Free Cells in Hyperspaces of Graphs
Abstract
:1. Introduction
2. Definitions
3. Preliminaries
4. Free Cells in Hyperspaces of Dendrites
4.1. The Case
- (1)
- The point is a ramification vertex. Suppose with no loss of generality that . If , then and hence there must exist with . Take such that , () and a point such that . The set
- (2)
- The point is essential.A similar analysis as the previous case shows that a 3-cell contained in could be built.
- (3)
- The point is a terminal vertex, and x is an ordinary point or a terminal vertex. In this case, we have Int , and this contradicts Lemma 5.
4.2. The Case
- (i)
- For each internal tree , the family is a n-cell.
- (ii)
- The hyperspace of is
- (i)
- ,
- (ii)
- for all , .
5. Free Cells in Hyperspace of Dendroids
- (1)
- ,
- (2)
- .
- (i)
- ,
- (ii)
- for all , .
- (i)
- ,in this case for some i. Hence, the ball intersects Y, and this contradicts the choice of .
- (ii)
- ,in this case, .
6. Characterization of the Arc in Terms of Anchored Hyperspaces
7. Comparative Studies and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Charatonik, W.J.; Fernández-Bayort, T.; Quintero, A. Hyperspaces of generalized continua which are infinite cylinders. Topol. Appl. 2019, 267, 106829. [Google Scholar] [CrossRef]
- Eberhart, C. Continua with locally connected Whitney continua. Houst. J. Math. 2019, 4, 165–173. [Google Scholar]
- Bryant, D.; Horsley, D.; Maenhaut, B.; Smith, B.R. Descompositions of complete multigraphs into cycles of varying lenght. J. Comb. Theory Ser. B 2018, 129, 79–106. [Google Scholar] [CrossRef] [Green Version]
- Gentner, M.; Rautenbach, D. Feedback vertex sets in cubic multigraphs. Discret. Math. 2015, 338, 2179–2185. [Google Scholar] [CrossRef]
- Hernández, J.C.; Reyna, G.; Romero, J.; Rosario, O. Transitivity on minimum dominating sets of paths and cycles. Symmetry 2020, 12, 2053. [Google Scholar] [CrossRef]
- Klee, S.; Nevo, E.; Novik, I.; Zheng, H. A lower bound theorem for centrally symmetric simplicial polytopes. Discret. Comput. Geom. 2018, 61, 541–561. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, A.; Reyna, G.; Rosario, O. Spectral study of the inverse index. Adv. Appl. Discret. Math. 2018, 3, 195–211. [Google Scholar] [CrossRef]
- Gallo, G.; Longo, G.; Pallottino, S.; Nguyen, S. Directed hypergraphs and applications. Discret. Appl. Math. 1993, 42, 177–201. [Google Scholar] [CrossRef] [Green Version]
- Feng, K. Spectra of hypergraphs and applications. J. Number Theory 1996, 60, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Duda, R. On the hyperspace of subcontinua of a finite graph I. Fundam. Math. 1968, 62, 265–286. [Google Scholar] [CrossRef]
- Eberhart, C. Intervals of continua which are Hilbert cubes. Proc. Am. Math. Soc. 1978, 68, 220–224. [Google Scholar] [CrossRef]
- Reyna, G.; Romero, J.; Espinobarros, I. Anchored hyperspaces and multigraphs. Contrib. Discret. Math. 2019, 1, 150–166. [Google Scholar]
- Nadler, S.B., Jr. Hyperspaces of Sets: A Text with Research Questions, 1st ed.; Marcel Dekker Inc.: New York, NY, USA, 1978. [Google Scholar]
- Bermudo, S.; Rodríguez, J.M.; Sigarreta, J.M.; Vilaire, J.M. Gromov hyperbolic graphs. Discret. Math. 2013, 313, 1575–1585. [Google Scholar] [CrossRef]
- Nadler, S.B. Continuum Theory. An Introduction, 1st ed.; CRC Press: New York, NY, USA, 1992. [Google Scholar]
- Kuratowski, K. Topology II; Academic Press: New York, NY, USA, 1966. [Google Scholar]
- Rogers, J.T. Dimension of hyperspace. Bull. Pol. Acad. Sci. 1972, 20, 177–179. [Google Scholar]
- Illanes, A. Cells and cubes in hyperspaces. Fundam. Math. 1988, 130, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Corona–Vázquez, F.; Quiñones–Estrella, R.A.; Sánchez-Martínez, J.; Toalá-Enríquez, R. Uniqueness of the hyperspaces C (p, X) in the class of trees. Topol. Appl. 2020, 269, 106926. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales, J.Á.J.; Hernández, G.R.; Valencia, J.R.; Cayetano, O.R. Free Cells in Hyperspaces of Graphs. Mathematics 2021, 9, 1627. https://doi.org/10.3390/math9141627
Morales JÁJ, Hernández GR, Valencia JR, Cayetano OR. Free Cells in Hyperspaces of Graphs. Mathematics. 2021; 9(14):1627. https://doi.org/10.3390/math9141627
Chicago/Turabian StyleMorales, José Ángel Juárez, Gerardo Reyna Hernández, Jesús Romero Valencia, and Omar Rosario Cayetano. 2021. "Free Cells in Hyperspaces of Graphs" Mathematics 9, no. 14: 1627. https://doi.org/10.3390/math9141627
APA StyleMorales, J. Á. J., Hernández, G. R., Valencia, J. R., & Cayetano, O. R. (2021). Free Cells in Hyperspaces of Graphs. Mathematics, 9(14), 1627. https://doi.org/10.3390/math9141627