Thermal Conductivity Estimation Based on Well Logging
Abstract
:1. Introduction
2. Thermal Conductivity Estimation
2.1. Mixing Law
2.2. Temperature Correction
3. Method
3.1. TC Measurements in a Laboratory
3.2. TC Prediction Based on Well Logging
4. Results
4.1. Laboratory Test TC
4.2. Predicted TC
5. Discussion
5.1. Comparison between Predicted TC and Test TC
5.2. Application to Geothermal Energy
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beardsmore, G.R.; Cull, J.P. Crustal Heat Flow: A Guide to Measurement and Modelling; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Goss, R.; Combs, J.; Timur, A. Prediction of Thermal Conductivity in Rocks from other Physical Parameters and from Standard Geophysical Well Logs. In Proceedings of the SPWLA 16th Annual Logging Symposium, New Orleans, LA, USA, 4 June 1975. [Google Scholar]
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Olasolo, P.; Juárez, M.C.; Morales, M.P.; D’Amico, S.; Liarte, I.A. Enhanced geothermal systems (EGS): A review. Renew. Sustain. Energy Rev. 2016, 56, 133–144. [Google Scholar] [CrossRef]
- Cermak, V.; Rybach, L. Terrestrial Heat Flow and the Lithosphere Structure; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Jiang, G.Z.; Gao, P.; Rao, S.; Zhang, L.Y.; Tang, X.Y.; Huang, F.; Zhao, P.; Pang, H.; He, L.J.; Hu, S.B.; et al. Compilation of heat flow data in the continental area of China (4th edition). Chin. J. Geophys. 2016, 59, 2892–2910. [Google Scholar]
- Wang, Z.; Jiang, G.; Zhang, C.; Tang, X.; Hu, S. Estimating geothermal resources in Bohai Bay Basin, eastern China, using Monte Carlo simulation. Environ. Earth Sci. 2019, 78, 355. [Google Scholar] [CrossRef]
- Pribnow, D.; Williams, C.F.; Sass, J.H.; Keating, R. Thermal conductivity of water-saturated rocks from the KTB Pilot Hole at temperatures of 25 to 300 °C. Geophys. Res. Lett. 1996, 23, 391–394. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, S.; Wang, Z.; Jiang, G.; Hu, D.; Zhang, K.; Gao, P.; Hu, J.; Zhang, T. Heat flow, heat production, thermal structure and its tectonic implication of the southern Tan-Lu Fault Zone, East–Central China. Geothermics 2019, 82, 254–266. [Google Scholar] [CrossRef]
- Sun, Q. Analyses of the factors influencing sandstone thermal conductivity. Acta Geodyn. Geomater. 2017, 14, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Roy, R.; Beck, A. Ihermophysical Properties of Rocks, Physical Properties of Rocks and Minerals; CINDAS Data Series on Material Properties; Touloukian, Y.S., Judd, W.R., Roy, R.F., Eds.; McGraw-Hill: New York, NY, USA, 1981; pp. 409–502. [Google Scholar]
- Sekiguchi, K. A method for determining terrestrial heat flow in oil basinal areas. Tectonophysics 1984, 103, 67–79. [Google Scholar] [CrossRef]
- Dixon, J.C. Appendix C, Properties of Water, The Shock Absorber Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Popov, Y.; Beardsmore, G.; Clauser, C.; Roy, S. ISRM suggested methods for determining thermal properties of rocks from laboratory tests at atmospheric pressure. Rock Mech. Rock Eng. 2016, 49, 4179–4207. [Google Scholar] [CrossRef]
- He, L.; Hu, S.; Huang, S.; Yang, W.; Wang, J.; Yuan, Y.; Yang, S. Heat flow study at the Chinese Continental Scientific Drilling site: Borehole temperature, thermal conductivity, and radiogenic heat production. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Popov, Y.; Bayuk, I.O.; Parshin, A.; Miklashevskiy, D.; Novikov, S.; Chekhonin, E. New Methods and Instruments for Determination of Reservoir Thermal Properties. In Proceedings of the 37th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 30 January–1 February 2012. [Google Scholar]
- Wang, Y.; Wang, L.; Hu, D.; Guan, J.; Bai, Y.; Wang, Z.; Jiang, G.; Hu, J.; Tang, B.; Zhu, C.; et al. The present-day geothermal regime of the North Jiangsu Basin, East China. Geothermics 2020, 88, 101829. [Google Scholar] [CrossRef]
- Asquith, G.B.; Krygowski, D.; Gibson, C.R. Basic Well Log Analysis; American Association of Petroleum Geologists Tulsa: Tulsa, OK, USA, 2004; Volume 16. [Google Scholar]
- Atlas, D. Log Interpretation Charts: Dresser Atlas; Dresser Industries. Inc.: Addison, TX, USA, 1979; 107p. [Google Scholar]
- Timur, A. An Investigation of Permeability, Porosity, and Residual Water Saturation Relationships. In Proceedings of the SPWLA 9th Annual Logging Symposium, New Orleans, LA, USA, 23 June 1968. [Google Scholar]
- Glover, P. Petrophysics MSc Course Notes; University of Leeds: Leeds, UK, 2000. [Google Scholar]
- Schön, J.H. Physical Properties of Rocks: Fundamentals and Principles of Petrophysics; Elsevier: Amsterdam, The Netherlands, 2015; Volume 65. [Google Scholar]
- Clauser, C. Geothermal energy. In Landolt-Bo¨rnstein Numerical Data and Functional Relationships in Science and Technology, New Series, Group VIII; von Heinloth, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; Volume 3. [Google Scholar]
- Dickson, M.H.; Fanelli, M. Geothermal Energy: Utilization and Technology; Routledge: London, UK, 2013. [Google Scholar]
- Letcher, T.M. Introduction with a focus on atmospheric carbon dioxide and climate change. In Future Energy; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–17. [Google Scholar]
- DiPippo, R.; Renner, J.L. Geothermal energy. In Future Energy; Elsevier: Amsterdam, The Netherlands, 2014; pp. 471–492. [Google Scholar]
- Barasa Kabeyi, M.J. Geothermal electricity generation, challenges, opportunities and recommendations. Int. J. Adv. Sci. Res. Eng. 2019, 5, 53–95. [Google Scholar] [CrossRef]
- Phetteplace, G. Geothermal heat pumps. J. Energy Eng. 2007, 133, 32–38. [Google Scholar] [CrossRef]
- Teske, S.; Fattal, A.; Lins, C.; Hullin, M.; Williamson, L.E. Renewables Global Futures Report: Great Debates towards 100% Renewable Energy; Global Forum of Sustainable Energy: Wien, Austria, 2017. [Google Scholar]
- Tester, J.W.; Anderson, B.J.; Batchelor, A.S.; Blackwell, D.D.; DiPippo, R.; Drake, E.M.; Garnish, J.; Livesay, B.; Moore, M.C.; Nichols, K.; et al. Impact of enhanced geothermal systems on US energy supply in the twenty-first century. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 1057–1094. [Google Scholar] [CrossRef]
- IRENA. Renewable Capacity Statistics 2021; The International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2021. [Google Scholar]
- Biron, M. An overview of sustainability and plastics: A multifaceted, relative, and scalable concept. In A Practical Guide to Plastics Sustainability; William Andrew: London, UK, 2020; pp. 1–43. [Google Scholar]
- Archer, R. Geothermal energy. In Future Energy; Elsevier: Amsterdam, The Netherlands, 2020; pp. 431–445. [Google Scholar]
- Lu, S.-M. A global review of enhanced geothermal system (EGS). Renew. Sustain. Energy Rev. 2018, 81, 2902–2921. [Google Scholar] [CrossRef]
- Pollack, H.N.; Hurter, S.J.; Johnson, J.R. Heat flow from the Earth’s interior: Analysis of the global data set. Rev. Geophys. 1993, 31, 267–280. [Google Scholar] [CrossRef]
- Jiang, G.; Hu, S.; Shi, Y.; Zhang, C.; Wang, Z.; Hu, D. Terrestrial heat flow of continental China: Updated dataset and tectonic implications. Tectonophysics 2019, 753, 36–48. [Google Scholar] [CrossRef]
- Williams, C.F.; Reed, M.; Mariner, R.H. A Review of Methods Applied by the US Geological Survey in the Assessment if Identified Geothermal Resources; CiteSeer: Princeton, NJ, USA, 2008. [Google Scholar]
- Zhang, C.; Jiang, G.; Shi, Y.; Wang, Z.; Wang, Y.; Li, S.; Jia, X.; Hu, S. Terrestrial heat flow and crustal thermal structure of the Gonghe-Guide area, northeastern Qinghai-Tibetan plateau. Geothermics 2018, 72, 182–192. [Google Scholar] [CrossRef]
- Tester, J.W.; Anderson, B.J.; Batchelor, A.S.; Blackwell, D.D.; DiPippo, R.; Drake, E.M.; Garnish, J.; Livesay, B.; Moore, M.C.; Nichols, K.; et al. The Future of Geothermal Energy; Massachusetts Institute of Technology: Cambridge, MA, USA, 2006; p. 358. [Google Scholar]
- Wang, J.; Qiu, N.; Hu, S.; He, L. Advancement and developmental trend in the geothermics of oil fields in China. Earth Sci. Front. 2017, 24, 1–12. [Google Scholar]
- Fridleifsson, I.B. Geothermal energy for the benefit of the people. Renew. Sustain. Energy Rev. 2001, 5, 299–312. [Google Scholar] [CrossRef] [Green Version]
Component | GR (API) | k (W/(m·K)) | Apparent Thermal Neutron Porosity |
---|---|---|---|
Sand | 30 | 5.0 | 0 |
Shale | 160 | 1.7 | 0.18 |
Air | - | - | |
Water | - | - | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Jiang, G.; Wang, Y.; Hu, S. Thermal Conductivity Estimation Based on Well Logging. Mathematics 2021, 9, 1176. https://doi.org/10.3390/math9111176
Hu J, Jiang G, Wang Y, Hu S. Thermal Conductivity Estimation Based on Well Logging. Mathematics. 2021; 9(11):1176. https://doi.org/10.3390/math9111176
Chicago/Turabian StyleHu, Jie, Guangzheng Jiang, Yibo Wang, and Shengbiao Hu. 2021. "Thermal Conductivity Estimation Based on Well Logging" Mathematics 9, no. 11: 1176. https://doi.org/10.3390/math9111176
APA StyleHu, J., Jiang, G., Wang, Y., & Hu, S. (2021). Thermal Conductivity Estimation Based on Well Logging. Mathematics, 9(11), 1176. https://doi.org/10.3390/math9111176