Complex Investigations of a Piecewise-Smooth Remanufacturing Bertrand Duopoly Game
Abstract
:1. Introduction
2. The Model
3. The Stability
4. Numerical Simulation
Global Analysis: Multistability and Basin of Attraction
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cournot, A. Récherches sur les Principes Mathématiques de la Théorie des Richesses, Dunod, Paris. 1838. Available online: https://www.jstor.org/stable/27579580 (accessed on 5 September 2021).
- Bertrand, J. Theorie Mathematique de la Richesse Sociale. J. Savants 1883, 48, 499–508. [Google Scholar]
- Askar, S.S. On complex dynamics of cournot-bertrand game with asymmetric market information. Appl. Math. Comput. 2021, 393, 125823. [Google Scholar]
- Askar, S.S. Duopolistic Stackelberg game: Investigation of complex dynamics and chaos control. Oper. Res. 2018, 20, 1685–1699. [Google Scholar] [CrossRef]
- Askar, S.S.; Abouhawwash, M. Quantity and price competition in a differentiated triopoly: Static and dynamic investigations. Nonlinear Dyn. 2018, 91, 1963–1975. [Google Scholar] [CrossRef]
- Askar, S.S.; Elettreby, M.F. The impact of cost uncertainty on Cournot oligopoly games. Appl. Math. Comput. 2017, 312, 169–176. [Google Scholar] [CrossRef]
- Askar, S.S. Tripoly Stackelberg game model: One leader versus two followers. Appl. Math. Comput. 2018, 328, 301–311. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L. Chaos in a duopoly model of technological innovation with bounded rationality based on constant conjectural variation. Chaos Solitons Fractals 2019, 120, 116–126. [Google Scholar] [CrossRef]
- Elsadany, A.A.; Awad, A.M. Dynamics and chaos control of a duopolistic Bertrand competitions under environmental taxes. Ann. Oper. Res. 2018, 274, 211–240. [Google Scholar] [CrossRef]
- Agiza, H.N.; Elsadany, A.A. Nonlinear dynamics in the Cournot duopoly game with heterogeneous players. Phys. A 2003, 320, 512–524. [Google Scholar] [CrossRef] [Green Version]
- Askar, S.S.; Alshamrani, A.M.; Alnowibet, K. Dynamic Cournot duopoly games with nonlinear demand function. Appl. Math. Comput. 2015, 259, 427–437. [Google Scholar] [CrossRef]
- Hommes, C. Behavioral Rationality and Heterogeneous Expectations in Complex Economic Systems; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Peng, Y.; Lu, Q.; Xiao, Y.; Wu, X. Complex dynamics analysis for a remanufacturing duopoly model with nonlinear cost. Phys. A 2019, 514, 658–670. [Google Scholar] [CrossRef]
- Elsadany, A.A.; Awad, A.M. Dynamical analysis and chaos control in a heterogeneous Kopel duopoly game. Indian J. Pure Appl. Math. 2016, 47, 617–639. [Google Scholar] [CrossRef]
- Askar, S.S.; Alshamrani, A.M.; Alnowibet, K. The arising of cooperation in Cournot duopoly games. Appl. Math. Comput. 2016, 273, 535–542. [Google Scholar] [CrossRef]
- Shi, L.; Sheng, Z.H.; Xu, F. The dynamics of competition in remanufacturing: A stability analysis. Econ. Model. 2015, 50, 245–253. [Google Scholar] [CrossRef]
- Gardini, L.; Sushko, I.; Matsuyama, K. 2D discontinuous piecewise linear map: Emergence of fashion cycles. Chaos 2018, 28, 055917. [Google Scholar] [CrossRef] [Green Version]
- Commendator, P.; Kubin, I.; Petraglia, C.; Sushko, I. Regional integration, international liberalisation and the dynamics of industrial agglomeration. J. Econ. Dyn. Control. 2014, 48, 265–287. [Google Scholar] [CrossRef] [Green Version]
- Commendator, P.; Kubin, I.; Mossay, P.; Sushko, I. The role of centrality and market size in a four-region asymmetric new economic geography model. J. Evol. Econ. 2017, 27, 1095–1131. [Google Scholar] [CrossRef] [Green Version]
- Radi, D.; Gardini, L.; Avrutin, V. The role of constraints in a segregation model: The symmetric case. Chaos Solitons Fractals 2014, 66, 103–119. [Google Scholar] [CrossRef]
- Radi, D.; Gardini, L.; Avrutin, V. The role of constraints in a segregation model: The asymmetric case. Discret. Dyn. Nat. Soc. 2014, 2014, 569296. [Google Scholar]
- Agliari, A.; Gardini, L.; Puu, T. Global bifurcations in duopoly when the Cournot point is destabilized via a subcritical Neimark bifuraction. Int. Game Theory Rev. 2006, 8, 1–20. [Google Scholar] [CrossRef]
- Puu, T. A new approach to modeling Bertrand duopoly. Rev. Behav. Econ. 2017, 4, 51–67. [Google Scholar] [CrossRef]
- Singh, N.; Vives, X. Price and quantity competition in a differentiated duopoly. Rand J. Econ. 1984, 15, 546–554. [Google Scholar] [CrossRef]
- Askar, S.S. The rise of complex phenomena in Cournot duopoly games due to demand functions without inflection points. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 1918–1925. [Google Scholar] [CrossRef]
- Askar, S.S.; Al-Khedhairi, A. Analysis of nonlinear duopoly games with product differentiation: Stability, global dynamics, and control. Discret. Dyn. Nat. Soc. 2017, 2017, 2585708. [Google Scholar] [CrossRef] [Green Version]
- Agiza, H.N.; Elsadany, A.A. Chaotic dynamics in nonlinear duopoly game with heterogeneous players. Appl. Math. Comput. 2004, 149, 843–860. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Askar, S. Complex Investigations of a Piecewise-Smooth Remanufacturing Bertrand Duopoly Game. Mathematics 2021, 9, 2558. https://doi.org/10.3390/math9202558
Askar S. Complex Investigations of a Piecewise-Smooth Remanufacturing Bertrand Duopoly Game. Mathematics. 2021; 9(20):2558. https://doi.org/10.3390/math9202558
Chicago/Turabian StyleAskar, Sameh. 2021. "Complex Investigations of a Piecewise-Smooth Remanufacturing Bertrand Duopoly Game" Mathematics 9, no. 20: 2558. https://doi.org/10.3390/math9202558
APA StyleAskar, S. (2021). Complex Investigations of a Piecewise-Smooth Remanufacturing Bertrand Duopoly Game. Mathematics, 9(20), 2558. https://doi.org/10.3390/math9202558