How to Assess Different Algorithms Using Intuitionistic Fuzzy Logic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Intuitionistic Fuzzy Estimations
- strong optimisticVstrong_opt = 〈min(1, (M1(p) + M2(p) + M3(p) + M4(p))),
max(0, (N1(p) + N2(p) + N3(p) + N4(p) − 3)))〉, - optimisticVopt = 〈M1(p) + M2(p) + M3(p) + M4(p) − M1(p)M2(p) − M1(p)M3(p) − M1(p)M4(p) −
− M2(p)M3(p) − M2(p)M4(p) − M3(p)M4(p) + M1(p)M2(p)M3(p) +
+ M1(p)M2(p)M4(p) + M1(p)M3(p)M4(p) + M2(p)M3(p)M4(p) −
− M1(p)M2(p)M3(p)M4(p), N1(p)N2(p)N3(p)N4(p)〉, - less optimisticVless_opt = 〈max(M1(p), M2(p), M3(p), M4(p)), min(N1(p), N2(p), N3(p), N4(p))〉,
- averageVaver = 〈(M1(p) + M2(p) + M3(p) + M4(p))/4, (N1(p) + N2(p) + N3(p) + N4(p))/4)〉,
- less pessimisticVless_pes = 〈min(M1(p), M2(p), M3(p), M4(p)), max(N1(p), N2(p), N3(p), N4(p))〉,
- pessimisticVpes = 〈M1(p)M2(p)M3(p)M4(p), N1(p) + N2(p) + N3(p) + N4(p) −
−N1(p)N2(p) − N1(p)N3(p) − N1(p)N4(p) − N2(p)N3(p) − N2(p)N4(p) −
−N3(p)N4(p) + N1(p)N2(p)N3(p) + N1(p)N2(p)N4(p) + N1(p)N3(p)N4(p) +
+ N2(p)N3(p)N4(p) − N1(p)N2(p)N3(p)N4(p)〉, - strong pessimisticVstrong_pes = 〈max(0, (M1(p) + M2(p) + M3(p) + M4(p) − 3)),
min(1, (N1(p) + N2(p) + N3(p) + N4(p)))〉.
2.2. Procedure for Assessment of Algorithms Quality Performance Implementing IFL
- Step 1.
- For each of the investigated algorithms, performance of the number of runs in the “broad” and “narrow” ranges of model parameters.
- Step 2.
- For each of the investigated algorithms, evaluation of the average values of J, CPU time and model parameters in the “broad” and “narrow” ranges.
- Step 3.
- For each of the investigated algorithms, evaluation of the degrees of validity and non-validity, applying Formulas (2) and (3).
- Step 4.
- For all model parameters, evaluation of strong optimistic (strong_opt), optimistic (opt), less optimistic (less_opt), average (aver), less pessimistic (less_pes), pessimistic (pes) and strong pessimistic (strong_pes) values for each of the four algorithms, applying the developed for that aim Formulas (4)–(10).
- Step 5.
- For each of the model parameters, assignment of the aforementioned values of considered algorithms in “broad” and “narrow” ranges.
- Step 6.
- Assessment of the quality of performance of considered algorithms on the basis of the values, obtained in Step 5.
2.3. Multipopulation Genetic Algorithms
3. Case Study of AAQP over Four MGA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pencheva, T.; Roeva, O.; Hristozov, I. Functional State Approach to Fermentation Processes Modelling; Prof. Marin Drinov Academic Publishing House: Sofia, Bulgaria, 2006. [Google Scholar]
- Goldberg, D. Genetic Algorithms in Search, Optimization and Machine Learning; Wiley: Hoboken, NJ, USA, 1989. [Google Scholar]
- Roeva, O. (Ed.) Real-world Application of Genetic Algorithms; InTech: London, UK, 2012. [Google Scholar]
- Adeyemo, J.; Mehablia, A. Fermentation Processes Optimization: Evolutionary Algorithms—A Review. Sci. Res. Essays 2011, 6, 1464–1472. [Google Scholar]
- Angelova, M.K. Modified Genetic Algorithms and Intuitionistic Fuzzy Logic for Parameter Identification of a Fed-batch Cultivation Model. Ph.D. Thesis, BAS, Sofia, Bulgaria, 2014. [Google Scholar]
- Angelova, M.K.; Atanassov, K.T.; Pencheva, T.K. Intuitionistic Fuzzy Logic Based Quality Assessment of Simple Genetic Algorithm. In Proceedings of the 16th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 12–14 October 2012; Electronic edition. Volume 2, ISBN 978-606-8348-48-3. [Google Scholar]
- Angelova, M.K.; Atanassov, K.T.; Pencheva, T.K. Purposeful Model Parameters Genesis in Simple Genetic Algorithms. Comput. Math. Appl. 2012, 64, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Angelova, M.K.; Atanassov, K.T.; Pencheva, T.K. Multi-population Genetic Algorithm Quality Assessment Implementing Intuitionistic Fuzzy Logic. In Proceedings of the Federated Conference on Computer Sciences and Information Systems—FEDCSIS 2012, Workshop on Computational Optimization—WCO’2012, Wrocław, Poland, 9–12 September 2012; pp. 365–370. [Google Scholar]
- Pencheva, T.; Angelova, M. Intuitionistic Fuzzy Logic Implementation to Assess Purposeful Model Parameters Genesis. In Recent Contributions on Intelligent Systems; Sgurev, V., Yager, R., Kacprzyk, J., Atanassov, K., Eds.; Springer: Heidelberg/Berlin, Germany, 2017; Volume 657, pp. 179–203. [Google Scholar]
- Angelova, M.; Atanassov, K.; Pencheva, T. Intuitionistic Fuzzy Logic as a Tool for Quality Assessment of Genetic Algorithms Performances. In Recent Advances in Computational Optimization; Fidanova, S., Ed.; Springer: Heidelberg/Berlin, Germany, Studies in Computational Intelligence; 2013; Volume 470, pp. 1–13. [Google Scholar]
- Pencheva, T.; Angelova, M.; Atanassov, K. Genetic Algorithms Quality Assessment Implementing Intuitionistic Fuzzy Logic. In Handbook of Research on Novel Soft Computing Intelligent Algorithms: Theory and Practical Applications; Vasant, P., Ed.; IGI Global: Hershey, PA, USA, 2013; pp. 327–354. [Google Scholar]
- Angelova, M.K.; Pencheva, T.K. How to Assess Multi-population Genetic Algorithms Performance Using Intuitionistic Fuzzy Logic. Adv. Comput. Ind. Math. Stud. Comput. Intell. 2018, 793, 23–25. [Google Scholar]
- Pencheva, T.K.; Angelova, M.K.; Atanassov, K.T. Quality Assessment of Multi-population Genetic Algorithms Performance. Int. J. Sci. Eng. Res. 2013, 4, 1870–1875. [Google Scholar]
- Zhang, Z.; Xu, Z. The Orders of Intuitionistic Fuzzy Numbers. J. Intell. Fuzzy Syst. 2015, 28, 505–511. [Google Scholar] [CrossRef]
- Liu, X.; Sang, X.; Qin, Y. Fuzzy Logic Based Security Region Evaluation of the Urban Rail Transit Operating System. In Proceedings of the 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Shenyang, China, 23–25 July 2013; pp. 190–195. [Google Scholar]
- Ter-Sarkisov, A.; Marsland, S. K-Bit-Swap: A New Operator for Real-coded Evolutionary Algorithms. Soft Comput. 2017, 21, 6133–6142. [Google Scholar] [CrossRef] [Green Version]
- Ooi, C.S.; Lim, M.H.; Leong, M.S. Self-tune Linear Adaptive-genetic Algorithm for Feature Selection. IEEE Access 2019, 7, 138211–138232. [Google Scholar] [CrossRef]
- Odeniyi, O.A.; Omidiora, E.O.; Olabiyisi, S.O.; Oyeleye, C.A. A Mathematical Programming Model and Enhanced Simulated Annealing Algorithm for the School Timetabling Problem. Asian J. Res. Comput. Sci. 2020, 5, 21–38. [Google Scholar] [CrossRef]
- Virivinti, N.; Mitra, K. Handling Optimization Under Uncertainty Using Intuitionistic Fuzzy-logic-based Expected Value Model. In Handbook of Research on Emergent Applications of Optimization Algorithms; Vasant, P., Alparslan-Gok, S.Z., Weber, G.-W., Eds.; IGI Global: Hershey PA, USA, 2018; pp. 750–776. [Google Scholar]
- Zhang, N.; Wu, B.; Bao, X. Automatic Generation of Test Cases Based on Multi-population Genetic Algorithm. Int. J. Multimed. Ubiquitous Eng. 2015, 10, 113–122. [Google Scholar] [CrossRef]
- Thangamani, C.; Chidambaram, M. An Efficient Hybrid of Continuous Ant Colony Optimization and Weighted Crossover Genetic Algorithm for Optimal Solution. Fuzzy Syst. 2018, 10, 1–7. [Google Scholar]
- Jin, C.; Li, F.; Tsang, E.C.C.; Bulysheva, L.; Kataev, M.Y. A New Compound Arithmetic Crossover-based Genetic Algorithm for Constrained Optimisation in Enterprise Systems. Enterp. Inf. Syst. 2017, 11, 122–136. [Google Scholar] [CrossRef]
- Klepac, G.; Kopal, R.; Mrsic, L. Early Warning System Framework Proposal Based on Structured Analytical Techniques, SNA, and Fuzzy Expert System for Different Industries. Fuzzy Syst. Concepts Methodol. Tools Appl. 2017, 1, 202–234. [Google Scholar]
- Luo, B.; Ding, M.-M.; Han, L.-F.; Guo, Z.-X. Structural Optimization of Spoke Single-layer Cable-net Structures Based on a Genetic Algorithm. J. Aerosp. Eng. 2018, 31, 04018012. [Google Scholar] [CrossRef]
- Gordini, N. Genetic Algorithms for Small Enterprises Default Prediction: Empirical Evidence from Italy. In Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey PA, USA, 2017; pp. 571–607. [Google Scholar]
- Wu, H. Applications of an Improved Hybrid Ant Colony Optimization Algorithm in Non-deterministic Polynomial Problems. Boletín Técnico 2017, 55, 181–187. [Google Scholar]
- Singh, B.K. Evaluation of Genetic Algorithm as Learning System in Rigid Space Interpretation. In Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey PA, USA, 2017; pp. 1184–1228. [Google Scholar]
- Zhou, Y.; Yi, W.; Gao, L.; Li, X. Analysis of Mutation Vectors Selection Mechanism in Differential Evolution. Appl. Intell. 2016, 44, 904–912. [Google Scholar] [CrossRef]
- Atanassov, K. Intuitionistic Fuzzy Sets; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Atanassov, K. On Intuitionistic Fuzzy Sets Theory; Springer: Berlin, Germany, 2012. [Google Scholar]
- Schuegerl, K.; Bellgardt, K.-H. (Eds.) Bioreaction Engineering, Modeling and Control; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2000. [Google Scholar]
- Gupta, D.; Ghafir, S. An Overview of Methods Maintaining Diversity in Genetic Algorithms. Int. J. Emerg. Technol. Adv. Eng. 2012, 2, 56–60. [Google Scholar]
- Chipperfield, A.; Fleming, P.; Pohlheim, H.; Fonseca, C. Genetic Algorithm Toolbox for Use with MATLAB, User’s Guide, version 1.2.; Department of Automatic Control and System Engineering, University of Sheffield: South Yorkshire, UK, 1994. [Google Scholar]
MGA | J | Performance Levels | Average CPU Time, s | ||
---|---|---|---|---|---|
MGA_SCM | min J | 0.0221 | TL_LB | 0.0221 | 98.96 |
TL_UB | 0.0221 | ||||
max J | 0.0222 | LL_LB | 0.0222 | ||
LL_UB | 0.0222 | ||||
MGA_CMS | min J | 0.0221 | TL_LB | 0.0221 | 281.56 |
TL_UB | 0.0221 | ||||
max J | 0.0222 | LL_LB | 0.0222 | ||
LL_UB | 0.0222 | ||||
MGA_MCS | min J | 0.0221 | TL_LB | 0.0221 | 272.22 |
TL_UB | 0.0221 | ||||
max J | 0.0222 | LL_LB | 0.0222 | ||
LL_UB | 0.0222 | ||||
MGA_CS | min J | 0.0221 | TL_LB | 0.0221 | 283.08 |
TL_UB | 0.0223 | ||||
aver J | 0.224 | ML_LB | 0.0223 | ||
ML_UB | 0.0225 | ||||
max J | 0.0227 | LL_LB | 0.0225 | ||
LL_UB | 0.0227 |
MGA | μ2S | μ2E | kS | kE | YSX | YEX | YOS | YOE | ||
---|---|---|---|---|---|---|---|---|---|---|
MGA_SCM | min | 0.90 | 0.12 | 0.13 | 0.79 | 0.39 | 1.54 | 61.13 | 473.49 | 228.87 |
max | 0.94 | 0.14 | 0.15 | 0.80 | 0.42 | 1.93 | 118.42 | 921.28 | 809.90 | |
avrg | 0.92 | 0.13 | 0.15 | 0.79 | 0.41 | 1.72 | 92.78 | 656.60 | 508.50 | |
MGA_CMS | min | 0.91 | 0.12 | 0.14 | 0.79 | 0.40 | 1.57 | 76.66 | 604.33 | 95.68 |
max | 0.94 | 0.14 | 0.15 | 0.8 | 0.42 | 1.87 | 126.22 | 995.81 | 752.84 | |
avrg | 0.93 | 0.13 | 0.15 | 0.79 | 0.41 | 1.71 | 93.65 | 743.07 | 383.28 | |
MGA_MCS | min | 0.90 | 0.12 | 0.14 | 0.79 | 0.40 | 1.65 | 54.21 | 435.15 | 272.44 |
max | 0.94 | 0.14 | 0.15 | 0.80 | 0.41 | 1.81 | 90.71 | 717.83 | 768.38 | |
avrg | 0.92 | 0.13 | 0.15 | 0.79 | 0.41 | 1.74 | 72.83 | 574.48 | 509.14 | |
MGA_CS | min | 0.93 | 0.09 | 0.13 | 0.78 | 0.40 | 1.23 | 45.48 | 356.19 | 228.11 |
max | 0.97 | 0.13 | 0.13 | 0.79 | 0.42 | 1.76 | 78.17 | 628.82 | 864.93 | |
avrg | 0.94 | 0.11 | 0.13 | 0.79 | 0.41 | 1.54 | 64.81 | 517.23 | 565.17 |
MGA | μ2S | μ2E | kS | kE | YSX | YEX | YOS | YOE | |||
---|---|---|---|---|---|---|---|---|---|---|---|
MGA_SCM | before PMPG | LB | 0.9 | 0.05 | 0.08 | 0.5 | 0.3 | 1 | 0.001 | 0.001 | 0.001 |
UB | 1 | 0.15 | 0.15 | 0.8 | 10 | 10 | 300 | 1000 | 1000 | ||
after PMPG | LB | 0.9 | 0.12 | 0.14 | 0.7 | 0.35 | 1.5 | 80 | 650 | 220 | |
UB | 0.92 | 0.15 | 0.15 | 0.8 | 0.45 | 2 | 100 | 800 | 820 | ||
degree of validity (DV) of p | M1(p) | 0.9 | 0.8 | 0.93 | 0.88 | 0.04 | 0.15 | 0.27 | 0.65 | 0.22 | |
degree of non-validity (DNV) of p | N1(p) | 0.08 | 0 | 0 | 0 | 0.96 | 0.8 | 0.67 | 0.2 | 0.18 | |
MGA_CMS | before PMPG | LB | 0.9 | 0.05 | 0.08 | 0.5 | 0.3 | 1 | 0.001 | 0.001 | 0.001 |
UB | 1 | 0.15 | 0.15 | 0.8 | 10 | 10 | 300 | 1000 | 1000 | ||
after PMPG | LB | 0.91 | 0.11 | 0.14 | 0.75 | 0.4 | 1.5 | 70 | 600 | 90 | |
UB | 0.94 | 0.14 | 0.15 | 0.8 | 0.42 | 1.9 | 130 | 1000 | 760 | ||
DV of p | M2(p) | 0.91 | 0.73 | 0.93 | 0.94 | 0.04 | 0.15 | 0.23 | 0.60 | 0.09 | |
DNV of p | N2(p) | 0.06 | 0.07 | 0.00 | 0.00 | 0.96 | 0.81 | 0.57 | 0 | 0.24 | |
MGA_MCS | before PMPG | LB | 0.9 | 0.05 | 0.08 | 0.5 | 0.3 | 1 | 0.001 | 0.001 | 0.001 |
UB | 1 | 0.15 | 0.15 | 0.8 | 10 | 10 | 300 | 1000 | 1000 | ||
after PMPG | LB | 0.9 | 0.12 | 0.14 | 0.75 | 0.4 | 1.6 | 50 | 420 | 260 | |
UB | 0.94 | 0.14 | 0.15 | 0.8 | 0.42 | 1.9 | 95 | 720 | 770 | ||
DV of p | M3(p) | 0.9 | 0.8 | 0.93 | 0.94 | 0.04 | 0.16 | 0.17 | 0.42 | 0.26 | |
DNV of p | N3(p) | 0.06 | 0.07 | 0 | 0 | 0.96 | 0.81 | 0.68 | 0.28 | 0.23 | |
MGA_CS | before PMPG | LB | 0.9 | 0.05 | 0.08 | 0.5 | 0.3 | 1 | 0.001 | 0.001 | 0.001 |
UB | 1 | 0.15 | 0.15 | 0.8 | 10 | 10 | 300 | 1000 | 1000 | ||
after PMPG | LB | 0.92 | 0.09 | 0.12 | 0.75 | 0.4 | 1.2 | 40 | 350 | 220 | |
UB | 0.97 | 0.13 | 0.14 | 0.8 | 0.43 | 1.8 | 80 | 630 | 870 | ||
DV of p | M4(p) | 0.92 | 0.6 | 0.8 | 0.94 | 0.04 | 0.12 | 0.13 | 0.35 | 0.22 | |
DNV of p | N4(p) | 0.03 | 0.13 | 0.07 | 0 | 0.96 | 0.82 | 0.73 | 0.37 | 0.13 |
μ2S | μ2E | kS | kE | YSX | YEX | YOS | YOE | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LB | UB | LB | UB | LB | UB | LB | UB | LB | UB | LB | UB | LB | UB | LB | UB | LB | UB | |
Vstrong_opt | 1.00 | 1.00 | 0.15 | 0.15 | 0.15 | 0.15 | 0.80 | 0.80 | 1.55 | 1.72 | 5.80 | 7.60 | 240.00 | 300.00 | 1000.0 | 1000.00 | 790.00 | 1000.0 |
Vopt | 1.00 | 1.00 | 0.15 | 0.15 | 0.15 | 0.15 | 0.80 | 0.80 | 1.46 | 1.61 | 4.66 | 5.70 | 178.19 | 243.21 | 947.22 | 1000.00 | 590.30 | 998.71 |
Vless_opt | 0.92 | 0.97 | 0.12 | 0.15 | 0.14 | 0.15 | 0.75 | 0.80 | 0.40 | 0.45 | 1.60 | 2.00 | 80.00 | 130.00 | 650.00 | 1000.00 | 260.00 | 870.00 |
Vaver | 0.91 | 0.94 | 0.11 | 0.14 | 0.14 | 0.15 | 0.74 | 0.80 | 0.39 | 0.43 | 1.45 | 1.90 | 60.00 | 101.25 | 505.00 | 787.50 | 197.50 | 805.00 |
Vless_pes | 0.90 | 0.92 | 0.09 | 0.13 | 0.12 | 0.14 | 0.70 | 0.80 | 0.35 | 0.42 | 1.20 | 1.80 | 40.00 | 80.00 | 350.00 | 630.00 | 90.00 | 760.00 |
Vpes | 0.68 | 0.79 | 0.04 | 0.11 | 0.10 | 0.14 | 0.58 | 0.80 | 0.00 | 0.00 | 0.00 | 0.01 | 0.41 | 3.66 | 57.33 | 362.88 | 1.13 | 417.48 |
Vstrong_pes | 0.63 | 0.77 | 0.00 | 0.11 | 0.09 | 0.14 | 0.55 | 0.80 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 150.00 | 0.00 | 220.00 |
Parameter | MGA_SCM | MGA_CMS | MGA_MCS | MGA_CS | ||||
---|---|---|---|---|---|---|---|---|
Before PMPG | After PMPG | Before PMPG | After PMPG | Before PMPG | After PMPG | Before PMPG | After PMPG | |
J | 0.0221 | 0.0220 | 0.0221 | 0.0221 | 0.0221 | 0.0221 | 0.0222 | 0.0222 |
CPU time, s | 98.96 | 86.52 | 296.45 | 270.95 | 261.34 | 245.42 | 284.81 | 254.22 |
μ2S, 1/h | 0.91 | 0.9 | 0.92 | 0.93 | 0.90 | 0.91 | 0.97 | 0.93 |
μ2E, 1/h | 0.12 | 0.14 | 0.12 | 0.13 | 0.13 | 0.13 | 0.13 | 0.12 |
kS, g/L | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.13 | 0.13 |
kE, g/L | 0.8 | 0.8 | 0.80 | 0.80 | 0.80 | 0.80 | 0.79 | 0.78 |
YSX, g/g | 0.41 | 0.4 | 0.42 | 0.40 | 0.41 | 0.41 | 0.41 | 0.40 |
YEX, g/g | 1.62 | 1.93 | 1.57 | 1.81 | 1.77 | 1.81 | 1.76 | 1.64 |
, 1/h | 96.34 | 88.73 | 76.66 | 62.59 | 84.41 | 97.14 | 70.79 | 78.17 |
YOS, g/g | 768.61 | 696.56 | 604.33 | 500.75 | 673.20 | 770.73 | 566.69 | 628.82 |
YOE, g/g | 809.9 | 291.42 | 601.03 | 454.40 | 462.89 | 500.37 | 864.93 | 228.11 |
MGA_SCM | MGA_CMS | MGA_MCS | MGA_CS | |||||
---|---|---|---|---|---|---|---|---|
Before PMPG | After PMPG | Before PMPG | After PMPG | Before PMPG | After PMPG | Before PMPG | After PMPG | |
strong_opt | 3 | 2 | 2 | 2 | 2 | 2 | 1 | 0 |
opt | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
less_opt | 5 | 6 | 3 | 6 | 5 | 6 | 5 | 5 |
aver | 1 | 0 | 3 | 1 | 1 | 0 | 2 | 3 |
less_pes | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
pes | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
strong_pes | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pencheva, T.; Angelova, M.; Sotirova, E.; Atanassov, K. How to Assess Different Algorithms Using Intuitionistic Fuzzy Logic. Mathematics 2021, 9, 2189. https://doi.org/10.3390/math9182189
Pencheva T, Angelova M, Sotirova E, Atanassov K. How to Assess Different Algorithms Using Intuitionistic Fuzzy Logic. Mathematics. 2021; 9(18):2189. https://doi.org/10.3390/math9182189
Chicago/Turabian StylePencheva, Tania, Maria Angelova, Evdokia Sotirova, and Krassimir Atanassov. 2021. "How to Assess Different Algorithms Using Intuitionistic Fuzzy Logic" Mathematics 9, no. 18: 2189. https://doi.org/10.3390/math9182189
APA StylePencheva, T., Angelova, M., Sotirova, E., & Atanassov, K. (2021). How to Assess Different Algorithms Using Intuitionistic Fuzzy Logic. Mathematics, 9(18), 2189. https://doi.org/10.3390/math9182189