Development and Application of a Multi-Objective Tool for Thermal Design of Heat Exchangers Using Neural Networks
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
- The variable data are the ones that its value is changing for each case to get the database, which corresponds also with the 11 (aforementioned) design parameters.
- The static simulation data, which take a static value in each simulation case, but its value depends on something like temperature or material type.
- The output variables, which are the results of final and intermediate calculations.
3.1. Heat Exchanger Model
3.1.1. Exchanged Heat
3.1.2. Pressure Drop
3.2. Environment Preparation
3.3. Implementation of the NN Model
- (a)
- to be within the 5% interval range of the desired heat exchange.
- (b)
- the loss pressure in the tube and pressure loss in the shell are between 0 and 1.
4. NN Model Training and Validation Results
4.1. Mono-Objective NNs Results
4.2. Multi-Objective NNs Results
5. Problem Formulation and Optimisation Procedure
6. Application Case
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Webb, R.L. Enhanced Heat Transfer. Am. Soc. Mech. Eng. Heat Transf. Div. HTD 1992, 202, 301–312. [Google Scholar]
- Koukou, M.K.; Dogkas, G.; Vrachopoulos, M.G.; Konstantaras, J.; Pagkalos, C.; Lymperis, K.; Stathopoulos, V.; Evangelakis, G.; Prouskas, C.; Coelho, L.; et al. Performance evaluation of a small-scale latent heat thermal energy storage unit for heating applications based on a nanocomposite organic PCM. ChemEngineering 2019, 3, 88. [Google Scholar] [CrossRef] [Green Version]
- Agnew, B.; Tam, I.C.K.; Shi, X. Optimization of heat and mass exchange. Processes 2020, 8, 314. [Google Scholar] [CrossRef] [Green Version]
- Shah, R.K.; Sekuli, D.P. Fundamentals of Heat Exchanger Design; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; ISBN 0471321710. [Google Scholar]
- Rao, R.V.; Saroj, A. Multi-objective design optimization of heat exchangers using elitist-Jaya algorithm. Energy Syst. 2018, 9, 305–341. [Google Scholar] [CrossRef]
- Kakaç, S.; Liu, H.; Pramuanjaroenkij, A. Heat Exchangers: Selection, Rating, and Thermal Design, 4th ed.; CRC Press of Taylor & Francis Group: Boca Raton, FL, USA, 2020; ISBN 9781138601864. [Google Scholar]
- Valencia, G.; Núñez, J.; Duarte, J. Multiobjective optimization of a plate heat exchanger in a waste heat recovery organic rankine cycle system for natural gas engines. Entropy 2019, 21, 655. [Google Scholar] [CrossRef] [Green Version]
- Renedo Estébanez, C.J.; Ortiz Fernandez, A.; Perez Remesal, S.F.; Fernandez Diego, I.; Mañana Canteli, M.; Fernandez Fernandez, M. Cogeneracion Mediante Recuperacion Energetica De Calor De Gases De Escape. Dyna Ing. E Ind. 2011, 86, 105–117. [Google Scholar] [CrossRef]
- Fernández Diaz, P. XV-Intercambiadores de Calor Método de la (LMTD). In Intercambiadores de Calor; Biblioteca Sobre Ingeniería energética: Santander, Spain; pp. 269–286.
- Dezfoli, A.R.A.; Mehrabian, M.A.; Saffaripour, M.H. Two dimensional temperature distributions in plate heat exchangers: An analytical approach. Mathematics 2015, 3, 1255–1273. [Google Scholar] [CrossRef]
- Sarafraz, M.M.; Safaei, M.R.; Tian, Z.; Goodarzi, M. Thermal Assessment of Nano-Particulate Graphene-Water/Ethylene Glycol (WEG 60:40) Nano-Suspension in a Compact Heat Exchanger. Energies 2019, 12, 1219. [Google Scholar] [CrossRef] [Green Version]
- Lazova, M.; Huisseune, H.; Kaya, A.; Lecompte, S.; Kosmadakis, G.; De Paepe, M. Performance evaluation of a helical coil heat exchanger working under supercritical conditions in a solar organic rankine cycle installation. Energies 2016, 9, 432. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Ma, L.; Bock, J.; Jacobi, A.M.; Liu, W. A comparison of four numerical modeling approaches for enhanced shell-and-tube heat exchangers with experimental validation. Appl. Therm. Eng. 2014, 65, 369–383. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Ansari, M.I.A.; Datta, A.K. A computer based iterative solution for accurate estimation of heat transfer coefficients in a helical tube heat exchanger. J. Food Eng. 2003, 58, 211–214. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X.; Long, R.; Yuan, F.; Yang, K. Numerical investigation and optimization on shell side performance of a shell and tube heat exchanger with inclined trefoil-hole baffles. Energies 2019, 12, 4138. [Google Scholar] [CrossRef] [Green Version]
- Tran, H.K.; Son, H.H.; Van Duc, P.; Trang, T.T.; Nguyen, H.N. Improved genetic algorithm tuning controller design for autonomous hovercraft. Processes 2020, 8, 66. [Google Scholar] [CrossRef] [Green Version]
- Stajkowski, S.; Kumar, D.; Samui, P.; Bonakdari, H.; Gharabaghi, B. Genetic-algorithm-optimized sequential model for water temperature prediction. Sustainability 2020, 12, 5374. [Google Scholar] [CrossRef]
- Freitas, D.; Lopes, L.G.; Morgado-Dias, F. Particle Swarm Optimization: A historical review up to the current developments. Entropy 2020, 22, 362. [Google Scholar] [CrossRef] [Green Version]
- Su, P.; Cai, C.; Song, Y.; Ma, J.; Tan, Q. A hybrid diffractive optical element design algorithm combining particle swarm optimization and a simulated annealing algorithm. Appl. Sci. 2020, 10, 5485. [Google Scholar] [CrossRef]
- Tan, C.K.; Ward, J.; Wilcox, S.J.; Payne, R. Artificial neural network modelling of the thermal performance of a compact heat exchanger. Appl. Therm. Eng. 2009, 29, 3609–3617. [Google Scholar] [CrossRef] [Green Version]
- Wen, J.; Gu, X.; Wang, M.; Wang, S.; Tu, J. Numerical investigation on the multi-objective optimization of a shell-and-tube heat exchanger with helical baffles. Int. Commun. Heat Mass Transf. 2017, 89, 91–97. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, N.; Liu, Z.; Liu, W. Numerical analysis and optimization study on shell-side performances of a shell and tube heat exchanger with staggered baffles. Int. J. Heat Mass Transf. 2018, 124, 247–259. [Google Scholar] [CrossRef]
- Sadeghzadeh, H.; Aliehyaei, M.; Rosen, M.A. Optimization of a finned shell and tube heat exchanger using a multi-objective optimization genetic algorithm. Sustainability 2015, 7, 11679–11695. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.Z.; Li, M.J.; Wang, F.L.; He, Y.L.; Tao, W.Q. Fouling potential prediction and multi-objective optimization of a flue gas heat exchanger using neural networks and genetic algorithms. Int. J. Heat Mass Transf. 2020, 152, 119488. [Google Scholar] [CrossRef]
- Hojjat, M. Nanofluids as coolant in a shell and tube heat exchanger: ANN modeling and multi-objective optimization. Appl. Math. Comput. 2020, 365, 124710. [Google Scholar] [CrossRef]
- Martin, H. Economic Optimization of Compact Heat Exchangers. In Proceedings of the EF-Conference on Compact Heat Exchangers and Enhancement Technology for the Process Industries, Banff, AB, Canada, 18–23 July 1999. [Google Scholar]
- Yang, J.; Oh, S.R.; Liu, W. Optimization of shell-and-tube heat exchangers using a general design approach motivated by constructal theory. Int. J. Heat Mass Transf. 2014, 77, 1144–1154. [Google Scholar] [CrossRef]
- Zheng, N.; Liu, P.; Wang, X.; Shan, F.; Liu, Z.; Liu, W. Numerical simulation and optimization of heat transfer enhancement in a heat exchanger tube fitted with vortex rod inserts. Appl. Therm. Eng. 2017, 123, 471–484. [Google Scholar] [CrossRef]
- Alberdi, E.; Urrutia, L.; Goti, A.; Oyarbide-Zubillaga, A. Modeling the municipalwaste collection using genetic algorithms. Processes 2020, 8, 513. [Google Scholar] [CrossRef]
- Bhargava, S. A Note on Evolutionary Algorithms and Its Applications. Adults Learn. Math. Int. J. 2013, 8, 31–45. [Google Scholar]
- Agarap, A.F.M. Deep Learning using Rectified Linear Units (ReLU). arXiv 2018, arXiv:1803.08375v2. [Google Scholar]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef] [Green Version]
- Hara, K.; Saito, D.; Shouno, H. Analysis of function of rectified linear unit used in deep learning. In Proceedings of the International Joint Conference on Neural Networks (IJCNN) 2015, Killarney, Ireland, 12–17 July 2015. [Google Scholar] [CrossRef]
- ARA TT. Diseño, Fabricación y Reparación de Intercambiadores de Calor y Recipientes a Presión, así Como Otros Equipos Electro-mecánicos. Available online: https://www.aratt.es/ (accessed on 8 February 2021).
- ARA TT. Internal Report—Oil Properties; ARA TT: Bilbao, Spain, 2019. [Google Scholar]
- Salazar Valdez, J.F. Diseño de equipos de transferencia de calor. Ph.D. Thesis, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico, 2001. [Google Scholar]
- Ouardi, E.; Darfi, S.; Khallouq, K.; Mousaid, A. A novel approach for thermal designing a single pass counter flow shell and tube heat exchanger. Int. J. Mech. Prod. Eng. Res. Dev. 2020, 10, 269–280. [Google Scholar] [CrossRef]
- Ravagnani, M.A.; Silva, A.P.; Caballero, J.A. Optimal Shell and Tube Heat Exchangers Design. Heat Anal. Thermodyn. Eff. 2011. [Google Scholar] [CrossRef] [Green Version]
- Urquiola, F.M. Equipos de Intercambio de Calor, 1st ed.; CADEM (GRUPO EVE): Bilbao, Spain, 1994; ISBN 84-8129-024-6. [Google Scholar]
- Mott, R.L. Mecánica de Fluidos, 6th ed.; PEARSON Educación: Mexico City, Mexico, 2006; ISBN 0131146807. [Google Scholar]
- Mitchel, T.M. Artificial neural networks. Mach. Learn. 1997, 45, 81–127. [Google Scholar]
- Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283. [Google Scholar] [CrossRef]
- Oyarbide-Zubillaga, A.; Goti, A.; Sanchez, A. Preventive maintenance optimization of multi-equipment manufacturing systems by combining discrete event simulation and multi-objective evolutionary algorithms. Prod. Plan. Control. 2008, 19, 342–355. [Google Scholar] [CrossRef]
- Goti, A.; Oyarbide-Zubillaga, A.; Alberdi, E.; Sanchez, A.; Garcia-Bringas, P. Optimal Maintenance Thresholds to Perform Preventive Actions by Using Multi-Objective Evolutionary Algorithms. Appl. Sci. 2019, 9, 3068. [Google Scholar] [CrossRef] [Green Version]
Equipment Data | Abbreviation | Reference Value | Unit | Type |
---|---|---|---|---|
Shell inner diameter | 432 | Variable | ||
Number of tubes | 173 | Variable | ||
Number of steps per tube | 2 | Variable | ||
Tube outer diameter | 16 | Variable | ||
Tube inner diameter | Depends on tube outer diameter | Static | ||
Tube thickness | 1.5 | Static | ||
Tube length (for step) | 2050 | Variable | ||
Tube conductivity | 14.02 | Static | ||
Tube pitch | 20 | Variable | ||
Baffle’s thickness | 4.8 | Static | ||
Baffle’s separation | 200 | Variable | ||
Inner fouling resistance | 0.00023 | Static | ||
Outer fouling resistance | 0.00023 | Static |
Oil Variables | Abbreviation | Reference Value | Unit | Type |
---|---|---|---|---|
Mass flow | 51900 | Variable | ||
Entry temperature | 40 | Variable | ||
Exit temperature | - | Output | ||
Average temperature | - | Output | ||
Density | Dependent on temperature | Static | ||
Dynamic viscosity | Dependent on temperature | Static | ||
Kinematic viscosity | Dependent on temperature | Static | ||
Thermal conductivity | Dependent on temperature | Static | ||
Specific heat capacity | Dependent on temperature | Static | ||
Prandtl number | 107.5 | - | Static |
Water Variables | Abbreviation | Reference Value | Unit | Type |
---|---|---|---|---|
Mass flow | 30000 | Variable | ||
Entry temperature | 25 | Variable | ||
Exit temperature | - | Output | ||
Average temperature | - | Output | ||
Density | Dependent on temperature | Static | ||
Dynamic viscosity | Dependent on temperature | Static | ||
Kinematic viscosity | Dependent on temperature | Static | ||
Thermal conductivity | Dependent on temperature | Static | ||
Specific heat capacity | Dependent on temperature | Static |
Results Variables | Abbreviation | Unit | Type |
---|---|---|---|
Heat exchanged | Output | ||
Pressure drop on shell side | Output | ||
Pressure drop on tube side | Output |
Solution Number | |||
---|---|---|---|
1 | 81,198.04 | 0.02737894 | 0.7027474 |
2 | 78,736.02 | 0.03672727 | 0.7452056 |
3 | 81,197.09 | 0.03721624 | 0.26536497 |
4 | 80,731.984 | 0.06314652 | 0.46797386 |
5 | 81,278.98 | 0.05148795 | 0.07528893 |
6 | 77,753.195 | 0.02269435 | 0.7754289 |
7 | 80,982.29 | 0.02783447 | 0.52240056 |
8 | 78,144.21 | 0.01932829 | 0.91309184 |
9 | 80,042.266 | 0.01290853 | 0.8427845 |
10 | 81,196.485 | 0.02474283 | 0.52855389 |
11 | 80,361.836 | 0.08749065 | 0.7260448 |
12 | 76,647.36 | 0.03722592 | 0.9247213 |
13 | 76,434.78 | 0.0476222 | 0.90788853 |
14 | 78,283.484 | 0.05011504 | 0.7540955 |
15 | 80,860.34 | 0.04898805 | 0.41301143 |
16 | 81,058.35 | 0.03442306 | 0.34464616 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Andrés Honrubia, J.L.; de la Puerta, J.G.; Cortés, F.; Aguirre-Larracoechea, U.; Goti, A.; Retolaza, J. Development and Application of a Multi-Objective Tool for Thermal Design of Heat Exchangers Using Neural Networks. Mathematics 2021, 9, 1120. https://doi.org/10.3390/math9101120
de Andrés Honrubia JL, de la Puerta JG, Cortés F, Aguirre-Larracoechea U, Goti A, Retolaza J. Development and Application of a Multi-Objective Tool for Thermal Design of Heat Exchangers Using Neural Networks. Mathematics. 2021; 9(10):1120. https://doi.org/10.3390/math9101120
Chicago/Turabian Stylede Andrés Honrubia, José Luis, José Gaviria de la Puerta, Fernando Cortés, Urko Aguirre-Larracoechea, Aitor Goti, and Jone Retolaza. 2021. "Development and Application of a Multi-Objective Tool for Thermal Design of Heat Exchangers Using Neural Networks" Mathematics 9, no. 10: 1120. https://doi.org/10.3390/math9101120
APA Stylede Andrés Honrubia, J. L., de la Puerta, J. G., Cortés, F., Aguirre-Larracoechea, U., Goti, A., & Retolaza, J. (2021). Development and Application of a Multi-Objective Tool for Thermal Design of Heat Exchangers Using Neural Networks. Mathematics, 9(10), 1120. https://doi.org/10.3390/math9101120