Controllability of Impulsive ψ-Caputo Fractional Evolution Equations with Nonlocal Conditions
Abstract
:1. Introduction
2. Preliminaries
3. The Concept of Mild Solution
- (a)
- .
- (b)
- for all .
- (c)
- For all and , .
4. Controllability Results
5. An Example
6. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ge, Z.M.; Jhuang, W.R. Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor. Chaos Soliton. Fract. 2007, 33, 270–289. [Google Scholar] [CrossRef]
- Lin, L.; Liu, Y.; Zhao, D. Study on implicit-type fractional coupled system with integral boundary conditions. Mathematics 2021, 9, 300. [Google Scholar] [CrossRef]
- Mao, J.; Zhao, D. Multiple positive solutions for nonlinear fractional differential equations with integral boundary value conditions and a parameter. J. Funct. Space 2019, 2019, 2787569. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, Y. Positive solutions for a class of fractional differential coupled system with integral boundary value conditions. J. Nonlinear Sci. Appl. 2016, 9, 2922–2942. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y. Bifurcation techniques for a class of boundary value problems of fractional impulsive differential equations. J. Nonlinear Sci. Appl. 2015, 8, 340–353. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, Y.; Cui, Y. Infinitely many solutions for impulsive fractional boundary value problem with p-Laplacian. Bound. Value Probl. 2018, 2018, 94. [Google Scholar] [CrossRef] [Green Version]
- Kusnezov, D.; Bulgac, A.; Dang, G.D. Quantum Levy processes and fractional kinetics. Phys. Rev. Lett. 1999, 82, 1136–1139. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.; Yuan, R. The stability of the equilibria of the Allen-Cahn equation with fractional diffusion. Appl. Anal. 2019, 98, 600–610. [Google Scholar] [CrossRef]
- Jia, J.; Wang, H. A fast finite volume method for conservative space-time fractional diffusion equations discretized on space-time locally refined meshes. Comput. Math. Appl. 2019, 78, 1345–1356. [Google Scholar] [CrossRef]
- Zhou, Z.; Gong, W. Finite element approximation of optimal control problems governed by time fractional diffusion equation. Comput. Math. Appl. 2016, 71, 301–318. [Google Scholar] [CrossRef]
- Li, X.; Shen, J.; Rakkiyappan, R. Persistent impulsive effects on stability of functional differential equations with finite or infinite delay. Appl. Math. Comput. 2018, 329, 14–22. [Google Scholar] [CrossRef]
- Zhao, D.; Mao, J. New controllability results of fractional nonlocal semilinear evolution systems with finite delay. Complexity 2020, 2020, 7652648. [Google Scholar]
- Ostoja-Starzewski, M. Towards thermoelasticity of fractal media. J. Therm. Stress 2007, 30, 889–896. [Google Scholar] [CrossRef]
- Povstenko, Y. Fractional Thermoelasticity; Springer: New York, NY, USA, 2015. [Google Scholar]
- Liu, B.; Liu, Y. Positive solutions of a two-point boundary value problem for singular fractional differential equations in Banach space. J. Funct. Space 2013, 2013, 585639. [Google Scholar] [CrossRef]
- Ma, T.; Yan, B. The multiplicity solutions for nonlinear fractional differential equations of Riemann-Liouville type. Fract. Calc. Appl. Anal. 2018, 21, 801–818. [Google Scholar] [CrossRef]
- Xu, J.; Jiang, J.; O’Regan, D. Positive solutions for a class of p-Lapacian Hadamard fractional-order three-point boundary value problems. Mathematics 2020, 8, 308. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Liu, Y. Twin solutions to semipositone boundary value problems for fractional differential equations with coupled integral boundary conditions. J. Nonlinear Sci. Appl. 2017, 10, 3544–3565. [Google Scholar] [CrossRef]
- Li, H.; Chen, Y. Multiple Positive Solutions for a System of Nonlinear Caputo-Type Fractional Differential Equations. J. Funct. Space 2020, 2020, 2437530. [Google Scholar] [CrossRef]
- Zhao, D.; Mao, J. Positive solutions for a class of nonlinear singular fractional differential systems with Riemann-Stieltjes coupled integral boundary value conditions. Symmetry 2021, 13, 107. [Google Scholar] [CrossRef]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef] [Green Version]
- Jarad, F.; Abdeljawad, T. Generalized fractional derivatives and Laplace transform. Discret. Contin. Dyn. Syst. Ser. S 2019, 13, 709–722. [Google Scholar] [CrossRef] [Green Version]
- D’Onofrio, A. On pulse vaccination strategy in the SIR epidemic model with vertical transmission. Appl. Math. Lett. 2005, 18, 729–732. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Xu, X.; Ding, X. Finite-time stability analysis of stochastic switched Boolean networks with impulsive effect. Appl. Math. Comput. 2019, 347, 557–565. [Google Scholar] [CrossRef]
- Niu, Y.; Yan, B. Global structure of solutions to boundary-value problems of impulsive differential equations. Electron. J. Differ. Equ. 2016, 2016, 1–23. [Google Scholar]
- Tang, S.; Chen, L. Density-dependent birth rate, birth pulses and their population dynamic consequences. J. Math. Biol. 2002, 44, 185–199. [Google Scholar] [CrossRef] [PubMed]
- Byszewski, L. Existence of solutions of a semilinear functional-differential evolution nonlocal problem. Nonlinear Anal. 1998, 34, 65–72. [Google Scholar] [CrossRef]
- Ji, S.; Li, G.; Min, W. Controllability of impulsive differential systems with nonlocal conditions. Appl. Math. Comput. 2011, 217, 6981–6989. [Google Scholar] [CrossRef]
- Liu, Y.; O’Regan, D. Controllability of impulsive functional differential systems with nonlocal conditions. Electron. J. Differ. Equ. 2013, 2013, 194. [Google Scholar]
- Li, H.; Ding, X. A control Lyapunov function approach to feedback stabilization of logical control networks. SIAM J. Control Optim. 2019, 57, 810–831. [Google Scholar] [CrossRef]
- Liang, J.; Yang, H. Controllability of fractional integro-differential evolution equations with nonlocal conditions. Appl. Math. Comput. 2015, 254, 20–29. [Google Scholar] [CrossRef]
- Xu, X.; Li, H.; Li, Y.; Alsaadi, F.E. Output tracking control of Boolean control networks with impulsive effects. Math. Methods Appl. Sci. 2018, 41, 1554–1564. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, Y.; Li, X. Controllability for a class of semilinear fractional evolution systems via resolvent operators. Commun. Pure Appl. Anal. 2019, 18, 455–478. [Google Scholar] [CrossRef] [Green Version]
- Hernández, E.; O’Regan, D. Controllability of Volterra-Fredholm type systems in Banach spaces. J. Frankl. Inst. 2009, 346, 95–101. [Google Scholar] [CrossRef]
- Heinz, H.P. On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions. Nonlinear Anal. 1983, 7, 1351–1371. [Google Scholar] [CrossRef]
- Mönch, H. Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal. 1980, 1980, 985–999. [Google Scholar] [CrossRef]
- Suechoei, A.; Ngiamsunthorn, P.S. Existence uniqueness and stability of mild solutions for semilinear ψ-Caputo fractional evolution equations. Adv. Differ. Equ. 2020, 2020, 114. [Google Scholar] [CrossRef]
- Shu, X.; Shi, Y. A study on the mild solution of impulsive fractional evolution equations. Appl. Math. Comput. 2016, 273, 465–476. [Google Scholar] [CrossRef]
- Wang, J.; Fečkan, M.; Zhou, Y. On the new concept solutions and existence results for impulsive fractional evolutions. Dyn. Partial Differ. Equ. 2011, 8, 345–361. [Google Scholar]
- Engel, K.; Nagel, R. One-Parameter Semigroups for Linear Evolution Equations; Springer: New York, NY, USA, 2000. [Google Scholar]
- Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations; Springer: New York, NY, USA, 1983. [Google Scholar]
- Zhou, Y.; Jiao, F. Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 2010, 59, 1063–1077. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.R.; Zhou, Y. A class of fractional evolution equations and optimal controls. Nonlinear Anal. 2011, 12, 262–272. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, L.; Liu, Y.; Zhao, D. Controllability of Impulsive ψ-Caputo Fractional Evolution Equations with Nonlocal Conditions. Mathematics 2021, 9, 1358. https://doi.org/10.3390/math9121358
Lin L, Liu Y, Zhao D. Controllability of Impulsive ψ-Caputo Fractional Evolution Equations with Nonlocal Conditions. Mathematics. 2021; 9(12):1358. https://doi.org/10.3390/math9121358
Chicago/Turabian StyleLin, Longfei, Yansheng Liu, and Daliang Zhao. 2021. "Controllability of Impulsive ψ-Caputo Fractional Evolution Equations with Nonlocal Conditions" Mathematics 9, no. 12: 1358. https://doi.org/10.3390/math9121358
APA StyleLin, L., Liu, Y., & Zhao, D. (2021). Controllability of Impulsive ψ-Caputo Fractional Evolution Equations with Nonlocal Conditions. Mathematics, 9(12), 1358. https://doi.org/10.3390/math9121358