Circulant Singular Spectrum Analysis to Monitor the State of the Economy in Real Time
Abstract
:1. Introduction
2. Methodology
2.1. Circulant Singular Spectrum Analysis
- Step 1: Build the trajectory matrix.
- Step 2: Decomposition.
- Step 3: Grouping.
- Step 4: Reconstruction.
2.2. ARIMA-Model-Based Procedure
2.3. Revisions
3. Simulations
3.1. Simulated Models
3.2. Simulation Results
3.3. Empirical Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AMB | ARIMA-model-based |
ARIMA | AutoRegressive Integrated Moving Average |
CiSSA | Circulant Singular Spectrum Analysis |
GDP | Gross Domestic Product |
MMSE | Minimum Mean Square Error |
IP | Industrial Production |
SSA | Singular Spectrum Analysis |
TS | Programs TRAMO-SEATS |
VAR | Vector AutoRegression |
Symbols
or | Time series |
Length of time series | |
Window length | |
Number of columns of the trajectory matrix | |
Vector of length and origin at time obtained from | |
Trajectory matrix with columns | |
m-th sample second moment | |
Circulant matrix built with the sample second moments | |
k-th eigenvalue of the matrix | |
k-th eigenvector of the matrix , k-column of matrix | |
The Fourier unit matrix | |
Frequency in cycles per unit time | |
k-th elementary matrix of rank 1 | |
k-th elementary pairs of frequencies | |
Elementary matrix by frequency associated with the pair | |
j-th group de pairs linked to an unobserved component | |
Matrix associated with the group | |
Reconstructed/estimated series of an unobserved component | |
Business cycle at period t | |
Preliminary estimate of when data are available at time t + j | |
Revision of the estimate of at time t + j | |
Number of periods when there are no more revisions | |
Number of preliminary estimates after j periods | |
Standard deviation of the revisions after j periods | |
Ratio of calculated by CiSSA and AMB methods | |
Mean of the final estimate of | |
Root mean square error of | |
Probability that the ratio is less than one |
References
- Croushore, D. Frontiers of Real-Time Data Analysis. J. Econ. Lit. 2011, 49, 72–100. [Google Scholar] [CrossRef] [Green Version]
- Orphanides, A. Monetary policy rules based on real-time data. Am. Econ. Rev. 2001, 91, 964–985. [Google Scholar] [CrossRef] [Green Version]
- Ashley, J.; Driver, R.; Hayes, S.; Jeffery, C. Dealing with Data Uncertainty. Bank of England Quarterly Bulletin; Spring: London, UK, 2005. [Google Scholar]
- Damia, V.; Picón Aguilar, C. Quantitative Quality Indicators for Statistics—An Application to Euro Area Balance of Payment Statistics. In Occasional Paper Series; Paper No. 54; European Central Bank: Frankfurt am Main, Germany, 2006; Available online: https://www.ecb.europa.eu/pub/pdf/scpops/ecbocp54.pdf (accessed on 21 May 2021).
- Fixler, D.J.; Nalewaik, J. News, Noise, and Estimates of the “True” Unobserved State of the Economy; Divisions of Research & Statistics and Monetary Affairs Federal Reserve Board: Washington, DC, USA, 2007. Available online: https://www.federalreserve.gov/econres/feds/news-noise-and-estimates-of-the-quottruequot-unobserved-state-of-the-economy.htm (accessed on 21 May 2021).
- Diebold, F.X.; Rudebusch, G.D. Forecasting output with the composite leading index: A real-time analysis. J. Am. Stat. Assoc. 1991, 86, 603–610. [Google Scholar] [CrossRef]
- Jacobs, J.P.; van Norden, S. Modeling data revisions: Measurement error and dynamics of “true” values. J. Econ. 2011, 161, 101–109. [Google Scholar] [CrossRef]
- Dagum, E.B.; Bianconcini, S. Seasonal Adjustment Methods and Real Time Trend-Cycle Estimation; Springer International Publishing: Berlin, Germany, 2016. [Google Scholar]
- Patterson, K.; Hassani, H.; Heravi, S.; Zhigljavsky, A. Multivariate singular spectrum analysis for forecasting revisions to real-time data. J. Appl. Stat. 2011, 38, 2183–2211. [Google Scholar] [CrossRef]
- De Carvalho, M.; Rodrigues, P.C.; Rua, A. Tracking the US business cycle with a singular spectrum analysis. Econ. Lett. 2012, 114, 32–35. [Google Scholar] [CrossRef]
- Conrad, W.; Corrado, C. Application of the Kalman filter to revisions in monthly retail sales estimates. J. Econ. Dyn. Control. 1979, 1, 177–198. [Google Scholar] [CrossRef]
- Harvey, A.C.; McKenzie, C.R.; Blake, D.P.C.; Desai, M.J. Irregular data revisions. Appl. Time Ser. Anal. Econ. Data 1983, 329–347. [Google Scholar]
- Patterson, K.D.; Heravi, S.M. Data revisions and the expenditure components of GDP. Econ. J. 1991, 101, 887–901. [Google Scholar] [CrossRef]
- Patterson, K.D. A state space approach to forecasting the final vintage of revised data with an application to the index of industrial production. J. Forecast. 1995, 14, 337–350. [Google Scholar] [CrossRef]
- Orphanides, A.; van Norden, S. The unreliability of output-gap estimates in real time. Rev. Econ. Stat. 2002, 84, 569–583. [Google Scholar] [CrossRef] [Green Version]
- Wildi, M. Real-Time Signal Extraction; Lecture Notes in Economics and Mathematical Systems, #547; Springer: Berlin, Germany, 2007. [Google Scholar]
- Eurostat. Handbook on Seasonal Adjustment. 2018. Available online: https://ec.europa.eu/eurostat/documents/3859598/8939616/KS-GQ-18-001-EN-N.pdf (accessed on 21 May 2021).
- Bógalo, J.; Poncela, P.; Senra, E. Circulant Singular Spectrum Analysis: A new automated procedure for signal extraction. Signal Process. 2021, 179, 107824. [Google Scholar] [CrossRef]
- Dynan, K.E.; Elmendorf, D.W. Do provisional estimates of output miss turning points? Board Gov. Fed. Reserv. Syst. 2001. working Paper. [Google Scholar]
- Swanson, N.R.; Van Dijk, D. Are statistical reporting agencies getting it right? Data rationality and business cycle asymmetry. J. Bus. Econ. Stat. 2006, 24, 24–42. [Google Scholar] [CrossRef] [Green Version]
- Golyandina, N.; Nekrutkin, V.; Zhigljavsky, A. Analysis of Time Series Structure: SSA and Related Techniques; Chapman & Hall/CRC: Boca Raton, FL, USA, 2001. [Google Scholar]
- Harris, T.J.; Yuan, H. Filtering and frequency interpretations of singular spectrum analysis. Phys. D Nonlinear Phenom. 2010, 239, 1958–1967. [Google Scholar] [CrossRef]
- Khan, M.A.R.; Poskitt, D.S. Forecasting stochastic processes using singular spectrum analysis: Aspects of the theory and application. Int. J. Forecast. 2017, 33, 199–213. [Google Scholar] [CrossRef]
- Mahmoudvand, R.; Rodrigues, P.C. Missing value imputation in time series using Singular Spectrum Analysis. Int. J. Energy Stat. 2016, 4, 1650005. [Google Scholar] [CrossRef]
- Broomhead, D.; King, G. Extracting qualitative dynamics from experimental data. Phys. D Nonlinear Phenom. 1986, 20, 217–236. [Google Scholar] [CrossRef]
- Fraedrich, K. Estimating the dimension of weather and climate attractors. J. Atmos. Sci. 1986, 43, 419–432. [Google Scholar] [CrossRef]
- Vautard, R.; Ghil, M. Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Phys. D Nonlinear Phenom. 1989, 35, 395–424. [Google Scholar] [CrossRef]
- Vautard, R.; Yiou, P.; Ghil, M. Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Phys. D Nonlinear Phenom. 1992, 58, 95–126. [Google Scholar] [CrossRef]
- Safi, S.M.M.; Pooyan, M.; Nasrabadi, A.M. Improving the performance of the SSVEP-based BCI system using optimized singular spectrum analysis (OSSA). Biomed. Signal Process. Control. 2018, 46, 46–58. [Google Scholar] [CrossRef]
- Yurova, A.; Bobylev, L.P.; Zhu, Y.; Davy, R.; Korzhikov, A.Y. Atmospheric heat advection in the Kara Sea region under main synoptic processes. Int. J. Climatol. 2019, 39, 361–374. [Google Scholar] [CrossRef] [Green Version]
- Kumar, U.; Jain, V.K. Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India. Energy 2010, 35, 1709–1716. [Google Scholar] [CrossRef]
- Bozzo, E.; Carniel, R.; Fasino, D. Relationship between Singular Spectrum Analysis and Fourier analysis: Theory and application to the monitoring of volcanic activity. Comput. Math. Appl. 2010, 60, 812–820. [Google Scholar] [CrossRef] [Green Version]
- Arteche, J.; García-Enríquez, J. Singular Spectrum Analysis for signal extraction in Stochastic Volatility models. Econ. Stat. 2017, 1, 85–98. [Google Scholar] [CrossRef]
- Hassani, H.; Soofi, A.S.; Zhigljavsky, A. Predicting inflation dynamics with singular spectrum analysis. J. R. Stat. Soc. Ser. A 2013, 176, 743–760. [Google Scholar] [CrossRef]
- Patterson, K.D.; Heravi, S.M. Revisions to official data on US GNP: A multivariate assessment of different vintages. J. Off. Stat. 2004, 20, 573–602. [Google Scholar]
- Carvalho, M.D.; Rua, A. Real-time nowcasting the US output gap: Singular spectrum analysis at work. Int. J. Forecast. 2017, 33, 185–198. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, R.; Maravall, A. Estimation of the business cycle: A modified Hodrick-Prescott filter. Span. Econ. Rev. 1999, 1, 175–206. [Google Scholar] [CrossRef]
- Canova, F. Detrending and business cycle facts. J. Monet. Econ. 1998, 41, 475–512. [Google Scholar] [CrossRef]
- Hillmer, S.C.; Tiao, G.C. An ARIMA-model-based approach to seasonal adjustment. J. Am. Stat. Assoc. 1982, 77, 63–70. [Google Scholar] [CrossRef]
- Kolmogorov, A. Interpolation und extrapolation von stationären zufälligen folgen. Bull. Acad. Sci. USSR Ser. Math. 1941, 3, 3–14. [Google Scholar]
- Wiener, N. Extrapolation, Interpolation, and Smoothing of Stationary Time Series with Engineering Applications; MIT: Cambridge, MA, USA; Wiley: New York, NY, USA, 1949. [Google Scholar]
- Cleveland, W.P.; Tiao, G.C. Decomposition of seasonal time series: A model for the census X-11 program. J. Am. Stat. Assoc. 1976, 71, 581–587. [Google Scholar] [CrossRef]
- Young, P.C. Recursive Estimation and Time Series Analysis: An Introduction; Springer: Berlin, Germany, 1984. [Google Scholar]
- Durbin, J.; Koopman, S.J. Time Series Analysis by State Space Methods, 2nd ed.; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Gómez, V.; Maravall, A. Programs TRAMO and SEATS: Instructions for the User; Working Paper 9628; Bank of Spain: Calle de Alcalá, Madrid, 1996; Available online: https://www.bde.es/f/webbde/SES/Secciones/Publicaciones/PublicacionesSeriadas/DocumentosTrabajo/98/Fic/dt9805e.pdf (accessed on 21 May 2021).
- Gray, R.M. On Unbounded Toeplitz Matrices and Nonstationary Time Series with an Application to Information Theory. Inf. Control 1974, 24, 181–196. [Google Scholar] [CrossRef] [Green Version]
Percentiles | |||||||
---|---|---|---|---|---|---|---|
5 | 25 | 50 | 75 | 95 | |||
Linear | L = 96 | CiSSA | −0.00049 | −0.00022 | 0.00000 | 0.00021 | 0.00052 |
AMB | −0.00076 | −0.00028 | 0.00002 | 0.00032 | 0.00088 | ||
L = 192 | CiSSA | −0.00182 | −0.00086 | −0.00007 | 0.00079 | 0.00185 | |
AMB | −0.00270 | −0.00111 | −0.00003 | 0.00110 | 0.00298 | ||
Non-linear | L = 96 | CiSSA | −0.00052 | −0.00019 | 0.00000 | 0.00020 | 0.00050 |
AMB | −0.00085 | −0.00033 | −0.00001 | 0.00030 | 0.00083 | ||
L = 192 | CiSSA | −0.00197 | −0.00079 | −0.00001 | 0.00082 | 0.00197 | |
AMB | −0.00283 | −0.00106 | −0.00001 | 0.00116 | 0.00293 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bógalo, J.; Poncela, P.; Senra, E. Circulant Singular Spectrum Analysis to Monitor the State of the Economy in Real Time. Mathematics 2021, 9, 1169. https://doi.org/10.3390/math9111169
Bógalo J, Poncela P, Senra E. Circulant Singular Spectrum Analysis to Monitor the State of the Economy in Real Time. Mathematics. 2021; 9(11):1169. https://doi.org/10.3390/math9111169
Chicago/Turabian StyleBógalo, Juan, Pilar Poncela, and Eva Senra. 2021. "Circulant Singular Spectrum Analysis to Monitor the State of the Economy in Real Time" Mathematics 9, no. 11: 1169. https://doi.org/10.3390/math9111169
APA StyleBógalo, J., Poncela, P., & Senra, E. (2021). Circulant Singular Spectrum Analysis to Monitor the State of the Economy in Real Time. Mathematics, 9(11), 1169. https://doi.org/10.3390/math9111169