Discrete Hypergeometric Legendre Polynomials
Abstract
:1. Introduction
2. Preliminaries and Definitions
3. Discrete Legendre Polynomials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carrera, E.; de Miguel, A.; Pagani, A. Hierarchical theories of structures based on Legendre polynomial expansions with finite element applications. Int. J. Mech. Sci. 2017, 120, 286–300. [Google Scholar] [CrossRef] [Green Version]
- Hoang, D.T.; Wang, H.C. Blind phone segmentation based on spectral change detection using Legendre polynomial approximation. J. Acoust. Soc. Am. 2015, 137, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Mall, S.; Chakraverty, S. Application of Legendre Neural Network for solving ordinary differential equations. Appl. Soft Comput. 2016, 43, 347–356. [Google Scholar] [CrossRef]
- Carini, A.; Cecchi, S.; Romoli, L.; Sicuranza, G.L. Legendre nonlinear filters. Signal Process. 2015, 109, 84–94. [Google Scholar] [CrossRef]
- Morrison, N. Introduction to Sequential Smoothing and Prediction; McGraw-Hill: New York, NY, USA, 1969. [Google Scholar]
- Gong, D.; Wang, X.; Wu, S.; Zhu, X. Discrete Legendre polynomials-based inequality for stability of time-varying delayed systems. J. Franklin Inst. 2019, 356, 9907–9927. [Google Scholar] [CrossRef]
- Li, B. Discrete Legendre polynomial based adaptive image filtering. In Automatic Target Recognition XXXI; Hammoud, R.I., Overman, T.L., Mahalanobis, A., Eds.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2021; Volume 11729, pp. 278–285. [Google Scholar]
- Ganie, J.A.; Jain, R. Basic Analogue of Legendre Polynomial and its Difference Equation. Asian J. Math. Stat. 2019, 12, 1–7. [Google Scholar] [CrossRef]
- Chihara, T.S. An introduction to orthogonal polynomials. In Mathematics and Its Applications; Gordon and Breach, Science: New York, NY, USA; London, UK; Paris, France, 1978; Volume 13. [Google Scholar]
- Bohner, M.; Cuchta, T. The Bessel difference equation. Proc. Am. Math. Soc. 2017, 145, 1567–1580. [Google Scholar] [CrossRef]
- Slavík, A. Discrete Bessel functions and partial difference equations. J. Differ. Equ. Appl. 2018, 24, 425–437. [Google Scholar] [CrossRef]
- Slavík, A. Asymptotic behavior of solutions to the semidiscrete diffusion equation. Appl. Math. Lett. 2020, 106, 6. [Google Scholar] [CrossRef]
- Cuchta, T.; Pavelites, M.; Tinney, R. The Chebyshev Difference Equation. Mathematics 2020, 8, 74. [Google Scholar] [CrossRef] [Green Version]
- Bohner, M.; Cuchta, T. The generalized hypergeometric difference equation. Demonstr. Math. 2018, 51, 62–75. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales; An Introduction with Applications; Birkhäuser Boston, Inc.: Boston, MA, USA, 2001. [Google Scholar] [CrossRef] [Green Version]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar] [CrossRef]
- Bell, W.W. Special Functions for Scientists and Engineers; D. van Nostrand Company, Ltd.: London, UK; Princeton, NJ, USA; Toronto, ON, Canada; Melbourne, Australia, 1968. [Google Scholar]
- Szegö, G. Orthogonal Polynomials, 4th ed.; American Mathematical Society (AMS): Providence, RI, USA, 1975; Volume 23. [Google Scholar]
n | |||
---|---|---|---|
0 | 1 | 1 | 1 |
1 | t | ||
2 | |||
3 | |||
4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuchta, T.; Luketic, R. Discrete Hypergeometric Legendre Polynomials. Mathematics 2021, 9, 2546. https://doi.org/10.3390/math9202546
Cuchta T, Luketic R. Discrete Hypergeometric Legendre Polynomials. Mathematics. 2021; 9(20):2546. https://doi.org/10.3390/math9202546
Chicago/Turabian StyleCuchta, Tom, and Rebecca Luketic. 2021. "Discrete Hypergeometric Legendre Polynomials" Mathematics 9, no. 20: 2546. https://doi.org/10.3390/math9202546
APA StyleCuchta, T., & Luketic, R. (2021). Discrete Hypergeometric Legendre Polynomials. Mathematics, 9(20), 2546. https://doi.org/10.3390/math9202546