High-Order Accurate Flux-Splitting Scheme for Conservation Laws with Discontinuous Flux Function in Space
Abstract
:1. Introduction
2. The Modified Engquist–Osher-Type Interface Numerical Flux
- (1)
- is nondecreasing function in its first variable, nonincreasing function in its second variable, and Lipschitz continuous on both two arguments.
- (2)
- is not consistent, but , , and .
3. High-Order Accurate Schemes for Conservation Laws (1)
3.1. High-Order WENO Scheme Based on the Modified Interface Engquist–Osher-Type Flux
3.2. High-Order WENO Schemes Based on the Reconstructions of the Unknown Functions
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bürger, R.; Garcia, A.; Karlsen, K.H.; Towers, J.D. A family of numerical schemes for kinematic flows with discontinuous flux. J. Eng. Math. 2008, 60, 387–425. [Google Scholar] [CrossRef]
- Bürger, R.; Karlsen, K.H.; Torres, H.; Towers, J.D. Second-order schemes for conservation laws with discontinuous flux modelling clarifier-thickener units. Numer. Math. 2010, 116, 579–617. [Google Scholar] [CrossRef] [Green Version]
- Bürger, R.; Karlsen, K.H.; Risebro, N.H.; Towers, J.D. Well-posedness in BVt and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units. Numer. Math. 2014, 97, 25–65. [Google Scholar] [CrossRef] [Green Version]
- Diehl, S. On scalar conservation laws with point source and discontinuous flux functions. SIAM J. Math. Anal. 1995, 26, 1425–1451. [Google Scholar] [CrossRef] [Green Version]
- Diehl, S. A conservation laws with point source and discontinuous flux function modelling continuous sedimentation. SIAM J. Math. Anal. 1996, 56, 388–419. [Google Scholar] [CrossRef] [Green Version]
- Gimse, T.; Risebro, N.H. Riemann problem with a discontinuous flux fuction. In Proceedings of the Third International Conference on Hyperbolic Problem, Theory, Numerical Methods and Applications, Uppsala, Sweden, 11–15 June 1991; pp. 488–502. [Google Scholar]
- Gimse, T.; Risebro, N.H. Solutions of the Cauchy problem for a conservation law with discontinuous flux functions. SIAM J. Appl. Math. 1992, 56, 635–648. [Google Scholar] [CrossRef]
- Mochen, S. An analysis for the traffic on highways with changing surface conditions. Math. Model 1987, 9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kružkov, S.N. First order quasilinear equations with several independent variables. Math. USSR-Sb. 1970, 10, 217–243. [Google Scholar]
- Adimurthi; Dutta, R.; Veerappa Gowda, G.D.; Jaffré, J. Monotone (A,B) entropy stable numerical scheme for scalar conservation laws with discontinuous flux. ESAIM Math. Model. Numer. Anal. 2014, 48, 1725–1755. [Google Scholar] [CrossRef] [Green Version]
- Klingenber, C.; Risebro, N.H. Convex conservation laws with discontinuous coeffients. existence, uniqueness and asymptotic behavior. Commun. Part. Differ. Equ. 1995, 20, 1959–1990. [Google Scholar] [CrossRef]
- Seaid, M. Stable numerical methods for conservation laws with discontinuous flux function. Appl. Math. Comput. 2006, 175, 383–400. [Google Scholar] [CrossRef]
- Towers, J.D. Convergence of a difference scheme for conservation laws with a discontinuous flux. SIAM J. Numer. Anal. 2000, 38, 681–698. [Google Scholar] [CrossRef] [Green Version]
- Towers, J.D. A difference scheme for conservation laws with a discontinuous flux: The nonconvex case. SIAM J. Numer. Anal. 2001, 39, 1197–1218. [Google Scholar] [CrossRef] [Green Version]
- Adimurthi; Jaffré, J.; Veerappa Gowda, G.D. Godunov-Type methods for conservation law with discontinuous flux. SIAM J. Numer. Anal. 2004, 42, 179–208. [Google Scholar]
- Adimurthi; Jaffré, J.; Veerappa Gowda, G.D. The DFLU flux for systems of conservation laws. J. Comput. Appl. Math. 2013, 247, 102–123. [Google Scholar] [CrossRef]
- Sudarshan, K.K.; Praveen, C.; Veerappa Gowda, G.D. A finite volume method for a two-phase multicomponent polymer flooding. J. Comput. Phys. 2014, 275, 667–695. [Google Scholar]
- Mishra, S. Convergence of upwind finite difference schemes for a scalar conservation law with indefinite discontinuities in the flux function. SIAM J. Numer. Anal. 2005, 43, 559–577. [Google Scholar] [CrossRef]
- Karlsen, K.H.; Towers, J.D. Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinuous space-time dependent flux. Chin. Ann. Math. Ser. B 2004, 25, 287–318. [Google Scholar] [CrossRef]
- Adimurthi; Mishra,, S.; Veerappa Gowda, G.D. Optimal entropy solutions for conservation laws with discontinuous flux functions. J. Hyperbolic Differ. Equ. 2005, 2, 783–837. [Google Scholar] [CrossRef]
- Bürger, R.; Karlsen, K.H.; Towers, J.D. An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections. SIAM J. Numer. Anal. 2009, 47, 1684–1712. [Google Scholar] [CrossRef] [Green Version]
- Adimurthi; Sudarshan, K.K.; Veerappa Gowda, G.D. Second order scheme for scalar conservation laws with discontinuous flux. Appl. Numer. Math. 2014, 80, 46–64. [Google Scholar] [CrossRef]
- The Godunov scheme for scalar conservation laws with discontinuous bell-shaped flux functions. Appl. Math. Lett. 2012, 64, 1844–1848.
- Wang, G.; Hu, Y. The Roe-type interface flux for conservation laws with discontinuous flux function. Appl. Math. Lett. 2018, 75, 68–73. [Google Scholar] [CrossRef]
- Bürger, R.; Kumar, S.; Kenettinkara, S.K.; Ricardo, R.B. Discontinuous approximation of viscous two-phase flow in heterogeneous porous media. J. Comput. Phys. 2016, 321, 126–150. [Google Scholar] [CrossRef]
- Zhang, M.; Shu, C.-W.; Wong, G.C.K.; Wong, S.C. A weighted essentially non-oscillatory numerical scheme for a multi-class Lighthill-Whitham-Richards traffic flow model. J. Comput. Phys. 2003, 191, 639–659. [Google Scholar] [CrossRef]
- Zhang, P.; Wong, S.C.; Shu, C.-W. A weighted essentially non-oscillatory numerical scheme for a multi-class traffic flow model on an inhomogeneous highway. J. Comput. Phys. 2006, 212, 739–756. [Google Scholar] [CrossRef]
- Shu, C.-W. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. In Lecture Notes in Mathematics; Quarteroni, A., Ed.; Springer: Berlin/Heidelberg, Germany, 1998; Volume 1697, pp. 325–432. [Google Scholar]
- Shu, C.-W. High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 2009, 51, 82–126. [Google Scholar] [CrossRef] [Green Version]
- Jiang, G.; Shu, C.-W. Efficient implementation of weighted ENO schemes. J. Comput. Phys. 1996, 126, 202–228. [Google Scholar] [CrossRef] [Green Version]
- Berresa, S.; Bürger, R.; Karlsen, K.H. Central schemes and systems of conservation laws with discontinuous coefficients modeling gravity separation of polydisperse suspensions. J. Comput. Appl. Math. 2004, 164, 53–80. [Google Scholar]
- Qiao, D.-L.; Zhang, P.; Lin, Z.-Y.; Wong, S.C.; Choid, K. A Runge-Kutta discontinuous Galerkin scheme for hyperbolic conservation laws with discontinuous fluxes. Appl. Math. Comput. 2017, 292, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Ge, C. Semidiscrete central-upwind scheme for conservation laws with a discontinuous flux function in space. Appl. Math. Comput. 2011, 217, 7065–7073. [Google Scholar] [CrossRef]
- Gottlieb, S.; Shu, C.-W. Total variation diminishing Runge-Kutta schemes. Math. Comput. 1998, 67, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, J.M.; LeRoux, A.-Y. A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal. 1996, 33, 1–16. [Google Scholar] [CrossRef]
- LeVeque, R.J. Balancing source terms and flux gradients in high-resolution Godunov methods. J. Comput. Phys. 1998, 146, 346–365. [Google Scholar] [CrossRef] [Green Version]
- Jin, S. A steady-state capturing method for hyperbolic systems with geometrical source terms. M2AN Math. Model. Numer. Anal. 2001, 35, 631–645. [Google Scholar] [CrossRef] [Green Version]
MEO-1 | DFLU-1 | MEO-WENO5 | DFLU-WENO5 | DFLU-WENO5B | ||||||
---|---|---|---|---|---|---|---|---|---|---|
-Error | Order | -Error | Order | -Error | Order | -error | Order | -Error | Order | |
1/25 | 1.88 × 10 | 1.80 × 10 | 8.36 × 10 | 8.70 × 10 | 8.28 × 10 | |||||
1/50 | 1.14 × 10 | 0.7230 | 1.11 × 10 | 0.7025 | 4.57 × 10 | 0.8727 | 4.57 × 10 | 0.9278 | 4.57 × 10 | 0.8567 |
1/100 | 6.99 × 10 | 0.7049 | 6.88 × 10 | 0.6846 | 2.76 × 10 | 0.7270 | 2.63 × 10 | 0.7983 | 2.62 × 10 | 0.8023 |
1/200 | 4.48 × 10 | 0.6431 | 4.46 × 10 | 0.6274 | 1.93 × 10 | 0.5144 | 1.96 × 10 | 0.4260 | 1.89 × 10 | 0.4670 |
1/400 | 2.29 × 10 | 0.9681 | 2.25 × 10 | 0.9840 | 6.13 × 10 | 1.6555 | 6.11 × 10 | 1.6794 | 6.11 × 10 | 1.6329 |
MEO-1 | DFLU-1 | MEO-WENO5 | DFLU-WENO5 | DFLU-WENO5B | ||||||
---|---|---|---|---|---|---|---|---|---|---|
-Error | Order | -Error | Order | -Error | Order | -Error | Order | -Error | Order | |
1/25 | 6.52 × 10 | 6.68 × 10 | 2.69 × 10 | 2.49 × 10 | 2.18 × 10 | |||||
1/50 | 4.55 × 10 | 0.5203 | 4.66 × 10 | 0.5222 | 1.82 × 10 | 0.5617 | 1.73 × 10 | 0.5092 | 1.59 × 10 | 0.4505 |
1/100 | 3.17 × 10 | 0.5225 | 3.23 × 10 | 0.5253 | 1.36 × 10 | 0.4280 | 1.31 × 10 | 0.3933 | 1.24 × 10 | 0.3626 |
1/200 | 1.91 × 10 | 0.7295 | 1.95 × 10 | 0.7269 | 7.02 × 10 | 0.9496 | 6.84 × 10 | 0.9427 | 6.45 × 10 | 0.9428 |
1/400 | 1.13 × 10 | 0.7586 | 1.16 × 10 | 0.7562 | 3.58 × 10 | 0.9733 | 3.48 × 10 | 0.9742 | 3.29 × 10 | 0.9743 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, T.; Wang, G.; Zhang, S. High-Order Accurate Flux-Splitting Scheme for Conservation Laws with Discontinuous Flux Function in Space. Mathematics 2021, 9, 1079. https://doi.org/10.3390/math9101079
Xiang T, Wang G, Zhang S. High-Order Accurate Flux-Splitting Scheme for Conservation Laws with Discontinuous Flux Function in Space. Mathematics. 2021; 9(10):1079. https://doi.org/10.3390/math9101079
Chicago/Turabian StyleXiang, Tingting, Guodong Wang, and Suping Zhang. 2021. "High-Order Accurate Flux-Splitting Scheme for Conservation Laws with Discontinuous Flux Function in Space" Mathematics 9, no. 10: 1079. https://doi.org/10.3390/math9101079
APA StyleXiang, T., Wang, G., & Zhang, S. (2021). High-Order Accurate Flux-Splitting Scheme for Conservation Laws with Discontinuous Flux Function in Space. Mathematics, 9(10), 1079. https://doi.org/10.3390/math9101079