Norm Inflation for Benjamin–Bona–Mahony Equation in Fourier Amalgam and Wiener Amalgam Spaces with Negative Regularity
Abstract
:1. Introduction
2. Function Spaces
3. Local Well-Posedness in Wiener Algebra
- (1)
- (2)
4. Proof of Theorem 1
4.1. Estimates in
- (1)
- (2)
- (3)
- (4)
4.2. Estimates in
- (1)
- if
- (2)
- if
- (1)
- (2)
- (3)
- (4)
- (1)
- (2)
- (3)
- (4)
- ⇔ (2)
- (5)
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alazman, A.; Albert, J.; Bona, J.; Chen, M.; Wu, J. Comparisons between the BBM equation and a Boussinesq system. Adv. Differ. Equ. 2006, 11, 121–166. [Google Scholar]
- Bona, J.; Pritchard, W.; Scott, L. An evaluation of a model equation for water waves. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1981, 302, 457–510. [Google Scholar]
- Bona, J.L.; Tzvetkov, N. Sharp well-posedness results for the BBM equation. Discret. Contin. Dyn. Syst. 2009, 23, 1241–1252. [Google Scholar] [CrossRef]
- Pava, J.A.; Banquet, C.; Scialom, M. Stability for the modified and fourth-order Benjamin-Bona-Mahony equations. Discret. Contin. Dyn. Syst. 2011, 30, 851. [Google Scholar] [CrossRef]
- Bona, J.L.; Pritchard, W.; Scott, L.R. A Comparison of Solutions of Two Model Equations for Long Waves; Technical Report; Wisconsin University—Madison Mathematics Research Center: Madison, WI, USA, 1983; Available online: https://apps.dtic.mil/sti/pdfs/ADA128076.pdf (accessed on 3 October 2021).
- Bona, J.L.; Cascaval, R.C. Nonlinear dispersive waves on trees. Can. Appl. Math. Q. 2008, 16, 1–18. [Google Scholar]
- Wang, B.; Hudzik, H. The global Cauchy problem for the NLS and NLKG with small rough data. J. Differ. Equ. 2007, 232, 36–73. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Huo, Z.; Hao, C.; Guo, Z. Harmonic Analysis Method for Nonlinear Evolution Equations, I; World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Bhimani, D.G.; Ratnakumar, P.K. Functions operating on modulation spaces and nonlinear dispersive equations. J. Funct. Anal. 2016, 270, 621–648. [Google Scholar] [CrossRef]
- Bhimani, D.G.; Manna, R.; Nicola, F.; Thangavelu, S.; Trapasso, S.I. Phase space analysis of the Hermite semigroup and applications to nonlinear global well-posedness. Adv. Math. 2021, 392, 107995. [Google Scholar] [CrossRef]
- Bhimani, D.G.; Carles, R. Norm inflation for nonlinear Schrödinger equations in Fourier-Lebesgue and modulation spaces of negative regularity. J. Fourier Anal. Appl. 2020, 26, 34. [Google Scholar] [CrossRef]
- Bhimani, D.G.; Grillakis, M.; Okoudjou, K.A. The Hartree-Fock equations in modulation spaces. Comm. Partial Differ. Equ. 2020, 45, 1088–1117. [Google Scholar] [CrossRef]
- Ruzhansky, M.; Sugimoto, M.; Wang, B. Modulation spaces and nonlinear evolution equations. In Evolution Equations of Hyperbolic and Schrödinger Type; Birkhäuser/Springer: Basel, Switzerland, 2012; Volume 301, pp. 267–283. [Google Scholar] [CrossRef] [Green Version]
- Benyi, A.; Okoudjou, K.A. Modulation Spaces: With Applications to Pseudodifferential Operators and Nonlinear Schrodinger Equations; Applied and Numerical Harmonic Analysis; Birkhauser: Basel, Switzerland; Springer Nature: Basingstoke, UK, 2020. [Google Scholar]
- Forlano, J.; Okamoto, M. A remark on norm inflation for nonlinear wave equations. Dyn. Partial Differ. Equ. 2020, 17, 361–381. [Google Scholar] [CrossRef]
- Panthee, M. On the ill-posedness result for the BBM equation. Discrete Contin. Dyn. Syst. 2011, 30, 253–259. [Google Scholar] [CrossRef] [Green Version]
- Bona, J.; Dai, M. Norm-inflation results for the BBM equation. J. Math. Anal. Appl. 2017, 446, 879–885. [Google Scholar] [CrossRef] [Green Version]
- Banquet, C.; Villamizar-Roa, E.J. Time-decay and Strichartz estimates for the BBM equation on modulation spaces: Existence of local and global solutions. J. Math. Anal. Appl. 2021, 498, 124934. [Google Scholar] [CrossRef]
- Bejenaru, I.; Tao, T. Sharp well-posedness and ill-posedness results for a quadratic non-linear Schrödinger equation. J. Funct. Anal. 2006, 233, 228–259. [Google Scholar] [CrossRef] [Green Version]
- Iwabuchi, T.; Ogawa, T. Ill-posedness for the nonlinear Schrödinger equation with quadratic non-linearity in low dimensions. Trans. Am. Math. Soc. 2015, 367, 2613–2630. [Google Scholar] [CrossRef]
- Kishimoto, N. A remark on norm inflation for nonlinear Schrödinger equations. Commun. Pure Appl. Anal. 2019, 18, 1375. [Google Scholar] [CrossRef] [Green Version]
- Oh, T. A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces. Funkcial. Ekvac. 2017, 60, 259–277. [Google Scholar] [CrossRef] [Green Version]
- Bhimani, D.G.; Haque, S. Norm inflation for nonlinear wave equations with infinite loss of regularity in Wiener amalgam spaces. arXiv 2021, arXiv:2106.13635. [Google Scholar]
- Lebeau, G. Perte de régularité pour les équations d’ondes sur-critiques. Bull. Soc. Math. France 2005, 133, 145–157. [Google Scholar] [CrossRef] [Green Version]
- Carles, R.; Dumas, E.; Sparber, C. Geometric optics and instability for NLS and Davey-Stewartson models. J. Eur. Math. Soc. (JEMS) 2012, 14, 1885–1921. [Google Scholar] [CrossRef] [Green Version]
- Ruzhansky, M.; Turunen, V. Pseudo-Differential Operators and Symmetries: Background Analysis and Advanced Topics; Springer Science & Business Media: Basel, Switzerland, 2010; Volume 2. [Google Scholar]
- Feichtinger, H.G. Modulation Spaces on Locally Compact Abelian Groups; Technical Report; University of Vienna: Vienna, Austria, 1983. [Google Scholar]
- Gröchenig, K. Foundations of Time-Frequency Analysis; Applied and Numerical Harmonic Analysis; Birkhäuser Boston, Inc.: Boston, MA, USA, 2001; pp. xvi+359. [Google Scholar] [CrossRef]
- Forlano, J.; Oh, T. Normal form approach to the one-dimensional cubic nonlinear Schrödinger equation in Fourier-amalgam spaces. arXiv 2021, arXiv:1811.04868. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhimani, D.G.; Haque, S. Norm Inflation for Benjamin–Bona–Mahony Equation in Fourier Amalgam and Wiener Amalgam Spaces with Negative Regularity. Mathematics 2021, 9, 3145. https://doi.org/10.3390/math9233145
Bhimani DG, Haque S. Norm Inflation for Benjamin–Bona–Mahony Equation in Fourier Amalgam and Wiener Amalgam Spaces with Negative Regularity. Mathematics. 2021; 9(23):3145. https://doi.org/10.3390/math9233145
Chicago/Turabian StyleBhimani, Divyang G., and Saikatul Haque. 2021. "Norm Inflation for Benjamin–Bona–Mahony Equation in Fourier Amalgam and Wiener Amalgam Spaces with Negative Regularity" Mathematics 9, no. 23: 3145. https://doi.org/10.3390/math9233145
APA StyleBhimani, D. G., & Haque, S. (2021). Norm Inflation for Benjamin–Bona–Mahony Equation in Fourier Amalgam and Wiener Amalgam Spaces with Negative Regularity. Mathematics, 9(23), 3145. https://doi.org/10.3390/math9233145