Lagrangian Formulation, Conservation Laws, Travelling Wave Solutions: A Generalized Benney-Luke Equation
Abstract
:1. Introduction
2. Noether Symmetries and Conservation Laws
2.1. Euler-Lagrange Equation
2.2. Noether Symmetry
2.3. Noether’s Theorem
2.4. Conservation Laws
3. Exact Solutions Using the Extended Tanh Method
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benney, D.J.; Luke, J.C. Interactions of permanent waves of finite amplitude. J. Math. Phys. 1964, 43, 309–313. [Google Scholar] [CrossRef]
- Carlos, J.; Grajales, M. Instability and long-time evolution of cnoidal wave solutions for a Benney–Luke equation. Internat. J. Non-Linear Mech. 2009, 44, 999–1010. [Google Scholar]
- Wang, S.; Xu, G.; Chen, G. Cauchy problem for the generalized Benney-Luke equation. J. Math. Phys. 2007, 48, 073521. [Google Scholar] [CrossRef]
- Li, J.B. Exact traveling wave solutions to 2D-generalized Benney-Luke equation. Appl. Math. Mech. 2008, 29, 1391–1398. [Google Scholar] [CrossRef]
- Quintero, J.R. Nonlinear stability of solitary waves for a 2-D Benney-Luke equation. Discrete Contin. Dyn. Syst. 2005, 13, 203–218. [Google Scholar] [CrossRef]
- Quintero, J.R.; Grajales, J.C.M. Instability of solitary waves for a generalized Benney-Luke equation. Nonlinear Anal. 2008, 68, 3009–3033. [Google Scholar] [CrossRef]
- Zhu, J.T.; Lü, X.; Cheng, J.H. Finding the interaction solutions to the dimensionally reduced equations based on computerized symbolic computation. Modern Phys. Lett. B 2020, 34, 2050157. [Google Scholar] [CrossRef]
- Wazwaz, A.M. Painlevé analysis for Boiti-Leon-Manna-Pempinelli equation of higher dimensions with time-dependent coefficients: Multiple soliton solutions. Phys. Lett. A 2020, 384, 126310. [Google Scholar] [CrossRef]
- Wazwaz, A.M. New (3+1)-dimensional Date-Jimbo-Kashiwara-Miwa equations with constant and time-dependent coefficients: Painlevé integrability. Phys. Lett. A 2020, 384, 126787. [Google Scholar] [CrossRef]
- Lü, X.; Chen, S.J. Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: One-lump-multi-stripe and one-lump-multi-soliton types. Nonlinear Dyn. 2021, 103, 947–977. [Google Scholar] [CrossRef]
- Wazwaz, A.M. New integrable (2+1)-and (3+1)-dimensional sinh-Gordon equations with constant and time-dependent coefficients. Phys. Lett. A 2020, 384, 126529. [Google Scholar] [CrossRef]
- He, X.J.; Lü, X.; Li, M.G. Bäcklund transformation, Pfaffian, Wronskian and Grammian solutions to the (3+1)-dimensional generalized Kadomtsev–Petviashvili equation. Anal. Math. Phys. 2020, 11, 4. [Google Scholar] [CrossRef]
- Noether, E. Invariante Variationsprobleme. König Gesell Wissen Göttingen Math-Phys Kl Heft 1918, 2, 235–257. [Google Scholar]
- Adem, A.R.; Muatjetjeja, B. Conservation laws and exact solutions for a 2D Zakharov–Kuznetsov equation. Appl. Math. Lett. 2015, 48, 109–117. [Google Scholar] [CrossRef]
- Wazwaz, A.M. New solitary wave solutions to the Kuramoto-Sivashinsky and the Kawahara equations. Appl. Math. Comput. 2006, 182, 1642–1650. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The extended tanh method for the Zakharov-Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 1039–1047. [Google Scholar] [CrossRef]
- Wazwaz, A.M. The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations. Appl. Math. Comput. 2007, 184, 1002–1014. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mbusi, S.O.; Muatjetjeja, B.; Adem, A.R. Lagrangian Formulation, Conservation Laws, Travelling Wave Solutions: A Generalized Benney-Luke Equation. Mathematics 2021, 9, 1480. https://doi.org/10.3390/math9131480
Mbusi SO, Muatjetjeja B, Adem AR. Lagrangian Formulation, Conservation Laws, Travelling Wave Solutions: A Generalized Benney-Luke Equation. Mathematics. 2021; 9(13):1480. https://doi.org/10.3390/math9131480
Chicago/Turabian StyleMbusi, Sivenathi Oscar, Ben Muatjetjeja, and Abdullahi Rashid Adem. 2021. "Lagrangian Formulation, Conservation Laws, Travelling Wave Solutions: A Generalized Benney-Luke Equation" Mathematics 9, no. 13: 1480. https://doi.org/10.3390/math9131480
APA StyleMbusi, S. O., Muatjetjeja, B., & Adem, A. R. (2021). Lagrangian Formulation, Conservation Laws, Travelling Wave Solutions: A Generalized Benney-Luke Equation. Mathematics, 9(13), 1480. https://doi.org/10.3390/math9131480