Improving the Authentication with Built-In Camera Protocol Using Built-In Motion Sensors: A Deep Learning Solution †
Abstract
:1. Introduction
2. Related Work
2.1. Attacks on Authentication Protocols
2.2. Authentication Based on Motion Sensors
3. Method
3.1. ABC Protocol
3.2. ABC Protocol Defense Systems
3.2.1. Forgery Detection
3.2.2. Removal Detection
3.3. An Attack for the ABC Protocol
3.4. Proposed Multi-Modal ABC Protocol
3.4.1. Motion Signal Recording
3.4.2. Motion Signal Pre-Processing
3.4.3. Learning Neural Embeddings
3.4.4. Motion Sensor Fingerprints
4. Experiments
4.1. Data Sets
4.2. Organization of Experiments
4.3. Evaluation Details
4.3.1. Evaluation Measures
4.3.2. Evaluation Protocol
4.4. Attacking the ABC Protocol
4.4.1. Results with Five Images for PRNU Estimation
4.4.2. Results with One Image for PRNU Estimation
4.5. Multi-Way Classification Results with Deep Models
4.6. Attacking the Multi-Modal ABC Protocol
4.6.1. Results with CNN Embeddings
4.6.2. Results with ConvLSTM Embeddings
4.6.3. Results with Joint Neural Embeddings
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Board of Governors of the Federal Reserve System. Consumers and Mobile Financial Services 2016. Available online: https://www.federalreserve.gov/econresdata/consumers-and-mobile-financial-services-report-201603.pdf (accessed on 21 June 2021).
- Arthur, C. iPhone 5S fingerprint sensor hacked by Germany’s Chaos Computer Club. Guardian News. Np 2013, 23. [Google Scholar]
- Aviv, A.J.; Gibson, K.; Mossop, E.; Blaze, M.; Smith, J.M. Smudge Attacks on Smartphone Touch Screens. In Proceedings of the WOOT, Washington, DC, USA, 11–13 August 2010; pp. 1–7. [Google Scholar]
- Xu, Y.; Heinly, J.; White, A.M.; Monrose, F.; Frahm, J.M. Seeing double: Reconstructing obscured typed input from repeated compromising reflections. In Proceedings of the CCS, Berlin, Germany, 4–8 November 2013; pp. 1063–1074. [Google Scholar]
- Zhang, Y.; Xia, P.; Luo, J.; Ling, Z.; Liu, B.; Fu, X. Fingerprint attack against touch-enabled devices. In Proceedings of the Second ACM Workshop on Security and Privacy in Smartphones and Mobile Devices, Raleigh, NC, USA, 19 October 2012; pp. 57–68. [Google Scholar]
- Zhongjie, B.; Sixu, P.; Xinwen, F.; Dimitrios, K.; Aziz, M.; Kui, R. ABC: Enabling Smartphone Authentication with Built-in Camera. In Proceedings of the 25th Annual Network and Distributed System Security Symposium, NDSS, San Diego, CA, USA, 18–21 February 2018. [Google Scholar]
- Lukáš, J.; Fridrich, J.; Goljan, M. Digital camera identification from sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 2006, 1, 205–214. [Google Scholar] [CrossRef]
- Altinisik, E.; Tasdemir, K.; Sencar, H.T. Extracting PRNU Noise from H.264 Coded Videos. In Proceedings of the 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, 3–7 September 2018; pp. 1367–1371. [Google Scholar]
- Akshatha, K.; Karunakar, A.; Anitha, H.; Raghavendra, U.; Shetty, D. Digital camera identification using PRNU: A feature based approach. Digit. Investig. 2016, 19, 69–77. [Google Scholar] [CrossRef]
- Li, C.T. Source camera identification using enhanced sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 2010, 5, 280–287. [Google Scholar]
- Cooper, A.J. Improved photo response non-uniformity (PRNU) based source camera identification. Forensic Sci. Int. 2013, 226, 132–141. [Google Scholar] [CrossRef]
- Kang, X.; Li, Y.; Qu, Z.; Huang, J. Enhancing source camera identification performance with a camera reference phase sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 2012, 7, 393–402. [Google Scholar] [CrossRef]
- Benegui, C.; Ionescu, R.T. A breach into the Authentication with Built-in Camera (ABC) Protocol. In Proceedings of the ACNS, Rome, Italy, 19–22 October 2020; pp. 3–20. [Google Scholar]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based Learning Applied to Document Recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the NIPS, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Xingjian, S.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W.C. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In Proceedings of the NIPS, Montreal, QC, Canada, 7–12 December 2015; pp. 802–810. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Aghili, S.F.; Mala, H. Breaking a Lightweight M2M Authentication Protocol for Communications in IIoT Environment. IACR Cryptol. ePrint Arch. 2018, 2018, 891. [Google Scholar]
- Esfahani, A.; Mantas, G.; Matischek, R.; Saghezchi, F.B.; Rodriguez, J.; Bicaku, A.; Maksuti, S.; Tauber, M.; Schmittner, C.; Bastos, J. A lightweight authentication mechanism for M2M communications in industrial IoT environment. IEEE Internet Things J. 2019, 6, 288–296. [Google Scholar] [CrossRef]
- Aghili, S.F.; Mala, H.; Peris-Lopez, P. Securing Heterogeneous Wireless Sensor Networks: Breaking and Fixing a Three-Factor Authentication Protocol. Sensors 2018, 18, 3663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amin, R.; Islam, S.H.; Kumar, N.; Choo, K.K.R. An untraceable and anonymous password authentication protocol for heterogeneous wireless sensor networks. J. Netw. Comput. Appl. 2018, 104, 133–144. [Google Scholar] [CrossRef]
- Amerini, I.; Bestagini, P.; Bondi, L.; Caldelli, R.; Casini, M.; Tubaro, S. Robust smartphone fingerprint by mixing device sensors features for mobile strong authentication. In Proceedings of the Media Watermarking, Security, and Forensics, San Francisco, CA, USA, 14–18 February 2016; pp. 1–8. [Google Scholar]
- Valsesia, D.; Coluccia, G.; Bianchi, T.; Magli, E. User Authentication via PRNU-Based Physical Unclonable Functions. IEEE Trans. Inf. Forensics Secur. 2017, 12, 1941–1956. [Google Scholar] [CrossRef]
- Gloe, T.; Kirchner, M.; Winkler, A.; Böhme, R. Can we trust digital image forensics? In Proceedings of the 15th ACM International Conference on Multimedia, Augsburg, Germany, 25–29 September 2007; pp. 78–86. [Google Scholar]
- Goljan, M.; Fridrich, J.; Chen, M. Defending against fingerprint-copy attack in sensor-based camera identification. IEEE Trans. Inf. Forensics Secur. 2011, 6, 227–236. [Google Scholar] [CrossRef] [Green Version]
- Buriro, A.; Crispo, B.; Delfrari, F.; Wrona, K. Hold and Sign: A Novel Behavioral Biometrics for Smartphone User Authentication. In Proceedings of the IEEE Security and Privacy Workshops (SPW), San Jose, CA, USA, 22–26 May 2016; pp. 276–285. [Google Scholar]
- Buriro, A.; Crispo, B.; Zhauniarovich, Y. Please Hold On: Unobtrusive User Authentication using Smartphone’s built-in Sensors. In Proceedings of the IEEE International Conference on Identity, Security and Behavior Analysis (ISBA), New Delhi, India, 22–24 February 2017; pp. 1–8. [Google Scholar]
- Ku, Y.; Park, L.H.; Shin, S.; Kwon, T. Draw It As Shown: Behavioral Pattern Lock for Mobile User Authentication. IEEE Access 2019, 7, 69363–69378. [Google Scholar] [CrossRef]
- Li, H.; Yu, J.; Cao, Q. Intelligent Walk Authentication: Implicit Authentication When You Walk with Smartphone. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Madrid, Spain, 3–6 December 2018; pp. 1113–1116. [Google Scholar]
- Neverova, N.; Wolf, C.; Lacey, G.; Fridman, L.; Chandra, D.; Barbello, B.; Taylor, G. Learning Human Identity from Motion Patterns. IEEE Access 2016, 4, 1810–1820. [Google Scholar] [CrossRef]
- Shen, C.; Yu, T.; Yuan, S.; Li, Y.; Guan, X. Performance Analysis of Motion-Sensor Behavior for User Authentication on Smartphones. Sensors 2016, 16, 345. [Google Scholar] [CrossRef] [Green Version]
- Sitová, Z.; Šedenka, J.; Yang, Q.; Peng, G.; Zhou, G.; Gasti, P.; Balagani, K.S. HMOG: New Behavioral Biometric Features for Continuous Authentication of Smartphone Users. IEEE Trans. Inf. Forensics Secur. 2016, 11, 877–892. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Y.; Cao, B.; Philip, S.Y.; Srisa-An, W.; Leow, A.D. Sequential keystroke behavioral biometrics for mobile user identification via multi-view deep learning. In Proceedings of the ECML-PKDD, Skopje, Macedonia, 18–22 September 2017; pp. 228–240. [Google Scholar]
- Vildjiounaite, E.; Mäkelä, S.M.; Lindholm, M.; Riihimäki, R.; Kyllönen, V.; Mäntyjärvi, J.; Ailisto, H. Unobtrusive multimodal biometrics for ensuring privacy and information security with personal devices. In Proceedings of the PERVASIVE, Dublin, Ireland, 7–10 May 2006; pp. 187–201. [Google Scholar]
- Wang, R.; Tao, D. Context-Aware Implicit Authentication of Smartphone Users Based on Multi-Sensor Behavior. IEEE Access 2019, 7, 119654–119667. [Google Scholar] [CrossRef]
- Benegui, C.; Ionescu, R.T. Convolutional Neural Networks for User Identification based on Motion Sensors Represented as Images. IEEE Access 2020, 8, 61255–61266. [Google Scholar] [CrossRef]
- Goljan, M. Digital camera identification from images—Estimating false acceptance probability. In Proceedings of the IWDW, Busan, Korea, 10–12 November 2008; pp. 454–468. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the ICLR, Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the ICML, Haifa, Israel, 21–24 June 2010; pp. 807–814. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the ICLR, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Quiring, E.; Kirchner, M. Fragile sensor fingerprint camera identification. In Proceedings of the IEEE International Workshop on Information Forensics and Security (WIFS), Rome, Italy, 16–19 November 2015; pp. 1–6. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is All You Need. In Proceedings of the NIPS, Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In Proceedings of the ICLR, Virtual, 3–7 May 2021. [Google Scholar]
Threshold | Our Attack [13] | ABC Attack [6] | ||||
---|---|---|---|---|---|---|
FD FAR | RD FAR | FD + RD FAR | FD FAR | RD FAR | FD + RD FAR | |
10,000 | (2235) | (2701) | (2122) | (2628) | (920) | (776) |
20,000 | (1879) | (2517) | (1726) | (2487) | (73) | (45) |
22,500 | (1800) | (2451) | (1624) | (2446) | (31) | (16) |
30,000 | (1600) | (2292) | (1378) | (2350) | (0) | (0) |
40,000 | (1444) | (2184) | (1219) | (2234) | (0) | (0) |
50,000 | (1315) | (2090) | (1071) | (2150) | (0) | (0) |
Method | Accuracy |
---|---|
Shen et al. [31] | 87.30% |
CNN | 96.37% |
ConvLSTM | 96.18% |
CNN + ConvLSTM | 96.74% |
ABC Protocol + CNN Embeddings | ||||
---|---|---|---|---|
Kernel | C | Accuracy | FAR | FRR |
RBF | 100 | 98.92% | 0.67% | 3.17% |
RBF | 10 | 99.08% | 0.27% | 4.17% |
Linear | 100 | 98.97% | 0.80% | 2.17% |
Linear | 10 | 99.47% | 0.43% | 1.00% |
ABC Protocol + LSTM Embeddings | ||||
Kernel | C | Accuracy | FAR | FRR |
RBF | 100 | 97.72% | 0.60% | 10.67% |
RBF | 10 | 99.03% | 0.50% | 3.33% |
Linear | 100 | 98.94% | 0.73% | 2.67% |
Linear | 10 | 99.03% | 0.53% | 3.17% |
ABC Protocol + CNN and LSTM Embeddings | ||||
Kernel | C | Accuracy | FAR | FRR |
RBF | 100 | 99.67% | 0.07% | 1.67% |
RBF | 10 | 99.64% | 0.13% | 1.50% |
Linear | 100 | 97.72% | 2.07% | 3.33% |
Linear | 10 | 99.39% | 0.13% | 3.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benegui, C.; Ionescu, R.T. Improving the Authentication with Built-In Camera Protocol Using Built-In Motion Sensors: A Deep Learning Solution. Mathematics 2021, 9, 1786. https://doi.org/10.3390/math9151786
Benegui C, Ionescu RT. Improving the Authentication with Built-In Camera Protocol Using Built-In Motion Sensors: A Deep Learning Solution. Mathematics. 2021; 9(15):1786. https://doi.org/10.3390/math9151786
Chicago/Turabian StyleBenegui, Cezara, and Radu Tudor Ionescu. 2021. "Improving the Authentication with Built-In Camera Protocol Using Built-In Motion Sensors: A Deep Learning Solution" Mathematics 9, no. 15: 1786. https://doi.org/10.3390/math9151786
APA StyleBenegui, C., & Ionescu, R. T. (2021). Improving the Authentication with Built-In Camera Protocol Using Built-In Motion Sensors: A Deep Learning Solution. Mathematics, 9(15), 1786. https://doi.org/10.3390/math9151786