Socially Responsible Portfolio Selection: An Interactive Intuitionistic Fuzzy Approach
Abstract
:1. Introduction
- Show the initial objective vectors to the DM;
- Ask the DM to give his/her preferences;
- Generate new solution(s) based on the updated preferences;
- Go back to step 2 if the DM is dissatisfied or stop.
2. Mathematical Model
2.1. Notations and Definitions
- : The ESG score of the i-th asset;
- : The expected rate of return of the i-th asset;
- : The proportion of the total funds invested in the i-th asset;
- : The average performance of the i-th asset during a 12-month period;
- : The number of assets in a portfolio;
- : The minimal acceptable degree of objective(s) and constraints;
- : The maximal degree of rejection of objective(s) and constraints.
2.2. Preliminaries
- 1.
- is called the degree of hesitation of the element ; it expresses the lack of knowledge of whether x belongs to IFS A or not;
- 2.
- is called the degree of favour of;
- 3.
- is called the degree of against of.
2.3. Objective Functions
- The expected return: The short-term return of the portfolio is expressed as:
- Ethicality: The ethical investing objective function using the ESG scores is expressed as
- Risk: The portfolio risk using semi-absolute deviation measure is expressed as
2.4. Constraints
- Capital budget: The capital budget constraint on the assets is expressed as
- No short selling: No short selling of assets is expressed as
2.5. Decision Problem
3. Materials and Methods
Proposed Interactive Intuitionistic Fuzzy Multi Objective Optimization Problem
- Step 1: Solve Problem 1 as a single-objective problem corresponding to each objective function; for the expected return
- Step 2: Evaluate the objective functions at all of the obtained solutions. Determine the worst lower bound and best upper bound for each objective functions;
- Step 3: Define the linear membership functions and non-membership for each objective function (i.e., return, ethicality and risk);
- Step 4: Develop the fuzzy multi-objective optimization model for the portfolio selection problem using the obtained fuzzy membership and non-membership functions as follows:
- Step 5: Stop if the investor is satisfied with the obtained portfolio; otherwise, more portfolios can be generated by updating the lower (and upper) bounds of the objective functions (go to Step 2 and re-iterate the solution process).
4. Results and Discussion
- Step 1: We formulated the model (6) using the input data from Table 1. To determine the worst lower (upper) bounds and best upper (lower) bounds for return, ethicality, and risk objective functions, respectively, we solved the models corresponding to each objective function (7,8,9). The obtained results are shown in Table 2.
- Step 2: We evaluated both the objective functions at the obtained solutions, i.e., , and . Table 3 shows the objective function values of return, ethicality, and risk at the obtained solutions.
- Step 3: We constructed the membership functions of return, ethicality, and risk as follows:
- Step 5: We supposed that the investor is satisfied with the obtained preferred compromise solution, then stop and select the current solution as the final decision.
Comparison of the Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rahiminezhad Galankashi, M.; Mokhatab Rafiei, F.; Ghezelbash, M. Portfolio Selection: A Fuzzy-ANP Approach. Financ. Innov. 2020, 6, 17. [Google Scholar] [CrossRef]
- Markowitz, H. Portfolio Selection. J. Financ. 1952, 7, 77. [Google Scholar] [CrossRef]
- Utz, S.; Wimmer, M.; Hirschberger, M.; Steuer, R.E. Tri-Criterion Inverse Portfolio Optimization with Application to Socially Responsible Mutual Funds. Eur. J. Oper. Res. 2014, 234, 491–498. [Google Scholar] [CrossRef] [Green Version]
- Utz, S.; Wimmer, M.; Steuer, R.E. Tri-Criterion Modeling for Constructing More-Sustainable Mutual Funds. Eur. J. Oper. Res. 2015, 246, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, X.; Guo, S. Portfolio Selection Problems with Markowitz’s Mean–Variance Framework: A Review of Literature. Fuzzy Optim. Decis. Mak. 2018, 17, 125–158. [Google Scholar] [CrossRef]
- Hanine, Y.; Tkiouat, M.; Lahrichi, Y. An Alternative Framework for Socially Responsible Portfolios Optimization Applied to the Moroccan Stock Exchange. Int. J. Anal. Hierarchy Process. 2021, 13. [Google Scholar] [CrossRef]
- Zhou, W.; Xu, Z. Score-Hesitation Trade-off and Portfolio Selection under Intuitionistic Fuzzy Environment. Int. J. Intell. Syst. 2019, 34, 325–341. [Google Scholar] [CrossRef]
- Deep, K.; Singh, K.P.; Kansal, M.L.; Mohan, C. A Fuzzy Interactive Approach for Optimal Portfolio Management. OPSEARCH 2009, 46, 69–88. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy Sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Dohnal, M. Linguistics and Fuzzy Models. Comput. Ind. 1983, 4, 341–345. [Google Scholar] [CrossRef]
- Zhou, Z.; Xu, X.; Dou, Y.; Tan, Y.; Jiang, J. System Portfolio Selection Under Hesitant Fuzzy Information. In Group Decision and Negotiation in an Uncertain World; Chen, Y., Kersten, G., Vetschera, R., Xu, H., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 33–40. [Google Scholar]
- Gorzałczany, M.B. A Method of Inference in Approximate Reasoning Based on Interval-Valued Fuzzy Sets. Fuzzy Sets Syst. 1987, 21, 1–17. [Google Scholar] [CrossRef]
- Xu, X.; Lei, Y.; Dai, W. Intuitionistic Fuzzy Integer Programming Based on Improved Particle Swarm Optimization. J. Comput. Appl. 2008, 9, 062. [Google Scholar] [CrossRef]
- Xu, Z. Intuitionistic Preference Relations and Their Application in Group Decision Making. Inf. Sci. 2007, 177, 2363–2379. [Google Scholar] [CrossRef]
- Atanassov, K.T. Ideas for Intuitionistic Fuzzy Equations, Inequalities and Optimization. Notes Intuit. Fuzzy Sets 1995, 1, 17–24. [Google Scholar]
- Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar]
- Takami, M.A.; Sheikh, R.; Sana, S.S. A Hesitant Fuzzy Set Theory Based Approach for Project Portfolio Selection with Interactions under Uncertainty. J. Inf. Sci. Eng. 2018, 34, 65–79. [Google Scholar] [CrossRef]
- Tiryaki, F.; Ahlatcioglu, B. Fuzzy Portfolio Selection Using Fuzzy Analytic Hierarchy Process. Inf. Sci. 2009, 179, 53–69. [Google Scholar] [CrossRef]
- Pandey, M.; Singh, V.; Verma, N.K. Fuzzy Based Investment Portfolio Management. Fuzzy Manag. Methods 2019, 73–95. [Google Scholar] [CrossRef]
- Li, J. Multi-Objective Portfolio Selection Model with Fuzzy Random Returns and a Compromise Approach-Based Genetic Algorithm. Inf. Sci. 2013, 220, 507–521. [Google Scholar] [CrossRef]
- Hui, E.C.M.; Lau, O.M.F.; Lo, K.K. A fuzzy decision-making approach for portfolio management with direct real estate investment. Int. J. Strateg. Prop. Manag. 2009, 13, 191–204. [Google Scholar] [CrossRef] [Green Version]
- Mansour, N.; Cherif, M.S.; Abdelfattah, W. Multi-Objective Imprecise Programming for Financial Portfolio Selection with Fuzzy Returns. Expert Syst. Appl. 2019, 138, 112810. [Google Scholar] [CrossRef]
- Yu, G.-F.; Li, D.-F.; Liang, D.-C.; Li, G.-X. An Intuitionistic Fuzzy Multi-Objective Goal Programming Approach to Portfolio Selection. Int. J. Inf. Technol. Decis. Mak. 2021, 20, 1477–1497. [Google Scholar] [CrossRef]
- Deep, K.; Singh, K.P.; Kansal, M.L. A Fuzzy Interactive Method for Multiobjective Engineering Design Problems. In Proceedings of the 2008 First International Conference on Emerging Trends in Engineering and Technology, Maharashtra, India, 16–18 July 2008; pp. 559–563. [Google Scholar]
- Miettinen, K.; Hakanen, J.; Podkopaev, D. Interactive nonlinear multiobjective optimization methods. In Multiple Criteria Decision Analysis; Springer: New York, NY, USA, 2016; pp. 927–976. [Google Scholar]
- Hwang, C.-L.; Masud, A.S.M. Multiple Objective Decision Making—Methods and Applications: A State-of-the-Art Survey; Springer: New York, NY, USA, 2012; Volume 164. [Google Scholar]
- Meignan, D.; Knust, S.; Frayret, J.-M.; Pesant, G.; Gaud, N. A Review and Taxonomy of Interactive Optimization Methods in Operations Research. ACM Trans. Interact. Intell. Syst. 2015, 5, 1–43. [Google Scholar] [CrossRef]
- Ruiz, F.; Luque, M.; Miettinen, K. Improving the computational efficiency in a global formulation (GLIDE) for interactive multiobjective optimization. Ann. Oper. Res. 2011, 197, 47–70. [Google Scholar] [CrossRef] [Green Version]
- Xin, B.; Chen, L.; Chen, J.; Ishibuchi, H.; Hirota, K.; Liu, B. Interactive Multiobjective Optimization: A Review of the State-of-the-Art. IEEE Access 2018, 6, 41256–41279. [Google Scholar] [CrossRef]
- Luque, M.; Ruiz, F.; Miettinen, K. Global formulation for interactive multiobjective optimization. OR Spectr. 2011, 33, 27–48. [Google Scholar] [CrossRef] [Green Version]
- Shin, W.S.; Ravindran, A. Interactive multiple objective optimization: Survey I—Continuous case. Comput. Oper. Res. 1991, 18, 97–114. [Google Scholar] [CrossRef]
- Miettinen, K.; Ruiz, F.; Wierzbicki, A.P. Introduction to Multiobjective Optimization: Interactive Approaches. In Lecture Notes in Computer Science; Springer: Singapore, 2008; pp. 27–57. [Google Scholar]
- Angelov, P. Optimization in an intuitionistic fuzzy environment. Fuzzy Sets Syst. 1997, 86, 299–306. [Google Scholar] [CrossRef]
- Sakawa, M. Fuzzy Multiobjective and Multilevel Optimization. In International Series in Operations Research & Management Science; Ehrgott, M., Gandibleux, X., Eds.; Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys; Kluwer Academic Publishers: Boston, MA, USA, 2003; Volume 52, pp. 171–226. ISBN 978-1-4020-7128-7. [Google Scholar]
- Razmi, J.; Jafarian, E.; Amin, S.H. An intuitionistic fuzzy goal programming approach for finding pareto-optimal solutions to multi-objective programming problems. Expert Syst. Appl. 2016, 65, 181–193. [Google Scholar] [CrossRef]
- Garai, A.; Mandal, P.; Roy, T.K. Interactive intuitionistic fuzzy technique in multi-objective optimisation. Int. J. Fuzzy Comput. Model. 2016, 2, 14. [Google Scholar] [CrossRef]
- The Forum for Sustainable and Responsible Investment. Available online: https://www.ussif.org/trends (accessed on 17 July 2021).
- The US SIF Foundation’s Biennial “Trends Report” Finds That Sustainable Investing Assets Reach $17.1 Trillion. Available online: http://www.ussif.org/blog_home.asp?Display=155 (accessed on 11 July 2021).
- Hallerbach, W. A Framework for Managing a Portfolio of Socially Responsible Investments. Eur. J. Oper. Res. 2004, 153, 517–529. [Google Scholar] [CrossRef]
- Calvo, C.; Ivorra, C.; Liern, V. Finding Socially Responsible Portfolios Close to Conventional Ones. Int. Rev. Financ. Anal. 2015, 40, 52–63. [Google Scholar] [CrossRef]
- Calvo, C.; Ivorra, C.; Liern, V. Fuzzy Portfolio Selection with Non-Financial Goals: Exploring the Efficient Frontier. Ann. Oper. Res. 2016, 245, 31–46. [Google Scholar] [CrossRef]
- Gasser, S.M.; Rammerstorfer, M.; Weinmayer, K. Markowitz Revisited: Social Portfolio Engineering. Eur. J. Oper. Res. 2017, 258, 1181–1190. [Google Scholar] [CrossRef] [Green Version]
- Landi, G.; Sciarelli, M. Towards a More Ethical Market: The Impact of ESG Rating on Corporate Financial Performance. SRJ 2019, 15, 11–27. [Google Scholar] [CrossRef]
- Ejegwa, P.A.; Akowe, S.O.; Otene, P.M.; Ikyule, J.M. An Overview on Intuitionistic Fuzzy Sets. Int. J. Sci. Technol. Res. 2014, 3, 142–145. [Google Scholar]
- Seikh, M.R.; Nayak, P.K.; Pal, M. Notes on Triangular Intuitionistic Fuzzy Numbers. IJMOR 2013, 5, 446. [Google Scholar] [CrossRef]
- Rankings | The Sustainability Yearbook 2021. Available online: https://www.spglobal.com/esg/csa/yearbook/ranking/ (accessed on 11 July 2021).
- Vo, N.; He, X.; Liu, S.; Xu, G. Deep learning for decision making and the optimization of socially responsible investments and portfolio. Decis. Support Syst. 2019, 124, 113097. [Google Scholar] [CrossRef]
Assets | ESG-Score | Normalized Scores | Return | |
---|---|---|---|---|
A1 | Abbott Laboratories | 86 | 0.102870813 | 0.027128614 |
A2 | Acciona, S.A. | 90 | 0.107655502 | 0.021284185 |
A3 | ANA Holdings Inc. | 81 | 0.096889952 | −0.038078907 |
A4 | Arcelik Anonim Sirketi | 79 | 0.094497608 | 0.035430269 |
A5 | ASE Technology Holding Co., Ltd. | 89 | 0.10645933 | 0.004094391 |
A6 | Atos SE | 85 | 0.101674641 | −0.012127323 |
A7 | Bancolombia S.A. | 89 | 0.10645933 | −0.025844861 |
A8 | Banpu Public Company Limited | 75 | 0.089712919 | −0.010364046 |
A9 | Bayerische Motoren Werke Aktiengesellschaft | 80 | 0.09569378 | −0.003364407 |
A10 | BillerudKorsnas AB (publ) | 82 | 0.098086124 | 0.023092891 |
Allocation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
0 | 0 | 0.2081 | 0 | 0.2642 | 0 | 0 | 0 | 0 | 0.5277 |
Assets | |||
---|---|---|---|
The expected return | 0.0354302690984352 | 0.0212841845487723 | 0.005343049848417 |
Ethical Performance | 0.0944976076555024 | 0.107655502392345 | 0.100049446411483 |
Risk | 0.061023262500000 | 0.045374146666667 | 0.020317244933333 |
Return | ESG Score | Risk | ||
---|---|---|---|---|
0.6287 | 0.1852 | 0.0243 | 0.1052 | 0.0279 |
Allocation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | |
Portfolio | 0.5092 | 0.4908 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Return | ESG Score | Risk | Allocation | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | |||||||||
Fuzzy Portfolio | 0.6 | - | - | - | - | 0.0273 | 0.1024 | 0.0255 | 0.5053 | 0.2785 | 0 | 0.2163 | 0 | 0 | 0 | 0 | 0 | 0 |
IFS Portfolio | 0.6 | 0.1 | 0.3 | 0.78 | 0.13 | 0.0193 | 0.1063 | 0.0260 | 0.2269 | 0.5807 | 0 | 0 | 0.1924 | 0 | 0 | 0 | 0 | 0 |
0.2 | 0.2 | 0.72 | 0.24 | 0.0217 | 0.1050 | 0.0250 | 0.2961 | 0.4850 | 0 | 0.0797 | 0.1392 | 0 | 0 | 0 | 0 | 0 | ||
0.3 | 0.1 | 0.66 | 0.33 | 0.0243 | 0.1037 | 0.0250 | 0.3523 | 0.4015 | 0 | 0.1644 | 0.0817 | 0 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanine, Y.; Lamrani Alaoui, Y.; Tkiouat, M.; Lahrichi, Y. Socially Responsible Portfolio Selection: An Interactive Intuitionistic Fuzzy Approach. Mathematics 2021, 9, 3023. https://doi.org/10.3390/math9233023
Hanine Y, Lamrani Alaoui Y, Tkiouat M, Lahrichi Y. Socially Responsible Portfolio Selection: An Interactive Intuitionistic Fuzzy Approach. Mathematics. 2021; 9(23):3023. https://doi.org/10.3390/math9233023
Chicago/Turabian StyleHanine, Yahya, Youssef Lamrani Alaoui, Mohamed Tkiouat, and Younes Lahrichi. 2021. "Socially Responsible Portfolio Selection: An Interactive Intuitionistic Fuzzy Approach" Mathematics 9, no. 23: 3023. https://doi.org/10.3390/math9233023
APA StyleHanine, Y., Lamrani Alaoui, Y., Tkiouat, M., & Lahrichi, Y. (2021). Socially Responsible Portfolio Selection: An Interactive Intuitionistic Fuzzy Approach. Mathematics, 9(23), 3023. https://doi.org/10.3390/math9233023