The Design of a Wideband Antenna with Notching Characteristics for Small Devices Using a Genetic Algorithm
Abstract
:1. Introduction
2. Antenna Design and Methodology
2.1. Antenna Design
2.2. Design of a Notch Band Antenna
2.3. Numerical Analysis
2.4. Design Methodology and Optimization
3. Results and Discussion
3.1. Measurement Setup
3.2. Return Loss and VSWR
3.3. Radiation Pattern
3.4. Peak Gain and Efficiency
3.5. Comparison with State-of-the-Art Works
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malik, J.; Patnaik, A.; Kartikeyan, M. Compact Antennas for High Data Rate Communication; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Dougherty, E.R.; Shmulevich, I.; Chen, J.; Wang, Z.J. EURASIP Book Series on Signal Processing and Communications. In Genomic Signal Processing and Statistics; Hindawi Publishing Corporation: Cairo, Egypt, 2005; Volume 2, pp. 11–14. [Google Scholar]
- Guha, D.; Antar, Y.M. (Eds.) Microstrip and Printed Antennas: New Trends, Techniques and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Tseng, V.; Chang, C.-Y. Linear Tapered Slot Antenna for Ultra-Wideband Radar Sensor: Design Consideration and Recommendation. Sensors 2019, 19, 1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baard, C.; Liu, Y.; Nikolova, N. Ultra-Wideband Low-Cost High-Efficiency Cavity-Backed Compound Spiral Antenna. Electronics 2020, 9, 1399. [Google Scholar] [CrossRef]
- Trinh-Van, S.; Kwon, O.H.; Jung, E.; Park, J.; Yu, B.; Kim, K.; Seo, J.; Hwang, K.C. A Low-Profile High-Gain and Wideband Log-Periodic Meandered Dipole Array Antenna with a Cascaded Multi-Section Artificial Magnetic Conductor Structure. Sensors 2019, 19, 4404. [Google Scholar] [CrossRef] [Green Version]
- Tampouratzis, M.G.; Vouyioukas, D.; Stratakis, D.; Yioultsis, T. Use Ultra-Wideband Discone Rectenna for Broadband RF Energy Harvesting Applications. Technologies 2020, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Lalbakhsh, A.; Afzal, M.U.; Hayat, T.; Esselle, K.P.; Mandal, K. All-metal wideband metasurface for near-field transformation of medium-to-high gain electromagnetic sources. Sci. Rep. 2021, 11, 9421. [Google Scholar] [CrossRef]
- Hayat, T.; Afzal, M.U.; Lalbakhsh, A.; Esselle, K.P. Additively Manufactured Perforated Superstrate to Improve Directive Radiation Characteristics of Electromagnetic Source. IEEE Access 2019, 7, 153445–153452. [Google Scholar] [CrossRef]
- Lalbakhsh, A.; Afzal, M.U.; Esselle, K.; Smith, S. A High-gain Wideband EBG Resonator Antenna for 60 GHz Unlicenced Frequency Band. In Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, 9–13 April 2018. [Google Scholar] [CrossRef]
- Lalbakhsh, A.; Afzal, M.U.; Esselle, K.P.; Smith, S.L. Low-Cost Nonuniform Metallic Lattice for Rectifying Aperture Near-Field of Electromagnetic Bandgap Resonator Antennas. IEEE Trans. Antennas Propag. 2020, 68, 3328–3335. [Google Scholar] [CrossRef]
- Mohamadzade, B.; Simorangkir, R.B.V.B.; Hashmi, R.M.; Lalbakhsh, A. A Conformal Ultrawideband Antenna with Monopole-Like Radiation Patterns. IEEE Trans. Antennas Propag. 2020, 68, 6383–6388. [Google Scholar] [CrossRef]
- Mohamadzade, B.; Simorangkir, R.B.V.B.; Hashmi, R.M.; Gharaei, R.; Lalbakhsh, A.; Shrestha, S.; Zhadobov, M.; Sauleau, R. A Conformal, Dynamic Pattern-Reconfigurable Antenna Using Conductive Textile-Polymer Composite. IEEE Trans. Antennas Propag. 2021, 1. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, B.; Zhu, Y.; Lv, H. A Compact Printed Monopole Antenna for WiMAX/WLAN and UWB Applications. Future Internet 2018, 10, 122. [Google Scholar] [CrossRef] [Green Version]
- Samsuzzaman, M.; Islam, M.T. Circularly Polarized Broadband Printed Antenna for Wireless Applications. Sensors 2018, 18, 4261. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Dong, T.; Xia, Z. Wideband Printed Wide-Slot Antenna with Fork-Shaped Stub. Electronics 2019, 8, 347. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, J.Y.; Saha, C.; Antar, Y.M.M. Compact Dual-SRR-Loaded UWB Monopole Antenna with Dual Frequency and Wideband Notch Characteristics. IEEE Antennas Wirel. Propag. Lett. 2014, 14, 100–103. [Google Scholar] [CrossRef]
- Peng, L.; Wen, B.-J.; Li, X.-F.; Jiang, X.; Li, S.-M. CPW Fed UWB Antenna by EBGs with Wide Rectangular Notched-Band. IEEE Access 2016, 4, 9545–9552. [Google Scholar] [CrossRef]
- Rahman, M.; NagshvarianJahromi, M.; Mirjavadi, S.S.; Hamouda, A.M. Compact UWB Band-Notched Antenna with Integrated Bluetooth for Personal Wireless Communication and UWB Applications. Electronics 2019, 8, 158. [Google Scholar] [CrossRef] [Green Version]
- Ghaffar, A.; Awan, W.A.; Zaidi, A.; Hussain, N.; Rizvi, S.M.; Li, X.J. Compact Ultra Wide-Band and Tri-Band Antenna for Portable Device. Radioengineering 2020, 29, 601–608. [Google Scholar] [CrossRef]
- Kadam, A.A.; Deshmukh, A.A.; Ray, K.P. Slit Loaded Pentagon Shaped Ultra Wideband Antenna for Band Notch Characteristics. In Proceedings of the 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 20–22 February 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Touhami, N.A.; Yahyaoui, Y.; Zakriti, A.; Bargach, K.; Boussouis, M.; Lamsalli, M.; Tribak, A. A compact CPW-fed planar pentagon antenna for UWB applications. Prog. Electromagn. Res. 2014, 46, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Awan, W.A.; Zaidi, A.; Hussain, N.; Iqbal, A.; Baghdad, A. Stub loaded, low profile UWB antenna with independently controllable notch-bands. Microw. Opt. Technol. Lett. 2019, 61, 2447–2454. [Google Scholar] [CrossRef]
- Jeong, M.J.; Hussain, N.; Bong, H.; Park, J.W.; Shin, K.S.; Lee, S.W.; Rhee, S.Y.; Kim, N. Ultrawideband microstrip patch antenna with quadruple band notch characteristic using negative permittivity unit cells. Microw. Opt. Technol. Lett. 2019, 62, 816–824. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, T.; Wang, X.; Sun, R. The design for multi-frequency microstrip antenna based on gap-coupled. In Proceedings of the 2016 Progress in Electromagnetic Research Symposium (PIERS), Shanghai, China, 8–11 August 2016; pp. 1965–1967. [Google Scholar] [CrossRef]
- Abbas, A.; Hussain, N.; Jeong, M.-J.; Park, J.; Shin, K.S.; Kim, T.; Kim, N. A Rectangular Notch-Band UWB Antenna with Controllable Notched Bandwidth and Centre Frequency. Sensors 2020, 20, 777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madhav, B.T.P.; Rao, M.V.; Anilkumar, T. Conformal Band Notched Circular Monopole Antenna Loaded with Split Ring Resonator. Wirel. Pers. Commun. 2018, 103, 1965–1976. [Google Scholar] [CrossRef]
- Yadav, A.; Agrawal, S.; Yadav, R. SRR and S-shape slot loaded triple band notched UWB antenna. AEU—Int. J. Electron. Commun. 2017, 79, 192–198. [Google Scholar] [CrossRef]
- Iqbal, A.; Smida, A.; Mallat, N.K.; Islam, M.T.; Kim, S. A Compact UWB Antenna with Independently Controllable Notch Bands. Sensors 2019, 19, 1411. [Google Scholar] [CrossRef] [Green Version]
- Mirmosaei, S.S.; Afjei, E.; Mehrshahi, E.; Fakharian, M.M. A dual band-notched ultra-wideband monopole antenna with spiral-slots and folded SIR-DGS as notch band structures. Int. J. Microw. Wirel. Technol. 2015, 8, 1197–1206. [Google Scholar] [CrossRef]
- Abbosh, A.M.; Bialkowski, M.E. Design of UWB Planar Band-Notched Antenna Using Parasitic Elements. IEEE Trans. Antennas Propag. 2009, 57, 796–799. [Google Scholar] [CrossRef]
- Devana, V.N.K.R.; Rao, A.M. Design and Analysis of Dual Band-Notched UWB Antenna Using a Slot in Feed and Asymmetrical Parasitic stub. IETE J. Res. 2020, 1–11. [Google Scholar] [CrossRef]
- Guichi, F.; Challal, M.; Denidni, T.A. A novel dual band-notch ultra-wideband monopole antenna using parasitic stubs and slot. Microw. Opt. Technol. Lett. 2018, 60, 1737–1744. [Google Scholar] [CrossRef]
- Ullah, S.; Ruan, C.; Sadiq, M.S.; Haq, T.U.; Fahad, A.K.; He, W. Super wide band, defected ground structure (DGS), and stepped meander line antenna for WLAN/ISM/WiMAX/U.W.B. and other wireless communication applications. Sensors 2020, 20, 1735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Haupt, R.L.; Haupt, S.E. Practical Genetic Algorithms; John Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Mandal, T.; Das, S. Design of a microstrip fed printed monopole antenna for bluetooth and UWB applications with WLAN notch band characteristics. Int. J. RF Microw. Comput. Eng. 2015, 25, 66–74. [Google Scholar] [CrossRef]
- Fang, R.; Song, R.; Zhao, X.; Wang, Z.; Qian, W.; He, D. Compact and Low-Profile UWB Antenna Based on Graphene-Assembled Films for Wearable Applications. Sensors 2020, 20, 2552. [Google Scholar] [CrossRef]
- Simorangkir, R.B.V.B.; Kiourti, A.; Esselle, K. UWB Wearable Antenna with a Full Ground Plane Based on PDMS-Embedded Conductive Fabric. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 493–496. [Google Scholar] [CrossRef]
- Rahman, M.; Naghshvarianjahromi, M.; Mirjavadi, S.S.; Hamouda, A.M. Resonator Based Switching Technique between Ultra Wide Band (UWB) and Single/Dual Continuously Tunable-Notch Behaviors in UWB Radar for Wireless Vital Signs Monitoring. Sensors 2018, 18, 3330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Dimension (mm) | Parameter | Dimension (mm) | Parameter | Dimension (mm) |
---|---|---|---|---|---|
W | 15 | a4 | 7 | Sx | 0.2 |
L | 20 | a5 | 0.9 | F | 1.5 |
H | 0.508 | ax | 8.2 | Cx | 5 |
a1 | 6.7 | ay | 8.2 | Cy | 6.25 |
a2 | 6 | aw | 0.56 | G1 | 0.5 |
a3 | 1 | Sy | 3.25 | G2 | 1.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awan, W.A.; Zaidi, A.; Hussain, M.; Hussain, N.; Syed, I. The Design of a Wideband Antenna with Notching Characteristics for Small Devices Using a Genetic Algorithm. Mathematics 2021, 9, 2113. https://doi.org/10.3390/math9172113
Awan WA, Zaidi A, Hussain M, Hussain N, Syed I. The Design of a Wideband Antenna with Notching Characteristics for Small Devices Using a Genetic Algorithm. Mathematics. 2021; 9(17):2113. https://doi.org/10.3390/math9172113
Chicago/Turabian StyleAwan, Wahaj Abbas, Abir Zaidi, Musa Hussain, Niamat Hussain, and Ikram Syed. 2021. "The Design of a Wideband Antenna with Notching Characteristics for Small Devices Using a Genetic Algorithm" Mathematics 9, no. 17: 2113. https://doi.org/10.3390/math9172113
APA StyleAwan, W. A., Zaidi, A., Hussain, M., Hussain, N., & Syed, I. (2021). The Design of a Wideband Antenna with Notching Characteristics for Small Devices Using a Genetic Algorithm. Mathematics, 9(17), 2113. https://doi.org/10.3390/math9172113