Computing the Number of Failures for Fuzzy Weibull Hazard Function
Abstract
:1. Introduction
Literature Review
2. Materials and Methods
2.1. Fuzzy Number and Its Membership Function
- The membership function of a triangular fuzzy number (TFN):
- The membership function of a trapezoidal fuzzy number (TrFN):
2.2. The α-Cut of a Fuzzy Number
2.3. Generalized Mean Value Defuzzification
3. Results
3.1. Number of Failures for Weibull Hazard Function with Fuzzy Parameter
- For a symmetrical case, i.e.,then
- For an asymmetrical case, i.e.,then
- if
- if
- If then regardless the value of and .
- Case 1: symmetrical TFN, i.e., thenHence, .
- Case 2: non-symmetrical TFN, i.e., then
- if thenHence, .
- if thenHence, .
- If then . □
- and ,
- for all,
- for all.
- It is clear.
- It can be proved by using Theorem 1.
- Note that for every , the interval in Equation (12) has the form for some . Without loss of generality, we will drop the index α, so that to prove the theorem we need .
3.2. Numerical Examples
3.3. Results from the α-Cut Method
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Esogbue, A.O.; Hearnes, W.E. On replacement models via a fuzzy set theoretic framework. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 1998, 28, 549–560. [Google Scholar] [CrossRef]
- Parchami, A. Calculator for fuzzy numbers. Complex. Intell. Syst. 2019, 5, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Husniah, H.; Supriatna, A.K.; Iskandar, B.P. Lease contract with servicing strategy model for used product considering crisp and fuzzy usage rate. Int. J. Artif. Intell. 2018, 18, 177–192. [Google Scholar]
- Husniah, H.; Pasaribu, U.S.; Iskandar, B.P. Multi-period lease contract for remanufactured products. Alex. Eng. J. 2020, 60, 2279–2289. [Google Scholar] [CrossRef]
- Husniah, H.; Pasaribu, U.S.; Wangsaputra, R.; Iskandar, B.P. Condition-based maintenance policy for a leased reman product. Heliyon 2021, 7, e06494. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.K. The use of fuzzy numbers in reliability calculations. IETE Tech. Rev. 2001, 18, 27–31. [Google Scholar] [CrossRef]
- Glöckner, I. Fuzzy Quantifiers: A Computational Theory; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Venkatesh, A.; Elango, S. A mathematical model for the effect of TRH using fuzzy reliability analysis. Glob. J. Pure Appl. Math. 2017, 13, 5673–5686. [Google Scholar]
- Venkatesh, A.; Subramani, G.; Elango, S. A mathematical model for the effect of gastrin in humans using fuzzy Weibull distribution. Int. J. Pure Appl. Math. 2017, 117, 155–164. [Google Scholar]
- Adhikari, S.; Khodaparast, H.H. A spectral approach for fuzzy uncertainty propagation in finite element analysis. Fuzzy Sets Syst. 2014, 243, 1–24. [Google Scholar] [CrossRef]
- Khalaf, A.; Djouani, K.; Hamam, Y.; Alayli, Y. Failure-cost mathematical model for medical equipment maintenance. In Proceedings of the Fourth International Conference on Advances in Biomedical Engineering (ICABME), Beirut, Lebanon, 19–21 October 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Li, G.; Li, Y.; Zhang, X.; Hou, C.; He, J.; Xu, B.; Chen, J. Development of a preventive maintenance strategy for an automatic production line based on group maintenance method. Appl. Sci. 2018, 8, 1781. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kim, B.; Ahn, S. Maintenance optimization for repairable deteriorating systems under imperfect preventive maintenance. Mathematics 2019, 7, 716. [Google Scholar] [CrossRef] [Green Version]
- Husniah, H.; Herdiani, L.; Kusmaya, K.; Supriatna, A.K. Fuzzy usage pattern in customizing public transport fleet and its maintenance options. J. Phys. Conf. Ser. 2018, 1013, 012186. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, A.; Ghaithan, A.; Al-Saleh, M.; Al-Ofi, K. Reliability-based preventive maintenance strategy of truck unloading systems. Appl. Sci. 2020, 10, 6957. [Google Scholar] [CrossRef]
- Nordal, H.; El-Thalji, I. Assessing the technical specifications of predictive maintenance: A case study of centrifugal compressor. Appl. Sci. 2021, 11, 1527. [Google Scholar] [CrossRef]
- Husniah, H.; Supriatna, A.K.; Iskandar, B.P. Improving service contract management with availability and negotiation. In Interdisciplinary Behavior and Social Sciences, Proceedings of the 3rd International Congress on Interdisciplinary Behavior and Social Science 2014 (ICIBSoS 2014), Bali, Indonesia, 1–2 November 2014; Gaol, L., Ed.; CRC Press-Taylor and Francis Group: London, UK, 2015; pp. 409–413. [Google Scholar]
- Wisniewski, R. Using Weibull Analysis to Guide Preventative Maintenance Strategy. Def. Syst. Inf. Anal. Cent. 2014, 2. Available online: https://dsiac.org/articles/using-weibull-analysis-to-guide-preventative-maintenance-strategy/ (accessed on 2 September 2021).
- Pascale, E.; Freneaux, T.; Sista, R.; Sannino, P.; Marmo, P.; Bouillaut, L. Application of the Weibull distribution for the optimization of maintenance policies of an electronic railway signaling system. In Proceedings of the ESREL 2017 European Safety and Reliability Conference, Portoroz, Slovenia, 18–22 June 2017; Available online: https://hal.archives-ouvertes.fr/hal-01521640/file/doc00026876.pdf (accessed on 2 September 2021).
- Hong, J. Modified Weibull Distributions in Reliability Engineering. Ph.D. Thesis, National University of Singapore, Singapore, 2010. Available online: http://scholarbank.nus.edu.sg/handle/10635/17099 (accessed on 2 September 2021).
- Baloui Jamkhaneh, E. Analyzing system reliability using fuzzy weibull lifetime distribution. Int. J. Appl. Oper. Res. 2014, 4, 81–90. [Google Scholar]
- Husniah, H.; Supriatna, A.K. Optimal number of fishing fleet for a sustainable fishery industry with a generalized logistic production function. In Proceedings of the 2015 International Conference on Industrial Engineering and Systems Management (IESM), Seville, Spain, 21–23 October 2015. [Google Scholar] [CrossRef]
- Husniah, H.; Pasaribu, U.S.; Supriatna, A.K.; Iskandar, B.P. Optimal number of fleet maintenance contract with policy limit cost. In Proceedings of the 4th International Conference on Control, Decision and Information Technologies (CoDIT), Bandung, Indonesia, 5–7 April 2017. [Google Scholar] [CrossRef]
- Zio, E.; Pedroni, N. Possibilistic methods for uncertainty treatment applied to maintenance policy assessment. In Industrial Safety Cahiers; Foundation for an Industrial Safety Culture: Toulouse, France, 2014; no. 2014-07; Available online: https://www.foncsi.org/en/publications/collections/industrial-safety-cahiers/possibilistic-methods-uncertainty-maintenance-policy/CSI-uncertainty-maintenance.pdf (accessed on 2 September 2021).
- Basile, O.; Dehombreux, P.; Riane, P. Identification of reliability models for non repairable and repairable systems with small samples. In Faculte Polytechnique de Mons Research Report; Arles: Mons, Belgium, 2004; Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.595.8268&rep=rep1&type=pdf (accessed on 2 September 2021).
- Basile, O.; Dehombreux, P.; Riane, P. Evaluation of the uncertainty affecting reliability models. J. Qual. Maint. Eng. 2007, 13, 137–151. [Google Scholar] [CrossRef]
- Baraldi, P.; Compare, M.; Zio, E. Uncertainty treatment in expert information systems for maintenance policy assessment. Appl. Soft Comput. 2014, 22, 297–310. [Google Scholar] [CrossRef] [Green Version]
- Zadeh, L. The concept of a linguistic variable and its application to approximate reasoning–I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Zadeh, L. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1999, 100, 9–34. [Google Scholar] [CrossRef]
- Rotshtein, A.; Katielnikov, D.; Pustylnik, L. Reliability modeling and optimization using fuzzy logic and chaos theory. Int. J. Qual. Stat. Reliab. 2012, 2012, 847416. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, E.; Imani, D.M. A new modeling of maintenance risk based inspection interval optimization with fuzzy failure interaction for two-component repairable system. Indian J. Nat. Sci. 2015, 6, 9003–9017. [Google Scholar]
- Garg, H.; Sharma, S.P.; Rani, M. Weibull fuzzy probability distribution for analysing the behaviour of pulping unit in a paper industry. Int. J. Ind. Syst. Eng. 2013, 14, 395–413. [Google Scholar] [CrossRef]
- Lee, K.H. First Course on Fuzzy Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Husniah, H.; Widjajani, W.; Rohmana, R.; Supriatna, A.K. Number of failures for weibull hazard function with a fuzzy shape parameter. J. Phys. Conf. Ser. 2019, 1280, 022034. [Google Scholar] [CrossRef]
- Husniah, H.; Supriatna, A.K. Application of fuzzy theory in determining the number of failures for Weibull hazard function. In Proceedings of the ICOCSIM, Lombok, Indonesia, 21 March 2019. [Google Scholar]
- Sharma, R.K.; Sharma, P. System failure behavior and maintenance decision making using, RCA, FMEA and FM. J. Qual. Maint. Eng. 2010, 16, 64–88. [Google Scholar] [CrossRef]
- Rahmani, A.; Lotfi, F.H.; Rostamy-Malkhalifeh, M.; Allahviranloo, T. A new method for defuzzification and ranking of fuzzy numbers based on the statistical beta distribution. Adv. Fuzzy Syst. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Buckley, J.J.; Eslami, E.; Feuring, T. Fuzzy Mathematics in Economics and Engineering; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Lai, C.D.; Murthy, D.N.; Xie, M. Weibull distributions and their applications. In Springer Handbook of Engineering Statistics; Pham, H., Ed.; Springer: New York, NY, USA, 2006; pp. 63–78. [Google Scholar]
- Kumar, P.; Singh, S.B. Fuzzy system reliability using intuitionistic fuzzy Weibull lifetime distribution. Int. J. Reliab. Appl. 2015, 16, 15–26. [Google Scholar]
- Iskandar, B.P.; Jack, N.; Murthy, D.N.P. Two new servicing strategies for products sold with warranty. Asia Pac. J. Oper. Res. 2012, 29, 1240022. [Google Scholar] [CrossRef]
- Nakagawa, T. Maintenance Theory of Reliability; Springer-Verlag: London, UK, 2005. [Google Scholar]
- Kobbacy, K.A.H.; Murthy, D.N.P. Complex System Maintenance Handbook; Springer Nature: Cham, Switzerland, 2008. [Google Scholar]
- Rinne, H. The Weibull Distribution A Handbook, 1st ed.; Chapman and Hall/CRC: New York, NY, USA, 2008. [Google Scholar]
- McCool, J.I. Using the Weibull Distribution: Reliability, Modeling, and Inference; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Ebrahimnejad, A.; Verdegay, J.L. Fuzzy Sets-Based Methods and Techniques for Modern Analytics; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Ebrahimnejad, A. New method for solving Fuzzy transportation problems with LR flat fuzzy numbers. Inf. Sci. 2016, 357, 108–124. [Google Scholar] [CrossRef]
- Jain, S. Close interval approximation of piecewise quadratic fuzzy numbers for fuzzy fractional program. Iran. J. Oper. Res. 2010, 2, 77–88. [Google Scholar]
- Panda, A.; Pal, M. A study on pentagonal fuzzy number and its corresponding matrices. Pac. Sci. Rev. B. Humanit. Soc. Sci. 2015, 1, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Maturo, F.; Fortuna, F. Bell-shaped fuzzy numbers associated with the normal curve. In Topics on Methodological and Applied Statistical Inference; Di Battista, T., Moreno, E., Racugno, W., Eds.; Springer Nature: Cham, Switzerland, 2016; pp. 131–144. [Google Scholar] [CrossRef]
- Thangavelu, K.; Uthra, G.; Shunmugapriya, S. A new approach on the membership functions of fuzzy numbers. Int. J. Pure Appl. Math. 2017, 114, 145–152. [Google Scholar]
- Bagheri, N.; Hashemin, S.S. A new bell shape fuzzy number. Int. J. Math. Trends Technol. 2018, 54, 377–382. [Google Scholar] [CrossRef]
- van Leekwijck, W.; Kerre, E.E. Defuzzification: Criteria and classification. Fuzzy Sets Syst. 1999, 108, 159–178. [Google Scholar] [CrossRef]
- Madau, D.P.; Feldkamp, L.A. Influence value defuzzification method. In Proceedings of the IEEE 5th International Fuzzy Systems, New Orleans, LA, USA, 11 September 1996; pp. 1819–1824. [Google Scholar] [CrossRef]
- Jager, B.; Verbruggen, H.B.; Bruijn, P.M. The role of defuzzification methods in the application of fuzzy control. IFAC Proc. Umes 1992, 25, 75–80. [Google Scholar] [CrossRef]
- Available online: https://en.wikibooks.org/wiki/Advanced_Calculus/Newton%27s_general_binomial_theorem (accessed on 2 September 2021).
- Koh, Y.; Ree, S. The Origin of Newton’s Generalized Binomial Theorem. J. Hist. Math. 2014, 27, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Scheideggera, A.; Scholtena, L.; Maurera, M.; Reichert, P. Extension of pipe failure models to consider the absence of data from replaced pipes. Water Res. 2013, 47, 3696–3705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izadparast, H.A.; Niedzwecki, J.M. Four-parameter Weibull probability distribution model for weakly non-linear random variables. Probabilistic Eng. Mech. 2013, 32, 31–38. [Google Scholar] [CrossRef]
Time t | Crisp Method | Fuzzy Propagation Method | Fuzzy α-Cut Method | ||
---|---|---|---|---|---|
TFN (p;q;s) | Defuzzification (p + 4q + s)/6 | TFN-like (p;q;s) | Defuzzification (p + 4q + s)/6 | ||
0 | 0 | 0 | 0 | p = 0 q = 0 s = 0 | 0 |
1 | 1 | 1 | 1 | p = 1 q = 1 s = 1 | 1 |
2 | 2.949350275 | p = 2.378414230 q = 2.928171392 s = 3.605001850 | 2.949350275 | p = 2.378414230 q = 2.928171392 s = 3.605001850 | 2.949350275 |
3 | 5.589852442 | p = 3.948222039 q = 5.489565165 s = 7.632631956 | 5.589852442 | p = 3.948222039 q = 5.489565165 s = 7.632631956 | 5.589852442 |
4 | 8.824940564 | p = 5.656854248 q = 8.574187700 s = 12.99603834 | 8.824940564 | p = 5.656854248 q = 8.574187700 s = 12.99603834 | 8.824940564 |
5 | 12.59725950 | p = 7.476743905 q = 12.11723434 s = 19.63787576 | 12.59725950 | p = 7.476743905 q = 12.11723434 s = 19.63787576 | 12.59725950 |
6 | 16.86728508 | p = 9.390507480 q = 16.07438767 s = 27.51565232 | 16.86728508 | p = 9.390507480 q = 16.07438767 s = 27.51565232 | 16.86728508 |
7 | 21.60548840 | p = 11.38603593 q = 20.41277093 s = 36.59581083 | 21.60548840 | p = 11.38603593 q = 20.41277093 s = 36.59581083 | 21.60548840 |
8 | 26.78864158 | p = 13.45434265 q = 25.10669114 s = 46.85074227 | 26.78864158 | p = 13.45434265 q = 25.10669114 s = 46.85074227 | 26.78864158 |
9 | 32.39780510 | p = 15.58845727 q = 30.13532570 s = 58.25707056 | 32.39780510 | p = 15.58845727 q = 30.13532570 s = 58.25707056 | 32.39780510 |
10 | 38.41712138 | p = 17.78279410 q = 35.48133892 s = 70.79457844 | 38.41712138 | p = 17.78279410 q = 35.48133892 s = 70.79457844 | 38.41712138 |
n | GMVD | n | GMVD |
---|---|---|---|
0 | 44,28868627 | 6 | 37,68317576 |
1 | 41,35290382 | 7 | 37,43852722 |
2 | 39,88501260 | 8 | 37,24280839 |
3 | 39,00427786 | 9 | 37,08267480 |
4 | 38,41712137 | 10 | 36,94923015 |
5 | 37,99772388 | 10,000,000 | 35,48135653 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Husniah, H.; Supriatna, A.K. Computing the Number of Failures for Fuzzy Weibull Hazard Function. Mathematics 2021, 9, 2858. https://doi.org/10.3390/math9222858
Husniah H, Supriatna AK. Computing the Number of Failures for Fuzzy Weibull Hazard Function. Mathematics. 2021; 9(22):2858. https://doi.org/10.3390/math9222858
Chicago/Turabian StyleHusniah, Hennie, and Asep K. Supriatna. 2021. "Computing the Number of Failures for Fuzzy Weibull Hazard Function" Mathematics 9, no. 22: 2858. https://doi.org/10.3390/math9222858
APA StyleHusniah, H., & Supriatna, A. K. (2021). Computing the Number of Failures for Fuzzy Weibull Hazard Function. Mathematics, 9(22), 2858. https://doi.org/10.3390/math9222858