H-Umbilical Lagrangian Submanifolds of the Nearly Kähler \( {\mathbb{S}^3\times\mathbb{S}^3} \)
Abstract
:1. Introduction
2. Preliminaries
3. Main Result
Author Contributions
Funding
Conflicts of Interest
References
- Gray, A.; Hervella, L.M. The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. 1980, 123, 35–58. [Google Scholar] [CrossRef]
- Dioos, B. Submanifolds of the Nearly Kähler Manifold . Ph.D. Thesis, KU Leuven, Leuven, Belgium, 2015; p. 168, (J. Van der Veken (supervisor), L. Vrancken (cosupervisor)). [Google Scholar]
- Agricola, I. The Srní lectures on non-integrable geometries with torsion. Arch. Math. 2006, 42, 5–84. [Google Scholar]
- Nagy, P.-A. Nearly Kähler geometry and Riemannian foliations. Asian J. Math. 2002, 6, 481–504. [Google Scholar] [CrossRef]
- Butruille, J.-B. Homogeneous nearly Kähler manifolds. In Handbook of Pseudo-Riemannian Geometry and Supersymmetry; European Mathematical Society: Zürich, Switzerland, 2010; Volume 16, pp. 399–423. [Google Scholar]
- Gray, A. Riemannian manifolds with geodesic symmetries of order 3. J. Differ. Geom. 1972, 7, 343–369. [Google Scholar] [CrossRef]
- Podestà, F.; Spiro, A. Six-Dimensional Nearly Kähler Manifolds of Cohomogeneity One (II). Comm. Math. Phys. 2012, 312, 477–500. [Google Scholar] [CrossRef]
- Cortés, V.; Vásquez, J.J. Locally homogeneous nearly Kähler manifolds. Ann. Glob. Anal. Geom. 2015, 48, 269–294. [Google Scholar] [CrossRef]
- Foscolo, L.; Haskins, M. New G2-holonomy cones and exotic nearly Kähler structures on and . Ann. Math. 2017, 185, 59–130. [Google Scholar] [CrossRef] [Green Version]
- Antić, M.; Djurdjević, N.; Moruz, M.; Vrancken, L. Three-dimensional CR submanifolds of the nearly Kähler . Ann. Mat. Pura Appl. 2019, 198, 227–242. [Google Scholar] [CrossRef]
- Dioos, B.; Li, H.; Ma, H.; Vrancken, L. Flat almost complex surfaces in the homogeneous nearly Kähler . Results Math. 2018, 73, 24. [Google Scholar]
- Hu, Z.; Yao, Z.; Zhang, Y. On some hypersurfaces in the homogeneous nearly Kähler . Math. Nachr. 2018, 291, 343–373. [Google Scholar] [CrossRef]
- Lotay, J.D. Ruled Lagrangian submanifolds of the 6-sphere. Trans. Am. Math. Soc. 2011, 363, 2305–2339. [Google Scholar] [CrossRef] [Green Version]
- Vrancken, L. Special Lagrangian submanifolds of the nearly Kaehler 6-sphere. Glasg. Math. J. 2003, 45, 415–426. [Google Scholar] [CrossRef] [Green Version]
- Bektaş, B.; Moruz, M.; Van der Veken, J.; Vrancken, L. Lagrangian submanifolds of the nearly Kähler from minimal surfaces in . Proc. R. Soc. Edinb. Sect. A 2019, 149, 655–689. [Google Scholar] [CrossRef]
- Bektaş, B.; Moruz, M.; Van der Veken, J.; Vrancken, L. Lagrangian submanifolds with constant angle functions of the nearly Kaehler . J. Geom. Phys. 2018, 127, 1–13. [Google Scholar] [CrossRef]
- Dioos, B.; Vrancken, L.; Wang, X. Lagrangian submanifolds in the nearly Kähler . Ann. Glob. Anal. Geom. 2018, 53, 39–66. [Google Scholar] [CrossRef]
- Moroianu, A.; Semmelmann, U. Generalized Killing spinors and Lagrangian graphs. Differ. Geom. Appl. 2014, 37, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, L.; Smoczyk, K. Decomposition and minimality of Lagrangian submanifolds in nearly Kähler manifolds. Ann. Glob. Anal. Geom. 2009, 37, 221–240. [Google Scholar] [CrossRef]
- Chen, B.-Y. Interaction of Legendre curves and Lagrangian submanifolds. Israel J. Math. 1997, 99, 69–108. [Google Scholar] [CrossRef]
- Chen, B.-Y. Complex extensors and Lagrangian submanifolds in complex space forms. Tôhoku Math. J. 1997, 49, 277–297. [Google Scholar] [CrossRef]
- Zhang, Y.; Dioos, B.; Hu, Z.; Vrancken, L.; Wang, X. Lagrangian submanifolds in the 6-dimensional nearly Kähler manifolds with parallel second fundamental form. J. Geom. Phys. 2016, 108, 21–37. [Google Scholar] [CrossRef]
- Bolton, J.; Dillen, F.; Dioos, B.; Vrancken, L. Almost complex surfaces in the nearly Kähler . Tohoku Math. J. 2015, 67, 1–17. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antić, M.; Moruz, M.; Van der Veken, J. H-Umbilical Lagrangian Submanifolds of the Nearly Kähler \( {\mathbb{S}^3\times\mathbb{S}^3} \). Mathematics 2020, 8, 1427. https://doi.org/10.3390/math8091427
Antić M, Moruz M, Van der Veken J. H-Umbilical Lagrangian Submanifolds of the Nearly Kähler \( {\mathbb{S}^3\times\mathbb{S}^3} \). Mathematics. 2020; 8(9):1427. https://doi.org/10.3390/math8091427
Chicago/Turabian StyleAntić, Miroslava, Marilena Moruz, and Joeri Van der Veken. 2020. "H-Umbilical Lagrangian Submanifolds of the Nearly Kähler \( {\mathbb{S}^3\times\mathbb{S}^3} \)" Mathematics 8, no. 9: 1427. https://doi.org/10.3390/math8091427
APA StyleAntić, M., Moruz, M., & Van der Veken, J. (2020). H-Umbilical Lagrangian Submanifolds of the Nearly Kähler \( {\mathbb{S}^3\times\mathbb{S}^3} \). Mathematics, 8(9), 1427. https://doi.org/10.3390/math8091427