A General Family of q-Hypergeometric Polynomials and Associated Generating Functions
Abstract
:1. Introduction, Definitions and Preliminaries
- Upon setting
- By choosing and the generalized q-hypergeometric polynomials (22) reduce to the generalized Al-Salam-Carlitz q-polynomials (see [17]
- Upon setting and the q-hypergeometric polynomials (22) reduce to the generalized Al-Salam-Carlitz q-polynomials (see [17]
2. Generalized q-Hypergeometric Polynomials
3. The Rogers Formula
4. The Srivastava-Agarwal Type Bilinear Generating Functions for the Generalized q-Hypergeometric Polynomials
5. A Transformational Identity Involving Generating Functions for the Generalized q-Hypergeometric Polynomials
6. Concluding Remarks and Observations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gasper, G.; Rahman, M. Basic Hypergeometric Series (with a Foreword by Richard Askey), 2nd ed.; Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 2004; Volume 96. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press Ellis Horwood Limited: Chichester, UK; John Wiley and Sons: New York, NY, USA, 1985. [Google Scholar]
- Koekock, R.; Swarttouw, R.F. The Askey-Scheme of Hypergeometric Orthogonal Polynomials and Its q-Analogue; Report No. 98-17; Delft University of Technology: Delft, The Netherlands, 1998. [Google Scholar]
- Slater, L.J. Generalized Hypergeometric Functions; Cambridge University Press: Cambridge, UK, 1966. [Google Scholar]
- Chen, W.Y.C.; Fu, A.M.; Zhang, B. The homogeneous q-difference operator. Adv. Appl. Math. 2003, 31, 659–668. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Chaudhary, M.P.; Wakene, F.K. A family of theta-function identities based upon q-binomial theorem and Heine’s transformations. Montes Taurus J. Pure Appl. Math. 2020, 2, 1–6. [Google Scholar]
- Saad, H.L.; Sukhi, A.A. Another homogeneous q-difference operator. Appl. Math. Comput. 2010, 215, 4332–4339. [Google Scholar] [CrossRef]
- Chen, W.Y.C.; Liu, Z.-G. Parameter augmenting for basic hypergeometric series. II. J. Combin. Theory Ser. A 1997, 80, 175–195. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Abdlhusein, M.A. New forms of the Cauchy operator and some of their applications. Russ. J. Math. Phys. 2016, 23, 124–134. [Google Scholar] [CrossRef]
- Cao, J.; Arjika, S. A note on fractional Askey-Wilson integrals. J. Fract. Calc. Appl. 2021, 12, 133–140. [Google Scholar]
- Hahn, W. Über Orthogonalpolynome, die q-Differenzengleichungen genügen. Math. Nuchr. 1949, 2, 4–34. [Google Scholar] [CrossRef]
- Hahn, W. Über Polynome, die gleichzeitig zwei verschiedenen Orthogonalsystemen angehören. Math. Nachr. 1949, 2, 263–278. [Google Scholar] [CrossRef]
- Hahn, W. Beiträge zur Theorie der Heineschen Reihen. Die 24 Integrale der hypergeometrischen q-Differenzengleichung. Das q-Analogon der Laplace-Transformation. Math. Nachr. 1949, 2, 340–379. [Google Scholar] [CrossRef]
- Al-Salam, W.A.; Carlitz, L. Some orthogonal q-polynomials. Math. Nachr. 1965, 30, 47–61. [Google Scholar] [CrossRef]
- Cao, J. A note on q-integrals and certain generating functions. Stud. Appl. Math. 2013, 131, 105–118. [Google Scholar] [CrossRef]
- Cao, J.; Xu, B.; Arjika, S. A note on generalized q-difference equations for general Al-Salam–Carlitz polynomials. Adv. Differ. Equ. 2020, 2020, 1–17. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Arjika, S. Generating functions for some families of the generalized Al-Salam-Carlitz q-polynomials. Adv. Differ. Equ. 2020, 2020, 1–17. [Google Scholar] [CrossRef]
- Cao, J.; Srivastava, H.M. Some q-generating functions of the Carlitz and Srivastava-Agarwal types associated with the generalized Hahn polynomials and the generalized Rogers-Szegö polynomials. Appl. Math. Comput. 2013, 219, 8398–8406. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Cao, J.; Arjika, S. A note on generalized q-difference equations and their applications involving q-hypergeometric functions. Symmetry 2020, 12, 1816. [Google Scholar] [CrossRef]
- Cao, J. Homogeneous q-difference equations and generating functions for q-hypergeometric polynomials. Ramanujan J. 2016, 40, 177–192. [Google Scholar] [CrossRef]
- Arjika, S.; Mahaman, K.M. q-Difference equation for generalized trivariate q-Hahn polynomials. Appl. Anal. Optim. 2021, 5, 1–11. [Google Scholar]
- Srivastava, H.M.; Arjika, S.; Kelil, A.S. Some homogeneous q-difference operators and the associated generalized Hahn polynomials. Appl. Set-Valued Anal. Optim. 2019, 1, 187–201. [Google Scholar]
- Abdlhusein, M.A. Two operator representations for the trivariate q-polynomials and Hahn polynomials. Ramanujan J. 2016, 40, 491–509. [Google Scholar] [CrossRef]
- Cao, J. Generalizations of certain Carlitz’s trilinear and Srivastava-Agarwal type generating functions. J. Math. Anal. Appl. 2012, 396, 351–362. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Agarwal, A.K. Generating functions for a class of q-polynomials. Ann. Mat. Pura Appl. (Ser. 4) 1989, 154, 99–109. [Google Scholar] [CrossRef]
- Cao, J. Bivariate generating functions for Rogers-Szegö polynomials. Appl. Math. Comput. 2010, 217, 2209–2216. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srivastava, H.M.; Arjika, S. A General Family of q-Hypergeometric Polynomials and Associated Generating Functions. Mathematics 2021, 9, 1161. https://doi.org/10.3390/math9111161
Srivastava HM, Arjika S. A General Family of q-Hypergeometric Polynomials and Associated Generating Functions. Mathematics. 2021; 9(11):1161. https://doi.org/10.3390/math9111161
Chicago/Turabian StyleSrivastava, Hari Mohan, and Sama Arjika. 2021. "A General Family of q-Hypergeometric Polynomials and Associated Generating Functions" Mathematics 9, no. 11: 1161. https://doi.org/10.3390/math9111161
APA StyleSrivastava, H. M., & Arjika, S. (2021). A General Family of q-Hypergeometric Polynomials and Associated Generating Functions. Mathematics, 9(11), 1161. https://doi.org/10.3390/math9111161