The Speed of Convergence of the Threshold Estimator of Ruin Probability under the Tempered α-Stable Lévy Subordinator
Abstract
:1. Introduction
2. Preliminaries
2.1. Risk Model and Some Assumptions
2.2. Ruin Probability and Its Fourier Transform
3. Estimation of Ruin Probability
4. Asymptotic Properties of Estimators
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Croux, K.; Veraverbeke, N. Non-parametric estimators for the probability of ruin. Insur. Math. Econ. 1990, 9, 127–130. [Google Scholar] [CrossRef]
- Frees, E.W. Nonparametric estimation of the probability of ruin. Astin Bull. 1986, 16, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Mnatsakanov, R.; Ruymgaart, L.L.; Ruymgaart, F.H. Nonparametric estimation of ruin probabilities given a random sample of claims. Math. Methods Stat. 2008, 17, 35–43. [Google Scholar] [CrossRef]
- Pitts, S.M. Nonparametric estimation of compound distributions with applications in insurance. Ann. Inst. Stat. Math. 1994, 46, 537–555. [Google Scholar]
- Politis, K. Semiparametric estimation for non-ruin probabilities. Scand. Actuar. J. 2003, 2003, 75–96. [Google Scholar] [CrossRef]
- Veraverbeke, N. Asymptotic estimates for the probability of ruin in a Poisson model with diffusion. Insur. Math. Econ. 1993, 13, 57–62. [Google Scholar] [CrossRef]
- Huang, Y.; Li, J.; Liu, H.; Yu, W. Estimating ruin probability in an insurance risk model with stochastic premium income based on the CFS method. Mathematics 2021, 9, 982. [Google Scholar] [CrossRef]
- Li, J.; Yu, W.; Liu, C. Nonparametric estimation of ruin probability by complex Fourier series expansion in the compound Poisson mode. Commun. Stat.-Theory Methods 2020. [Google Scholar] [CrossRef]
- You, H.; Guo, J.; Jiang, J. Interval estimation of the ruin probability in the classical compound Poisson risk model. Comput. Stat. Data Anal. 2020, 144, 106890. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, H. Nonparametric estimate of the ruin probability in a pure-jump Lévy risk model. Insur. Math. Econ. 2013, 53, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Yang, H. Nonparametric estimation for the ruin probability in a Lévy risk model under low-frequency observation. Insur. Math. Econ. 2014, 59, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z. Nonparametric estimation of the finite time ruin probability in the classical risk model. Scand. Actuar. J. 2017, 5, 452–469. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, H.; Yang, H. On a nonparametric estimator for ruin probability in the classical risk model. Scand. Actuar. J. 2014, 4, 309–338. [Google Scholar] [CrossRef] [Green Version]
- Su, W.; Yu, W. Asymptotically normal estimators of the Gerber–Shiu function in classical insurance risk model. Mathematics 2020, 8, 1638. [Google Scholar] [CrossRef]
- Su, W.; Yu, W. Estimating the Gerber–Shiu Function in Lévy Insurance Risk Model by Fourier–Cosine Series Expansion. Mathematics 2021, 9, 1402. [Google Scholar] [CrossRef]
- Yang, Y.; Su, W.; Zhang, Z. Estimating the discounted density of the deficit at ruin by Fourier cosine series expansion. Stat. Probab. Lett. 2019, 146, 147–155. [Google Scholar] [CrossRef]
- Zhang, Z.; Su, W. Estimating the Gerber–Shiu function in a Lévy risk model by Laguerre series expansion. J. Comput. Appl. Math. 2019, 346, 133–149. [Google Scholar] [CrossRef]
- Su, W.; Yong, Y.; Zhang, Z. Estimating the Gerber–Shiu function in the perturbed compound Poisson model by Laguerre series expansion. J. Math. Anal. Appl. 2019, 469, 705–729. [Google Scholar] [CrossRef]
- Zhang, Z.; Su, W. A new efficient method for estimating the Gerber–Shiu function in the classical risk model. Scand. Actuar. J. 2018, 5, 426–449. [Google Scholar] [CrossRef]
- Zhang, Z. Estimating the Gerber–Shiu function by Fourier–Sinc series expansion. Scand. Actuar. J. 2017, 10, 898–919. [Google Scholar] [CrossRef]
- Shimizu, Y. Non-parametric estimation of the Gerber–Shiu function for the Wiener–Poisson risk model. Scand. Actuar. J. 2012, 2012, 56–69. [Google Scholar] [CrossRef]
- Shimizu, Y.; Zhang, Z. Estimating Gerber–Shiu functions from discretely observed Lévy driven surplus. Insur. Math. Econ. 2017, 74, 84–98. [Google Scholar] [CrossRef]
- Asmussen, S.; Albrecher, H. Ruin Probabilities, 2nd ed.; World Scientific: Singapore, 2010. [Google Scholar]
- Comte, F.; Genon-Catalot, V. Nonparamtetric estimation for pure jump Lévy processes based on high frequency data. Stoch. Process. Their Appl. 2009, 119, 4088–4123. [Google Scholar] [CrossRef] [Green Version]
- Mancini, C. Estimation of the characteristics of the jump of a general Poisson-diffusion model. Scand. Actuar. J. 2004, 1, 42–52. [Google Scholar] [CrossRef]
- Mancini, C. Non-parametric threshold estimation for models with stochastic diffusion coefficient and jumps. Scand. J. Stat. 2009, 36, 270–296. [Google Scholar] [CrossRef]
- Mancini, C. Non-parametric tests for pathwise properties of semimartingales. Bernoulli 2011, 17, 781–813. [Google Scholar]
- Mancini, C. The speed of convergence of the threshold estimator of integrated variance. Stoch. Process. Their Appl. 2011, 121, 845–855. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, Y. A new aspect of a risk process and its statistical inference. Insur. Math. Econ. 2009, 44, 70–77. [Google Scholar] [CrossRef]
- Shimizu, Y. Functional estimation for Lévy measures of semimartingales with Poissonian jumps. J. Multivar. Anal. 2009, 100, 1073–1092. [Google Scholar] [CrossRef] [Green Version]
- Sato, K. Lévy Processes and Infinitely Divisible Distributions; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- You, H.; Yin, C. Threshold estimation for a spectrally negative Lévy process. Math. Probl. Eng. 2020, 1, 1–12. [Google Scholar] [CrossRef]
- You, H.; Cai, C. Nonparametric estimation for a spectrally negative Lévy process based on high frequency data. J. Comput. Appl. Math. 2019, 345, 196–205. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; You, H. The Speed of Convergence of the Threshold Estimator of Ruin Probability under the Tempered α-Stable Lévy Subordinator. Mathematics 2021, 9, 2654. https://doi.org/10.3390/math9212654
Gao Y, You H. The Speed of Convergence of the Threshold Estimator of Ruin Probability under the Tempered α-Stable Lévy Subordinator. Mathematics. 2021; 9(21):2654. https://doi.org/10.3390/math9212654
Chicago/Turabian StyleGao, Yuan, and Honglong You. 2021. "The Speed of Convergence of the Threshold Estimator of Ruin Probability under the Tempered α-Stable Lévy Subordinator" Mathematics 9, no. 21: 2654. https://doi.org/10.3390/math9212654
APA StyleGao, Y., & You, H. (2021). The Speed of Convergence of the Threshold Estimator of Ruin Probability under the Tempered α-Stable Lévy Subordinator. Mathematics, 9(21), 2654. https://doi.org/10.3390/math9212654