 481.06 | 347 | 377.07 | 354.65 | 0.216 | 0.32 |
f6 | 52 | 49 | 51 | 50.23 | 0.019 | 0.29 |
f7 | 107 | 107 | 107 | 107 | 0 | 0.27 |
f8 | 9767 | 4398 | 5377 | 5073.54 | 0.449 | 0.25 |
f9 | 130 | 130 | 130 | 130 | 0 | 0.26 |
f10 | 1025 | 953 | 973 | 969.52 | 0.051 | 0.40 |
Instance | BKS | MIN | MAX | AVG | RPD | TIME |
---|---|---|---|---|---|---|
f1 | 295 | 290 | 294 | 292 | 0.003 | 580 |
f2 | 1024 | 778 | 880 | 829.87 | 0.141 | 170 |
f3 | 35 | 35 | 35 | 35 | 0 | 0.22 |
f4 | 23 | 23 | 23 | 23 | 0 | 0.23 |
f5 | 481.06 | 387.55 | 436.82 | 412.19 | 0.092 | 140 |
f6 | 52 | 52 | 52 | 52 | 0 | 0.97 |
f7 | 107 | 107 | 107 | 107 | 0 | 0.23 |
f8 | 9767 | 5147 | 5377 | 5262.35 | 0.449 | 0.23 |
f9 | 130 | 130 | 130 | 130 | 0 | 0.26 |
f10 | 1025 | 694 | 804 | 749.39 | 0.216 | 1.6 |
References
- Valdivia, S.; Crawford, B.; Soto, R.; Lemus-Romani, J.; Astorga, G.; Misra, S.; Salas-Fernández, A.; Rubio, J.M. Bridges Reinforcement Through Conversion of Tied-Arch Using Crow Search Algorithm. In Computational Science and Its Applications—ICCSA 2019; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 525–535. [Google Scholar] [CrossRef]
- Apostolopoulos, T.; Vlachos, A. Application of the Firefly Algorithm for Solving the Economic Emissions Load Dispatch Problem. Int. J. Comb. 2011, 2011, 523806. [Google Scholar] [CrossRef] [Green Version]
- Toregas, C.; Swain, R.; ReVelle, C.; Bergman, L. The Location of Emergency Service Facilities. Oper. Res. 1971, 19, 1363–1373. [Google Scholar] [CrossRef]
- Fu, C.; Cheng, S.; Yi, Y. Dynamic Control of Product Innovation, Advertising Effort, and Strategic Transfer-Pricing in a Marketing-Operations Interface. Math. Probl. Eng. 2019, 2019, 8418260. [Google Scholar] [CrossRef]
- Talukder, A.; Alam, M.G.R.; Tran, N.H.; Niyato, D.; Hong, C.S. Knapsack-Based Reverse Influence Maximization for Target Marketing in Social Networks. IEEE Access 2019, 7, 44182–44198. [Google Scholar] [CrossRef]
- De Haan, R.; Szeider, S. A Compendium of Parameterized Problems at Higher Levels of the Polynomial Hierarchy. Algorithms 2019, 12, 188. [Google Scholar] [CrossRef] [Green Version]
- Torres-Jiménez, J.; Pavón, J. Applications of metaheuristics in real-life problems. Prog. Artif. Intell. 2014, 2, 175–176. [Google Scholar] [CrossRef]
- Soto, R.; Crawford, B.; Olivares, R.; Galleguillos, C.; Castro, C.; Johnson, F.; Paredes, F.; Norero, E. Using autonomous search for solving constraint satisfaction problems via new modern approaches. Swarm Evol. Comput. 2016, 30, 64–77. [Google Scholar] [CrossRef]
- Tzanetos, A.; Fister, I.; Dounias, G. A comprehensive database of Nature-Inspired Algorithms. Data Brief 2020, 31, 105792. [Google Scholar] [CrossRef] [PubMed]
- Crawford, B.; Soto, R.; Astorga, G.; García, J.; Castro, C.; Paredes, F. Putting Continuous Metaheuristics to Work in Binary Search Spaces. Complexity 2017, 2017, 8404231. [Google Scholar] [CrossRef] [Green Version]
- Hernández, L.; Baladrón, C.; Aguiar, J.; Carro, B.; Sánchez-Esguevillas, A. Classification and Clustering of Electricity Demand Patterns in Industrial Parks. Energies 2012, 5, 5215–5228. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Song, K.; Wei, G.; Lu, R.; Zhu, C. A Novel Grouping Method for Lithium Iron Phosphate Batteries Based on a Fractional Joint Kalman Filter and a New Modified K-Means Clustering Algorithm. Energies 2015, 8, 7703–7728. [Google Scholar] [CrossRef] [Green Version]
- García, J.; Moraga, P.; Valenzuela, M.; Crawford, B.; Soto, R.; Pinto, H.; Peña, A.; Altimiras, F.; Astorga, G. A Db-Scan Binarization Algorithm Applied to Matrix Covering Problems. Comput. Intell. Neurosci. 2019, 2019, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García, J.; Yepes, V.; Martí, J.V. A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem. Mathematics 2020, 8, 555. [Google Scholar] [CrossRef]
- Askarzadeh, A. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Comput. Struct. 2016, 169, 1–12. [Google Scholar] [CrossRef]
- Creswell, J. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches; Sage: Thousand Oaks, CA, USA, 2013. [Google Scholar]
- Talbi, E.G. Metaheuristics: From Design to Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Caprara, A.; Fischetti, M.; Toth, P. A Heuristic Method for the Set Covering Problem. Oper. Res. 1999, 47, 730–743. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.Q.; Chen, X.; Zhou, G. An Improved Monkey Algorithm for a 0-1 Knapsack Problem. Appl. Soft Comput. 2015, 38. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, J.; Eberhart, R.C. A discrete binary version of the particle swarm algorithm. In Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics, Computational Cybernetics and Simulation, Orlando, FL, USA, 12–15 October 1997; Volume 5, pp. 4104–4108. [Google Scholar]
- Yang, Y.; Mao, Y.; Yang, P.; Jiang, Y. The unit commitment problem based on an improved firefly and particle swarm optimization hybrid algorithm. In Proceedings of the 2013 Chinese Automation Congress, Changsha, China, 7–8 November 2013; pp. 718–722. [Google Scholar] [CrossRef]
- Crawford, B.; Soto, R.; Olivares-Suarez, M.; Palma, W.; Paredes, F.; Olguin, E.; Norero, E. A Binary Coded Firefly Algorithm that Solves the Set Covering Problem. Rom. J. Inf. Sci. Technol. 2014, 17, 252–264. [Google Scholar]
- Song, H.; Triguero, I.; Özcan, E. A review on the self and dual interactions between machine learning and optimisation. Prog. Artif. Intell. 2019, 8, 143–165. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.C.; Cuevas Juarez, J.R. A self-adaptive virus optimization algorithm for continuous optimization problems. Soft Comput. 2020. [Google Scholar] [CrossRef]
- Lobo, F.G.; Lima, C.F.; Michalewicz, Z. (Eds.) Parameter Setting in Evolutionary Algorithms; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Li, Y.; Yao, X. A Survey of Automatic Parameter Tuning Methods for Metaheuristics. IEEE Trans. Evol. Comput. 2020, 24, 201–216. [Google Scholar] [CrossRef]
- Dobslaw, F. A Parameter-Tuning Framework For Metaheuristics Based on Design of Experiments and Artificial Neural Networks. In Proceedings of the International Conference on Computer Mathematics and Natural Computing, Rome, Italy, 28 April 2010. [Google Scholar] [CrossRef]
- Battiti, R.; Brunato, M. Reactive Search Optimization: Learning While Optimizing. In Handbook of Metaheuristics; Springer: Boston, MA, USA, 2010; pp. 543–571. [Google Scholar] [CrossRef] [Green Version]
- Ong, P.; Zainuddin, Z. Optimizing wavelet neural networks using modified cuckoo search for multi-step ahead chaotic time series prediction. Appl. Soft. Comput. 2019, 80, 374–386. [Google Scholar] [CrossRef]
- Regis, R.G. Evolutionary Programming for High-Dimensional Constrained Expensive Black-Box Optimization Using Radial Basis Functions. IEEE Trans. Evol. Comput. 2014, 18, 326–347. [Google Scholar] [CrossRef]
- Dalboni, F.; Drummond, L.M.A.; Ochi, L.S. On Improving Evolutionary Algorithms by Using Data Mining for the Oil Collector Vehicle Routing Problem. In Proceedings of the International Network Optimization Conference, Evry, France, 27–29 October 2003. [Google Scholar]
- Senjyu, T.; Saber, A.; Miyagi, T.; Shimabukuro, K.; Urasaki, N.; Funabashi, T. Fast technique for unit commitment by genetic algorithm based on unit clustering. IEE Proc.-Gener. Transm. Distrib. 2005, 152, 705–713. [Google Scholar] [CrossRef]
- Lee, C.; Gen, M.; Kuo, W. Reliability optimization design using a hybridized genetic algorithm with a neural-network technique. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2001, 84, 627–637. [Google Scholar]
- Luan, F.; Cai, Z.; Wu, S.; Liu, S.Q.; He, Y. Optimizing the Low-Carbon Flexible Job Shop Scheduling Problem with Discrete Whale Optimization Algorithm. Mathematics 2019, 7, 688. [Google Scholar] [CrossRef] [Green Version]
- Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M.A. Multi-Sequence LSTM-RNN Deep Learning and Metaheuristics for Electric Load Forecasting. Energies 2020, 13, 391. [Google Scholar] [CrossRef] [Green Version]
- Cicceri, G.; Inserra, G.; Limosani, M. A Machine Learning Approach to Forecast Economic Recessions—An Italian Case Study. Mathematics 2020, 8, 241. [Google Scholar] [CrossRef] [Green Version]
- Ly, H.B.; Le, T.T.; Le, L.M.; Tran, V.Q.; Le, V.M.; Vu, H.L.T.; Nguyen, Q.H.; Pham, B.T. Development of Hybrid Machine Learning Models for Predicting the Critical Buckling Load of I-Shaped Cellular Beams. Appl. Sci. 2019, 9, 5458. [Google Scholar] [CrossRef] [Green Version]
- Korytkowski, M.; Senkerik, R.; Scherer, M.M.; Angryk, R.A.; Kordos, M.; Siwocha, A. Efficient Image Retrieval by Fuzzy Rules from Boosting and Metaheuristic. J. Artif. Intell. Soft Comput. Res. 2020, 10, 57–69. [Google Scholar] [CrossRef] [Green Version]
- Hoang, N.D.; Tran, V.D. Image Processing-Based Detection of Pipe Corrosion Using Texture Analysis and Metaheuristic-Optimized Machine Learning Approach. Comput. Intell. Neurosci. 2019, 2019, 8097213. [Google Scholar] [CrossRef] [Green Version]
- Bui, Q.T.; Van, M.P.; Hang, N.T.T.; Nguyen, Q.H.; Linh, N.X.; Ha, P.M.; Tuan, T.A.; Cu, P.V. Hybrid model to optimize object-based land cover classification by meta-heuristic algorithm: An example for supporting urban management in Ha Noi, Viet Nam. Int. J. Digit. Earth 2019, 12, 1118–1132. [Google Scholar] [CrossRef]
- García, J.; Crawford, B.; Soto, R.; Astorga, G. A clustering algorithm applied to the binarization of Swarm intelligence continuous metaheuristics. Swarm Evol. Comput. 2019, 44, 646–664. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization. Swarm Evol. Comput. 2013, 9, 1–14. [Google Scholar] [CrossRef]
- Feng, Y.; An, H.; Gao, X. The importance of transfer function in solving set-union knapsack problem based on discrete moth search algorithm. Mathematics 2019, 7, 17. [Google Scholar] [CrossRef] [Green Version]
- Celebi, M.E.; Kingravi, H.A.; Vela, P.A. A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst. Appl. 2013, 40, 200–210. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Xiao, X.; Li, X.; Chen, Y.J.; Zhen, W.; Chang, J.; Zheng, C.; Liu, Z. White Blood Cell Segmentation by Color-Space-Based K-Means Clustering. Sensors 2014, 14, 16128–16147. [Google Scholar] [CrossRef] [PubMed]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. In Kdd; AAAI Press: Palo Alto, CA, USA, 1996; pp. 226–231. [Google Scholar]
- Gass, S.; Fu, M. Set-covering Problem. In Encyclopedia of Operations Research and Management Science; Springer: Cham, Switzerland, 2013; p. 1393. [Google Scholar]
- Lin, B.; Liu, S.; Lin, R.; Wu, J.; Wang, J.; Liu, C. Modeling the 0-1 Knapsack Problem in Cargo Flow Adjustment. Symmetry 2017, 9, 118. [Google Scholar] [CrossRef] [Green Version]
- Bartz-Beielstein, T.; Preuss, M. Experimental research in evolutionary computation. In Proceedings of the 9th Annual Conference Companion on Genetic and Evolutionary Computation, London, UK, 7–11 July 2007; pp. 3001–3020. [Google Scholar]
- Beasley, J. OR-Library. 1990. Available online: http://people.brunel.ac.uk/~mastjjb/jeb/info.html (accessed on 12 November 2017).
- Lilliefors, H. On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown. J. Am. Stat. Assoc. 1967, 62, 399–402. [Google Scholar] [CrossRef]
- Mann, H.; Donald, W. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. Ann. Math. Stat. 1947, 18, 50–60. [Google Scholar] [CrossRef]
- Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; W. H. Freeman & Co.: New York, NY, USA, 1979. [Google Scholar]
- Smith, B.M. IMPACS—A Bus Crew Scheduling System Using Integer Programming. Math. Program. 1988, 42, 181–187. [Google Scholar] [CrossRef]
- Foster, B.A.; Ryan, D.M. An Integer Programming Approach to the Vehicle Scheduling Problem. J. Oper. Res. Soc. 1976, 27, 367–384. [Google Scholar] [CrossRef]
- Vasko, F.J.; Wolf, F.E.; Stott, K.L. A set covering approach to metallurgical grade assignment. Eur. J. Oper. Res. 1989, 38, 27–34. [Google Scholar] [CrossRef]
- Caprara, A.; Toth, P.; Fischetti, M. Algorithms for the set covering problem. Ann. Oper. Res. 2000, 98, 353–371. [Google Scholar] [CrossRef]
- Wu, C.; Zhao, J.; Feng, Y.; Lee, M. Solving discounted {0-1} knapsack problems by a discrete hybrid teaching-learning-based optimization algorithm. Appl. Intell. 2020, 50, 1872–1888. [Google Scholar] [CrossRef]
- Zavala-Díaz, J.C.; Cruz-Chávez, M.A.; López-Calderón, J.; Hernández-Aguilar, J.A.; Luna-Ortíz, M.E. A Multi-Branch-and-Bound Binary Parallel Algorithm to Solve the Knapsack Problem 0–1 in a Multicore Cluster. Appl. Sci. 2019, 9, 5368. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Yu, X.; Wang, G.G. A Novel Monarch Butterfly Optimization with Global Position Updating Operator for Large-Scale 0-1 Knapsack Problems. Mathematics 2019, 7, 1056. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharjee, K.K.; Sarmah, S. Shuffled frog leaping algorithm and its application to 0/1 knapsack problem. Appl. Soft Comput. 2014, 19, 252–263. [Google Scholar] [CrossRef]
- Sergio, V.; Olivares, R.; Caselli, N. Clustering-based binarization methods applied to the crow search algorithm for 0/1 combinatorial problems.pdf. Figshare 2020. [Google Scholar] [CrossRef]
Instance | M | N | Cost | Density | Best |
---|---|---|---|---|---|
Group | Range | (%) | Known | ||
4 | 200 | 1000 | [1,100] | 2 | Known |
5 | 200 | 2000 | [1,100] | 2 | Known |
6 | 200 | 1000 | [1,100] | 5 | Known |
A | 300 | 3000 | [1,100] | 2 | Known |
B | 300 | 3000 | [1,100] | 5 | Known |
C | 400 | 4000 | [1,100] | 2 | Known |
D | 400 | 4000 | [1,100] | 5 | Known |
NRE | 500 | 5000 | [1,100] | 10 | Unknown |
(except NRE.1) | |||||
NRF | 500 | 5000 | [1,100] | 20 | Unknown |
(except NRF.1) | |||||
NRG | 1000 | 10,000 | [1,100] | 2 | Unknown |
(except NRG.1) | |||||
NRH | 1000 | 10,000 | [1,100] | 5 | Unknown |
Instance | Dimension | Parameters |
---|---|---|
f1 | 10 | w = {95, 4, 60, 32, 23, 72, 80, 62, 65, 46} p = {55, 10, 47,5, 4, 50, 8, 61, 85, 87} |
b = 269 | ||
f2 | 20 | w = {92, 4, 43, 83, 84, 68, 92, 82, 6, 44, 32, 18, 56, 83,25, 96, 70, 48, 14, 58} |
p = {44, 46, 90, 72, 91, 40, 75, 35,8, 54, 78, 40, 77, 15, 61, 17, 75, 29, 75, 63} b = 878 | ||
f3 | 4 | w = {6, 5, 9, 7} p = {9, 11, 13, 15} b = 20 |
f4 | 4 | w = {2, 4, 6, 7} p = {6, 10, 12, 13} b = 11 |
f5 | 15 | w = {56.358531, 80.87405, 47.987304, 89.59624,74.660482, 85.894345, 51.353496,1.498459,36.445204, 16.589862, 44.569231, 0.466933,37.788018, 57.118442, 60.716575} |
p = {0.125126,19.330424, 58.500931, 35.029145, 82.284005,17.41081, 71.050142,30.399487, 9.140294,14.731285, 98.852504, 11.908322, 0.89114,53.166295, 60.176397} | ||
b = 75 | ||
f6 | 6 | w = {30, 25, 20, 18, 17, 11, 5, 2, 1, 1} p = {20, 18, 17, 15,15, 10, 5, 3, 1, 1} b = 60 |
f7 | 7 | w = {31, 10, 20, 19, 4, 3, 6} p = {70, 20, 39, 37, 7, 5,10} b = 50 |
f8 | 23 | w = {983, 982, 981, 980, 979, 978, 488, 976, 972, 486, 486, 972, 972, 485, 485, 969,966, 483, 964, 963, 961,958, 959} |
p = {81,980, 979, 978, 977, 976, 487, 974,970, 85, 485, 970, 970, 484, 484, 976, 974,482, 962,961, 959, 958, 857} b = 10,000 | ||
f9 | 5 | w = {15, 20, 17, 8, 31} p = {33, 24, 36, 37, 12} b = 80 |
f10 | 20 | w = {84, 83, 43, 4, 44, 6, 82, 92, 25, 83, 56, 18, 58, 14,48, 70, 96, 32, 68, 92} |
p = {91, 72, 90, 46, 55, 8, 35, 75,61, 15, 77, 40, 63, 75, 29, 75, 17, 78, 40, 44} b = 879 |
Population | Awareness Probability | Fligth Length | Iterations |
---|---|---|---|
30 | 0.1 | 2 | 3000 |
Population | Awareness Probability | Flight Length | Number of Clusters | Cluster Transition Value | Iterations |
---|---|---|---|---|---|
30 | 0.3 | 2 | 3 | 0.04, 0.06, 0.08 | 3000 |
Population | Awareness Probability | Flight Length | Minimum Number of Points | Maximum Distance | Iterations |
---|---|---|---|---|---|
30 | 0.1 | 2 | 2 | 0.009 | 1000 |
Instance | BKS | Stand. | Comp. | Static | Elitist | KMeans | DBscan | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | ||
S1 G1 | 336.08 | 344.92 | 356.75 | 373.96 | 382.11 | 420.88 | 491.21 | 346.92 | 360.91 | 336.80 | 339.43 | 335.84 | 346.80 |
S1 G2 | 151.55 | 156.85 | 164.18 | 174 | 177.14 | 544.45 | 719.47 | 157.25 | 163.91 | 155.70 | 157.81 | 156.55 | 164 |
S1 G3 | 67.10 | 81.25 | 91.63 | 83.70 | 85.27 | 3673.70 | 4385.35 | 73.50 | 78.78 | 75.75 | 75.80 | t.o. | t.o. |
AVG | 184.91 | 194.34 | 204.18 | 210.55 | 214.84 | 1546.34 | 1865.34 | 192.55 | 201.20 | 189.41 | 191.01 | t.o. | t.o. |
S2 G1 | 336.08 | 341.56 | 354.92 | 372.64 | 381.55 | 716 | 842.13 | 348.24 | 367.78 | 336.80 | 339.43 | 335.84 | 338.25 |
S2 G2 | 151.55 | 156.45 | 262.97 | 173.70 | 177.05 | 1222.70 | 1383.50 | 157.70 | 164.15 | 155.70 | 157.81 | 156.55 | 164 |
S2 G3 | 67.10 | 366.80 | 423.83 | 83.50 | 85.19 | 5619.10 | 5986.45 | 74.05 | 79.27 | 75.45 | 75.50 | t.o. | t.o. |
AVG | 184.91 | 288.27 | 347.24 | 209.94 | 214.59 | 2519.26 | 2737.36 | 193.33 | 203.73 | 189.31 | 190.91 | t.o. | t.o. |
S3 G1 | 336.08 | 340.80 | 353.72 | 373.20 | 380.81 | 854.32 | 809.68 | 347.28 | 362.93 | 336.80 | 339.44 | 335.84 | 338.25 |
S3 G2 | 151.55 | 126.86 | 133.19 | 142.20 | 144.55 | 1243 | 1417.11 | 127.26 | 132.79 | 126.46 | 128.65 | 127.73 | 136.57 |
S3 G3 | 67.10 | 625.10 | 712.35 | 83.80 | 85.31 | 5291.90 | 5656.64 | 84.15 | 96.71 | 75.75 | 75.80 | t.o. | t.o. |
AVG | 184.91 | 364.25 | 399.75 | 199.73 | 203.55 | 2463.07 | 2627.81 | 186.23 | 197.47 | 179.67 | 181.29 | t.o. | t.o. |
S4 G1 | 336.08 | 341.64 | 353.17 | 372.04 | 380.58 | 364.56 | 393.54 | 336.12 | 339.52 | 336.80 | 339.43 | 335.84 | 338.25 |
S4 G2 | 151.55 | 156.55 | 163.31 | 173.80 | 176.94 | 309.35 | 390.49 | 151.70 | 155.96 | 155.70 | 157.81 | 156.55 | 164 |
S4 G3 | 67.10 | 973.95 | 1071.68 | 84.05 | 85.49 | 2168.80 | 2546.21 | 69.80 | 73.84 | 75.75 | 75.80 | t.o. | t.o. |
AVG | 184.91 | 490.71 | 529.38 | 209.96 | 214.33 | 947.57 | 1110.08 | 185.87 | 189.77 | 189.41 | 191.01 | t.o. | t.o. |
V1 G1 | 336.08 | 738.40 | 849.97 | 385.88 | 507.63 | 742.76 | 883.61 | 580.48 | 659.84 | 336.80 | 339.44 | 335.84 | 338.25 |
V1 G2 | 151.55 | 1290.05 | 1435.96 | 172.75 | 177.36 | 1287.55 | 1467.41 | 809.90 | 964.76 | 155.70 | 157.82 | 156.55 | 164 |
V1 G3 | 67.10 | 5741.30 | 6160.88 | 83.45 | 85.41 | 5732.75 | 6209.07 | 3679.25 | 4089.29 | 75.75 | 75.80 | t.o. | t.o. |
AVG | 184.91 | 2589.91 | 2815.60 | 214.02 | 256.80 | 2587.68 | 2853.36 | 1689.87 | 1904.63 | 189.41 | 191.02 | t.o. | t.o. |
V2 G1 | 336.08 | 726.88 | 827.56 | 376 | 387.02 | 710.48 | 834.56 | 565.16 | 653.04 | 336.80 | 339.43 | 335.84 | 338.25 |
V2 G2 | 151.55 | 1229.95 | 1392.4395 | 174.70 | 179.786 | 1232 | 1431.86 | 782.50 | 914.29 | 155.70 | 157.82 | 156.55 | 164 |
V2 G3 | 67.10 | 5590.55 | 5979.80 | 83.85 | 85.37 | 5595.90 | 6012.68 | 3532.40 | 3891.67 | 75.75 | 75.80 | t.o. | t.o. |
AVG | 184.91 | 2515.79 | 3403.68 | 211.51 | 217.39 | 2512.79 | 2759.70 | 1626.68 | 1819.66 | 189.41 | 191.01 | t.o. | t.o. |
V3 G1 | 336.08 | 698.84 | 787.76 | 372.80 | 380.01 | 697 | 800.87 | 530.80 | 606.17 | 336.80 | 339.44 | 335.84 | 338.25 |
V3 G2 | 151.55 | 1144.75 | 1303.63 | 174.05 | 176.59 | 1174.15 | 1342.70 | 665.60 | 785.03 | 155.70 | 157.82 | 156.55 | 164 |
V3 G3 | 67.10 | 5255.20 | 5610.33 | 84.10 | 85.67 | 5215.45 | 5633.99 | 3056.45 | 3403.96 | 75.75 | 75.80 | t.o. | t.o. |
AVG | V3 184.91 | 2366.26 | 2567.24 | 210.31 | 214.09 | 2362.20 | 2592.52 | 1417.61 | 1598.38 | 189.41 | 191.02 | t.o. | t.o. |
V4 G1 | 336.08 | 685.24 | 776.24 | 370 | 394.93 | 656.96 | 763.27 | 501.60 | 573.14 | 336.80 | 430 | 335.84 | 338.25 |
V4 G2 | 151.55 | 1165.20 | 1347.83 | 173.50 | 176.32 | 1189.12 | 1198.33 | 589 | 697 | 155.70 | 157.82 | 156.55 | 164 |
V4 G3 | 67.10 | 5241.35 | 5615.42 | 97.90 | 109.59 | 4802.40 | 5148.97 | 2548.55 | 2937.04 | 77.93 | 75.80 | t.o. | t.o. |
AVG | 184.91 | 2363.93 | 2579.83 | 213.8 | 226.94 | 2216.16 | 2370.19 | 1213.05 | 1402.39 | 190.14 | 221.20 | t.o. | t.o. |
Instance | BKS | Stand. | Comp. | Static | Elitist | KMeans | DBscan | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | MIN | AVG | ||
S1 | 1293.91 | 1145.52 | 1049.61 | 1136.45 | 958.18 | 1176.22 | 1124.34 | 946 | 789.78 | 825.81 | 832.05 | 813.88 | 789.28 |
S2 | 1293.91 | 1076.23 | 1015.91 | 853.49 | 800.82 | 928.31 | 896.84 | 931.6 | 908.27 | 825.81 | 832.05 | 813.88 | 789.28 |
S3 | 1293.91 | 1164.51 | 1128.06 | 1169.75 | 1139.02 | 1153.52 | 1136.82 | 1176.37 | 1158.26 | 825.81 | 832.05 | 813.88 | 789.28 |
S4 | 1293.91 | 1069.53 | 1035.32 | 1071.46 | 1005.99 | 1117.15 | 1063.21 | 1203.77 | 1163.96 | 825.81 | 832.05 | 813.88 | 789.28 |
V1 | 1293.91 | 1070.59 | 1059.06 | 1199.57 | 1165.4 | 1165.53 | 1112.61 | 1235.02 | 1201.62 | 825.81 | 832.05 | 813.88 | 789.28 |
V2 | 1293.91 | 940.25 | 903.22 | 895.97 | 854.73 | 789.72 | 748.06 | 320.69 | 1617.22 | 825.81 | 832.05 | 813.88 | 789.28 |
V3 | 1293.91 | 1230.63 | 1220.57 | 1187.74 | 1153.86 | 1235.54 | 1208.77 | 1237.23 | 1203.28 | 825.81 | 832.05 | 813.88 | 789.28 |
V4 | 1293.91 | 1230.63 | 1220.57 | 1187.74 | 1153.86 | 1235.54 | 1208.77 | 1237.23 | 1203.28 | 825.81 | 832.05 | 813.88 | 789.28 |
AVG | 1293.91 | 1115.98 | 1079.04 | 1087.77 | 1028.98 | 1100.19 | 1062.43 | 1036.012 | 1155.71 | 825.81 | 832.05 | 813.88 | 789.28 |
Two-Steps | KMeans | DBscan | |
---|---|---|---|
Two-steps | × | 6.47 × 10−4 | SWS |
KMeans | SWS | × | SWS |
DBscan | 1.02 × 10−2 | 2.91 × 10−7 | × |
Two-Steps | KMeans | DBscan | |
---|---|---|---|
Two-steps | × | 3.34 × 10−2 | SWS |
KMeans | SWS | × | SWS |
DBscan | SWS | 3.09 × 10−2 | × |
Two-Steps | KMeans | DBscan | |
---|---|---|---|
Two-steps | × | SWS | SWS |
KMeans | 1.84 × 10−3 | × | 6.42 × 10−4 |
DBscan | SWS | SWS | × |
Two-Steps | KMeans | DBscan | |
---|---|---|---|
Two-steps | × | SWS | SWS |
KMeans | 1.85 × 10−2 | × | 4.25 × 10−2 |
DBscan | SWS | SWS | × |
Two-Steps | KMeans | DBscan | |
---|---|---|---|
Two-steps | × | SWS | SWS |
KMeans | SWS | × | SWS |
DBscan | 1.14 × 10−4 | 9.54 × 10−4 | × |
Two-Steps | KMeans | DBscan | |
---|---|---|---|
Two-steps | × | SWS | 4.17 × 10−12 |
KMeans | SWS | × | 4.69 × 10−12 |
DBscan | SWS | SWS | × |
Two-Steps | KMeans | DBscan | |
---|---|---|---|
Two-steps | × | 2.29 × 10−9 | 9.60 × 10−12 |
KMeans | SWS | × | 2.35 × 10−13 |
DBscan | SWS | SWS | × |
Two-Steps | KMeans | DBscan | |
---|---|---|---|
Two-steps | × | SWS | 5.59 × 10−12 |
KMeans | SWS | × | 2.34 × 10−13 |
DBscan | SWS | SWS | × |
Two-Steps | KMeans | DBscan | |
---|---|---|---|
Two-steps | × | 9.16 × 10−12 | 1.87 × 10−12 |
KMeans | SWS | × | 2.37 × 10−13 |
DBscan | SWS | SWS | × |
Two-Steps | KMeans | DBscan | |
---|---|---|---|
Two-steps | × | 3.26 × 10−7 | 6.49 × 10−12 |
KMeans | SWS | × | 2.37 × 10−13 |
DBscan | SWS | SWS | × |
Two-Steps | KMeans | DBscan | |
---|---|---|---|
Two-steps | × | SWS | D/A |
KMeans | 5.24 × 10−4 | × | D/A |
DBscan | D/A | D/A | × |
Two-Steps | KMeans | DBscan | |
---|---|---|---|
Two-steps | × | SWS | SWS |
KMeans | 1.68 × 10−10 | × | 8.92 × 10−12 |
DBscan | SWS | SWS | × |
Two-Steps | KMeans | DBscan | |
---|---|---|---|
Two-steps | × | SWS | SWS |
KMeans | 9.66 × 10−9 | × | 3.06 × 10−2 |
DBscan | 7.23 × 10−8 | SWS | × |
Two-Steps | KMeans | DBscan | |
---|---|---|---|
Two-steps | × | SWS | SWS |
KMeans | 6.50 × 10−12 | × | 6.68 × 10−12 |
DBscan | 3.49 × 10−3 | SWS | × |
Two-Steps | KMeans | DBscan | |
---|---|---|---|
Two-steps | × | SWS | SWS |
KMeans | 1.32 × 10−13 | × | 1.32 × 10−13 |
DBscan | SWS | SWS | × |
Two-Steps | KMeans | DBscan | |
---|---|---|---|
Two-steps | × | SWS | SWS |
KMeans | 6.53 × 10−12 | × | 2.77 × 10−3 |
DBscan | 6.54 × 10−12 | SWS | × |
Two-Steps | KMeans | DBscan | |
---|---|---|---|
Two-steps | × | SWS | SWS |
KMeans | SWS | × | SWS |
DBscan | 6.53 × 10−12 | 6.49 × 10−12 | × |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valdivia, S.; Soto, R.; Crawford, B.; Caselli, N.; Paredes, F.; Castro, C.; Olivares, R. Clustering-Based Binarization Methods Applied to the Crow Search Algorithm for 0/1 Combinatorial Problems. Mathematics 2020, 8, 1070. https://doi.org/10.3390/math8071070
Valdivia S, Soto R, Crawford B, Caselli N, Paredes F, Castro C, Olivares R. Clustering-Based Binarization Methods Applied to the Crow Search Algorithm for 0/1 Combinatorial Problems. Mathematics. 2020; 8(7):1070. https://doi.org/10.3390/math8071070
Chicago/Turabian StyleValdivia, Sergio, Ricardo Soto, Broderick Crawford, Nicolás Caselli, Fernando Paredes, Carlos Castro, and Rodrigo Olivares. 2020. "Clustering-Based Binarization Methods Applied to the Crow Search Algorithm for 0/1 Combinatorial Problems" Mathematics 8, no. 7: 1070. https://doi.org/10.3390/math8071070
APA StyleValdivia, S., Soto, R., Crawford, B., Caselli, N., Paredes, F., Castro, C., & Olivares, R. (2020). Clustering-Based Binarization Methods Applied to the Crow Search Algorithm for 0/1 Combinatorial Problems. Mathematics, 8(7), 1070. https://doi.org/10.3390/math8071070