On the Geometric Description of Nonlinear Elasticity via an Energy Approach Using Barycentric Coordinates
Abstract
:1. Introduction and Motivation
2. Deformation and Energy of Conservative Solids
3. Discrete Energy of Tetrahedral Cells
4. Lagrange Multipliers Using Null-Space Method
5. Numerical Examples
5.1. Cantilever Beam Subjected to a Regular Distributed Load
5.2. Cube with a Spherical Hole
6. Discrete Energy on General Polytopes Using Weighted Barycentric Coordinates
6.1. Standard Barycentric Coordinates Revisited
6.2. Weighted Barycentric Coordinates on General Polytopes
6.3. Energy from Angles and Lengths
6.4. Discrete Energy via Weighted Barycentric Coordinates
7. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Principle of Stationary Action in Elasticity
Appendix B. Boundary Conditions
Appendix C. Navier–Cauchy Equations of Linear Elasticity
References
- Marsden, J.; Hughes, T. Mathematical Foundations of Elasticity; Dover Civil and Mechanical Engineering Series; Courier Corporation: Dover, UK, 1994. [Google Scholar]
- Gurtin, M.E. The Linear Theory of Elasticity. In The Linear Theory of Elasticity. In Linear Theories of Elasticity and Thermoelasticity: Linear and Nonlinear Theories of Rods, Plates, and Shells; Truesdell, C., Ed.; Springer: Berlin/Heidelberg, Germany, 1973; pp. 1–295. [Google Scholar]
- Spencer, A. Continuum Mechanics; Dover Books on Physics; Dover Publications: Dover, UK, 2012. [Google Scholar]
- Steinmann, P. Geometrical Foundations of Continuum Mechanics: An Application to First- and Second-Order Elasticity and Elasto-Plasticity; Lecture Notes in Applied Mathematics and Mechanics; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Shabana, A.A. Computational Continuum Mechanics; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Landau, L.; Pitaevskii, L.; Kosevich, A.; Lifshitz, E. Theory of Elasticity: Volume 7; Number τ. 7; Elsevier Science: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Rashid, M.M.; Selimotic, M. A three-dimensional finite element method with arbitrary polyhedral elements. Int. J. Numer. Methods Eng. 2006, 67, 226–252. [Google Scholar] [CrossRef]
- Sohn, D.; Cho, Y.S.; Im, S. A novel scheme to generate meshes with hexahedral elements and poly-pyramid elements: The carving technique. Comput. Methods Appl. Mech. Eng. 2012, 201–204, 208–227. [Google Scholar] [CrossRef]
- Sohn, D.; Han, J.; Cho, Y.S.; Im, S. A finite element scheme with the aid of a new carving technique combined with smoothed integration. Comput. Methods Appl. Mech. Eng. 2013, 254, 42–60. [Google Scholar] [CrossRef]
- Beirão Da Veiga, L.; Brezzi, F.; Cangiani, A.; Manzini, G.; Marini, L.D.; Russo, A. Basic principles of Virtual Element Methods. Math. Model. Methods Appl. Sci. 2013, 23, 199–214. [Google Scholar] [CrossRef]
- Gain, A.L.; Talischi, C.; Paulino, G.H. On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 2014, 282, 132–160. [Google Scholar] [CrossRef] [Green Version]
- Desbrun, M.; Hirani, A.N.; Leok, M.; Marsden, J.E. Discrete Exterior Calculus. arXiv 2005, arXiv:math/0508341. [Google Scholar]
- Gillette, A.; Bajaj, C. Dual formulations of mixed finite element methods with applications. CAD Comput. Aided Des. 2011, 43, 1213–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosmas, O.; Jivkov, A. Development of geometric formulation of elasticity. In Proceedings of the 1st International Conference on Theoretical, Applied, Experimental Mechanics, Cyprus, Greece, 17–20 June 2018; pp. 262–267. [Google Scholar]
- Dassios, I.; Jivkov, A.; O’Ceeffe, G. A mathematical model for elasticity using calculus on discrete manifolds. Math. Methods Appl. Sci. 2018, 41, 9057–9070. [Google Scholar] [CrossRef] [Green Version]
- Seruga, D.; Kosmas, O.; Jivkov, A. Geometric modelling of elastic and elastoplastic solids with separation of volumetric and distortional energies and Prandtl operators. Int. J. Solids Struct. 2020, 198, 136–148. [Google Scholar] [CrossRef]
- Dassios, I.; Jivkov, A.; Abu-Muharib, A.; James, P. A mathematical model for plasticity and damage: A discrete calculus formulation. J. Comput. Appl. Math. 2017, 312, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Tsukerman, I. Spurious numerical solutions in electromagnetic resonance problems. IEEE Trans. Magn. 2003, 39, 1405–1408. [Google Scholar] [CrossRef]
- Millán, D.; Sukumar, N.; Arroyo, M. Cell-based maximum-entropy approximants. Comput. Methods Appl. Mech. Eng. 2015, 284, 712–731. [Google Scholar] [CrossRef] [Green Version]
- Bassi, F.; Botti, L.; Colombo, A.; Pietro, D.D.; Tesini, P. On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J. Comput. Phys. 2012, 231, 45–65. [Google Scholar] [CrossRef] [Green Version]
- Sansour, C. On the geometric structure of the stress and strain tensors, dual variables and objective rates in continuum mechanics. Arch. Mech. 1992, 44, 527–556. [Google Scholar]
- Svendsen, B. A local frame formulation of dual-strain pairs and time derivatives. Arch. Mech. 1995, 111, 13–40. [Google Scholar] [CrossRef]
- van der Giessen, E.; Kollmann, F.G. On Mathematical Aspects of Dual Variables in Continuum Mechanics. Part 1: Mathematical Principles. ZAMM J. Appl. Math. Mech. Z. Angew. Math. Mech. 1996, 76, 447–462. [Google Scholar] [CrossRef] [Green Version]
- Stumpf, H.; Hoppe, U. The Application of Tensor Algebra on Manifolds to Nonlinear Continuum Mechanics: Invited Survey Article. ZAMM J. Appl. Math. Mech. Z. Angew. Math. Mech. 1997, 77, 327–339. [Google Scholar] [CrossRef]
- Kadianakis, N. On the Geometry of Lagrangian and Eulerian Descriptions in Continuum Mechanics. ZAMM J. Appl. Math. Mech. Z. Angew. Math. Mech. 1999, 79, 131–138. [Google Scholar] [CrossRef]
- Betsch, P.; Leyendecker, S. The discrete null space method for the energy consistent integration of constrained mechanical systems. Part II: multibody dynamics. Int. J. Numer. Methods Eng. 2006, 67, 499–552. [Google Scholar] [CrossRef]
- Betsch, P. The discrete null space method for the energy consistent integration of constrained mechanical systems: Part I: Holonomic constraints. Comput. Methods Appl. Mech. Eng. 2005, 194, 5159–5190. [Google Scholar] [CrossRef] [Green Version]
- Kosmas, O.; Papadopoulos, D.; Vlachos, D. Geometric Derivation and Analysis of Multi-Symplectic Numerical Schemes for Differential Equations. Comput. Math. Var. Anal. 2020, 159, 207–226. [Google Scholar]
- Kosmas, O.; Leyendecker, S. Family of higher order exponential variational integrators for split potential systems. J. Phys. Conf. Ser. 2015, 574, 012002. [Google Scholar] [CrossRef]
- Kosmas, O.; Vlachos, D. A space-time geodesic approach for phase fitted variational integrators. J. Phys. Conf. Ser. 2016, 738, 012133. [Google Scholar] [CrossRef]
- Leitz, T.; Leyendecker, S. Galerkin Lie-group variational integrators based on unit quaternion interpolation. Comput. Methods Appl. Mech. Eng. 2018, 338, 333–361. [Google Scholar] [CrossRef]
- Chati, M.K.; Mukherjee, S.; Paulino, G.H. The meshless hypersingular boundary node method for three-dimensional potential theory and linear elasticity problems. Eng. Anal. Bound. Elem. 2001, 25, 639–653. [Google Scholar] [CrossRef]
- Floater, M.S.; Hormann, K.; Kós, G. A general construction of barycentric coordinates over convex polygons. Adv. Comput. Math. 2006, 24, 311–331. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosmas, O.; Boom, P.; Jivkov, A.P. On the Geometric Description of Nonlinear Elasticity via an Energy Approach Using Barycentric Coordinates. Mathematics 2021, 9, 1689. https://doi.org/10.3390/math9141689
Kosmas O, Boom P, Jivkov AP. On the Geometric Description of Nonlinear Elasticity via an Energy Approach Using Barycentric Coordinates. Mathematics. 2021; 9(14):1689. https://doi.org/10.3390/math9141689
Chicago/Turabian StyleKosmas, Odysseas, Pieter Boom, and Andrey P. Jivkov. 2021. "On the Geometric Description of Nonlinear Elasticity via an Energy Approach Using Barycentric Coordinates" Mathematics 9, no. 14: 1689. https://doi.org/10.3390/math9141689
APA StyleKosmas, O., Boom, P., & Jivkov, A. P. (2021). On the Geometric Description of Nonlinear Elasticity via an Energy Approach Using Barycentric Coordinates. Mathematics, 9(14), 1689. https://doi.org/10.3390/math9141689