Exact Solutions and Conserved Vectors of the Two-Dimensional Generalized Shallow Water Wave Equation
Abstract
:1. Introduction
2. Exact Solutions
2.1. Symmetries and Symmetry Reductions
2.2. Solution Using Direct Integration
2.3. Solution via Kudryashov’s Method
3. Conservation Laws
3.1. Conservation Laws Utilizing the Multiplier Method
3.2. Conservation Laws Utilizing Noether’s Theorem
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, X.X.; Tian, B.; Qu, Q.X.; Yuan, Y.Q.; Zhao, X.H. Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma. Chaos Solitons Fractals 2020, 134, 109709. [Google Scholar] [CrossRef]
- Gao, X.Y. Mathematical view with observational/experimental consideration on certain (2 + 1)-dimensional waves in the cosmic/laboratory dusty plasmas. Appl. Math. Lett. 2019, 91, 165–172. [Google Scholar] [CrossRef]
- Zhang, C.R.; Tian, B.; Qu, Q.X.; Liu, L.; Tian, H.Y. Vector bright solitons and their interactions of the couple Fokas–Lenells system in a birefringent optical fiber, Z. Angew. Math. Phys. 2020, 71, 1–19. [Google Scholar]
- Gao, X.Y.; Guo, Y.J.; Shan, W.R. Water-wave symbolic computation for the Earth, Enceladus and Titan: The higher-order Boussinesq-Burgers system, auto-and non-auto-Bäcklund transformations. Appl. Math. Lett. 2020, 104, 106170. [Google Scholar] [CrossRef]
- Benoudina, N.; Zhang, Y.; Khalique, C.M. Lie symmetry analysis, optimal system, new solitary wave solutions and conservation laws of the Pavlov equation. Commun. Nonlinear Sci. Numer. Simul. 2021, 94, 105560. [Google Scholar] [CrossRef]
- Gandarias, M.L.; Duran, M.R.; Khalique, C.M. Conservation laws and travelling wave solutions for double dispersion equations in (1 + 1) and (2 + 1) dimensions. Symmetry 2020, 12, 950. [Google Scholar] [CrossRef]
- Shafiq, A.; Khalique, C.M. Lie group analysis of upper convected Maxwell fluid flow along stretching surface. Alex. Eng. J. 2020, 59, 2533–2541. [Google Scholar] [CrossRef]
- Rosa, M.; Chuliána, S.; Gandarias, M.L.; Traciná, R. Application of Lie point symmetries to the resolution of an interface problem in a generalized Fisher equation. Physica D 2020, 405, 132411. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Exact soliton and kink solutions for new (3 + 1)-dimensional nonlinear modified equations of wave propagation. Open Eng. 2017, 7, 169–174. [Google Scholar] [CrossRef]
- Wazwaz, A.M.; El-Tantawy, S. A new (3 + 1)-dimensional generalized Kadomtsev-Petviashvili equation. Nonlinear Dyn. 2016, 84, 1107–1112. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Multiple-soliton solutions for a (3 + 1)-dimensional generalized KP equation. Commun. Nonlinear. Sci. Numer. Simul. 2012, 17, 491–495. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The tanh and sine-cosine method for compact and noncompact solutions of nonlinear Klein-Gordon equation. Appl. Math. Comput. 2005, 167, 1179–1195. [Google Scholar] [CrossRef]
- Yang, J.Y.; Ma, W.X.; Khalique, C.M. Determining lump solutions for a combined soliton equation in (2 + 1)-dimensions. Eur. Phys. J. Plus 2020, 135, 494. [Google Scholar] [CrossRef]
- Yildirim, Y.; Yasar, E. An extended Korteweg–de Vries equation: Multi-soliton solutions and conservation laws. Nonlinear Dyn. 2017, 90, 1571–1579. [Google Scholar] [CrossRef]
- Mhlanga, I.E.; Khalique, C.M. A study of a generalized Benney–Luke equation with time-dependent coefficients. Nonlinear Dyn. 2017, 90, 1535–1544. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Clarkson, P.A. Solitons, Nonlinear Evolution Equations and Inverse Scattering; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Zhang, L.; Khalique, C.M. Classification and bifurcation of a class of second-order ODEs and its application to nonlinear PDEs. Discret. Contin. Dyn.-Syst. 2018, 11, 777–790. [Google Scholar] [CrossRef]
- Kudryashov, N.A. Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos Solitons Fractals 2005, 24, 1217–1231. [Google Scholar] [CrossRef] [Green Version]
- Kudryashov, N.A.; Loguinova, N.B. Extended simplest equation method for nonlinear differential equations. Appl. Math. Comput. 2008, 205, 396–402. [Google Scholar] [CrossRef]
- Kudryashov, N.A. One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 2248–2253. [Google Scholar] [CrossRef] [Green Version]
- Hirota, R. The Direct Method in Soliton Theory; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Gu, C.H. Soliton Theory and Its Application; Zhejiang Science and Technology Press: Hangzhou, China, 1990. [Google Scholar]
- Matveev, V.B.; Salle, M.A. Darboux Transformations and Solitons; Springer: New York, NY, USA, 1991. [Google Scholar]
- Wang, M.; Zhou, Y.; Li, Z. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 1996, 216, 67–75. [Google Scholar] [CrossRef]
- Wang, M.; Li, X.; Zhang, J. The (G′/G)—Expansion method and travelling wave solutions for linear evolution equations in mathematical physics. Phys. Lett. A 2005, 24, 1257–1268. [Google Scholar]
- Olver, P.J. Applications of Lie Groups to Differential Equations, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Ibragimov, N.H. CRC Handbook of Lie Group Analysis of Differential Equations; CRC Press: Boca Raton, FL, USA, 1994; Volume 1. [Google Scholar]
- Ibragimov, N.H. Elementary Lie Group Analysis and Ordinary Differential Equations; John Wiley & Sons: Chichester, NY, USA, 1999. [Google Scholar]
- Khalique, C.M.; Adem, K.R. Explicit solutions and conservation laws of a (2 + 1)-dimensional KP-Joseph-Egri equation with power law nonlinearity. J. Appl. Nonlinear Dyn. 2018, 7, 1–9. [Google Scholar] [CrossRef]
- Khalique, C.M.; Adeyemo, O.D.I. Simbanefayi, On optimal system, exact solutions and conservation laws of the modified equal-width equation. J. Appl. Math. Nonlinear Sci. 2018, 3, 409–418. [Google Scholar] [CrossRef] [Green Version]
- Khalique, C.M.; Moleleki, L.D. A (3 + 1)-dimensional generalized BKP-Boussinesq equation: Lie group approach. Results Phys. 2019, 13, 102239. [Google Scholar] [CrossRef]
- Khalique, C.M.; Plaatjie, K.; Simbanefayi, I. Exact solutions of equal-width equation and its conservation laws. Open Phys. 2019, 17, 505–511. [Google Scholar] [CrossRef]
- Motsepa, T.; Khalique, C.M.; Gandarias, M.L. Symmetry analysis and conservation laws of the Zoomeron equation. Symmetry 2017, 9, 27. [Google Scholar] [CrossRef] [Green Version]
- Noether, E. Invariante variationsprobleme, Nachr. v. d. Ges. d. Wiss. zu Göttingen. Math.-Phys. Klasse 1918, 2, 235–257. [Google Scholar]
- Bluman, G.W.; Cheviakov, A.F.; Anco, S.C. Applications of Symmetry Methods to Partial Differential Equations; Springer: New York, NY, USA, 2010. [Google Scholar]
- Leveque, R.J. Numerical Methods for Conservation Laws, 2nd ed.; Birkhäuser-Verlag: Basel, Switzerland, 1992. [Google Scholar]
- Ibragimov, N.H. A new conservation theorem. J. Math. Anal. Appl. 2007, 333, 311–328. [Google Scholar] [CrossRef] [Green Version]
- Naz, R.; Mahomed, F.M.; Mason, D.P. Comparison of different approaches to conservation laws for some partial differential equations in fluid mechanics. Appl. Math. Comput. 2008, 205, 212–230. [Google Scholar] [CrossRef]
- Sjöberg, A. On double reductions from symmetries and conservation laws. Nonlinear Anal. Real World Appl. 2009, 10, 3472–3477. [Google Scholar] [CrossRef]
- Yasar, E.; Özer, T. On symmetries, conservations laws and similarity solutions of foam drainage equation, Internat. J. Non-Linear Mech. 2011, 46, 357–362. [Google Scholar] [CrossRef]
- Sarlet, W. Comment on ‘Conservation laws of higher order nonlinear PDEs and the variational conservation laws in the class with mixed derivatives’. J. Phys. A Math. Theor. 2010, 43, 458001. [Google Scholar] [CrossRef]
- Motsepa, T.; Abudiab, M.; Khalique, C.M. A Study of an extended generalized (2 + 1)-dimensional Jaulent-Miodek equation. Int. J. Nonlin. Sci. Num. 2018, 19, 391–395. [Google Scholar] [CrossRef]
- Anco, S.C. Generalization of Noether’s theorem in modern form to non-variational partial differential equations. In Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science; Fields Institute Communications; Springer: New York, NY, USA, 2017; Volume 79, pp. 119–182. [Google Scholar]
- Khalique, C.M.; Abdallah, S.A. Coupled Burgers equations governing polydispersive sedimentation; a Lie symmetry approach. Results Phys. 2020, 16, 102967. [Google Scholar] [CrossRef]
- Bruzón, M.S.; Gandarias, M.L. Traveling wave solutions of the K(m, n) equation with generalized evolution. Math. Meth. Appl. Sci. 2018, 41, 5851–5857. [Google Scholar] [CrossRef]
- Xin, X.; Zhang, L.; Xia, Y.; Liu, H. Nonlocal symmetries and exact solutions of the (2 + 1)-dimensional generalized variable coefficient shallow water wave equation. Appl. Math. Lett. 2019, 94, 112–119. [Google Scholar] [CrossRef] [Green Version]
- Lan, Z.; Gao, Y.; Yang, J.; Su, C.; Zuo, D. Solitons, bäcklund transformation, lax pair, and infinitely many conservation law for a (2 + 1)-dimensional generalised variable-coefficient shallow water wave equation. Naturforsch 2016, 71, 69–79. [Google Scholar] [CrossRef]
- Yildirim, Y.; Yasar, E. A (2 + 1) dimensional breaking soliton equation: Solutions and conservation laws, Chaos, Solitons and Fractals. Chaos Solitons Fractals 2018, 107, 146–155. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Integrable (2 + 1)-dimensional and (3 + 1)-dimensional breaking soliton equations. Phys. Scr. 2010, 81, 035005. [Google Scholar] [CrossRef]
- Wazwaz, A.M. A variety of completely integrable Calogero-Bogoyavlenskii-Schiff equations with time-dependent coefficients. Int. J. Numer. Method H 2020. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Multiple-soliton solutions for the Calogero-Bogoyavlenskii-Schiff, Jimbo-Miwa and YTSF equations. Appl. Math. Comput. 2008, 203, 592–597. [Google Scholar] [CrossRef]
- Wazwaz, A.M. New solutions of distinct physical structures to high-dimensional nonlinear evolution equations. Appl. Math. Comput. 2008, 196, 363–370. [Google Scholar] [CrossRef]
- Salem, S.; Kassem, M.; Mabrouk, S.M. Similarity Solution of (2 + 1)-dimensional Calogero-Bogoyavlenskii-Schiff equation Lax pair. Am. J. Appl. Math. 2019, 7, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Shakeel, M.; Mohyud-Din, S.T. Improved (G′/G)—Expansion and extended tanh methods for (2 + 1)-dimensional Calogero-Bogoyavlenskii-Schiff equation. Alex. Eng. J. 2015, 54, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Najafi, M.; Najafi, M.; Arbabi, S. New application of (G′/G)–Expansion method for generalized (2 + 1)-dimensional nonlinear evolution equations. J. Eng. Math. 2013, 5, 595–603. [Google Scholar] [CrossRef] [Green Version]
- Darvishi, M.T.; Najafi, M.; Najafi, M. New application of EHTA for the generalized (2 + 1)-dimensional nonlinear evolution equations. Int. J. Math. Comput. Sci. 2010, 6, 132–138. [Google Scholar]
- Najafi, M.; Najafi, M.; Arbabi, S. New exact solutions for the generalized (2 + 1)-dimensional nonlinear evolution equations by tanh-coth method. Int. J. Modern Theor. Phys. 2013, 2, 79–85. [Google Scholar]
- Najafi, M.; Arbabi, S.; Najafi, M. New application of sine-cosine method for the generalized (2 + 1)-dimensional nonlinear evolution equations. Int. J. Adv. Math. Sci. 2013, 1, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Aminakbari, N.; Gu, Y.; Yuan, W. Meromorphic exact solutions of the (2 + 1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff equation. Open Math. J. 2020, 18, 1342–1351. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions; Dover: New York, NY, USA, 1972. [Google Scholar]
- Kudryashov, N.A. Analytical Theory of Nonlinear Differential Equations; Institute of Computer Investigations: Moskow, Russia, 2004. [Google Scholar]
- Motsepa, T.; Khalique, C.M. Cnoidal and snoidal waves solutions and conservation laws of a generalized (2 + 1)-dimensional KdV equation. In Proceedings of the 14th Regional Conference on Mathematical Physics, Islamabad, Pakistan, 9–14 November 2015; World Scientific Publishing Co. Pte Ltd.: Singapore, 2018; pp. 253–263. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalique, C.M.; Plaatjie, K. Exact Solutions and Conserved Vectors of the Two-Dimensional Generalized Shallow Water Wave Equation. Mathematics 2021, 9, 1439. https://doi.org/10.3390/math9121439
Khalique CM, Plaatjie K. Exact Solutions and Conserved Vectors of the Two-Dimensional Generalized Shallow Water Wave Equation. Mathematics. 2021; 9(12):1439. https://doi.org/10.3390/math9121439
Chicago/Turabian StyleKhalique, Chaudry Masood, and Karabo Plaatjie. 2021. "Exact Solutions and Conserved Vectors of the Two-Dimensional Generalized Shallow Water Wave Equation" Mathematics 9, no. 12: 1439. https://doi.org/10.3390/math9121439
APA StyleKhalique, C. M., & Plaatjie, K. (2021). Exact Solutions and Conserved Vectors of the Two-Dimensional Generalized Shallow Water Wave Equation. Mathematics, 9(12), 1439. https://doi.org/10.3390/math9121439