On the Canonical Foliation of an Indefinite Locally Conformal Kähler Manifold with a Parallel Lee Form
Abstract
:1. Reminder of l.c.K. Geometry and Statement of Main Results
2. Indefinite Hopf Manifolds
3. Conformally Flat Indefinite l.c.K. Manifolds
4. Conclusions and Open Problems
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Canonical Foliations with Lightlike Leaves
References
- Barros, M.; Romero, A. Indefinite Kähler manifolds. Math. Ann. 1982, 261, 55–62. [Google Scholar] [CrossRef]
- Libermann, P. Sur les structures presque complexes at autres structures infinitésimales réguliers. Bull. Soc. Math. 1955, 83, 195–224. [Google Scholar]
- Aubin, T. Variétés hermitiennes localment conformément Kählériennes. C. R. Acad. Sci. 1965, 261, 2427–2430. [Google Scholar]
- Vaisman, I. On locally conformal almost Kähler manifolds. Israel J. Math. 1976, 24, 338–351. [Google Scholar] [CrossRef]
- Dragomir, S.; Ornea, L. Locally Conformal Kähler Geometry; Progress in Mathematics; Birkhäuser: Berlin/Heidelberg, Germany; New York, NY, USA, 1998; Volume 155. [Google Scholar]
- Dragomir, S.; Duggal, K.L. Indefinite locally conformal Kähler manifolds. Differ. Geom. Its Appl. 2007, 25, 8–22. [Google Scholar] [CrossRef] [Green Version]
- Dragomir, S.; Duggal, K.L. Indefinite extrinsic spheres. Tsukuba J. Math. 2008, 32, 335–348. [Google Scholar] [CrossRef]
- Lee, H.C. A kind of even dimensional geometry and its application to exterior calculus. Am. J. Math. 1943, 65, 433–438. [Google Scholar] [CrossRef]
- Vaisman, I. Generalized Hopf manifolds. Geom. Dedicata 1982, 13, 231–255. [Google Scholar] [CrossRef]
- O’Neill, B. Semi-Riemannian Geometry; Academic Press: New York, NY, USA; London, UK; Paris, France, 1983. [Google Scholar]
- Bejancu, A.; Duggal, K.L. Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications; Kluwer Academic: Dordrecht, The Netherlands, 1996; Volume 364. [Google Scholar]
- Wu, H. On the de Rham decomposition theorem. Ill. J. Math. 1964, 8, 291–311. [Google Scholar] [CrossRef]
- Kobayashi, S.; Nomizu, K. Foundations of Differential Geometry; Interscience Publishers: New York, NY, USA, 1963; Volume I. [Google Scholar]
- Vaisman, I. Locally conformal Kähler manifolds with parallel Lee form. Rendiconti di Matematica e delle sue Applicazioni 1979, 12, 263–284. [Google Scholar]
- Boothby, W.M. Some fundamental formulas for Hermitian manifolds with non-vanishing torsion. Am. J. Math. 1954, 76, 509–534. [Google Scholar] [CrossRef]
- Berger, M.; Gauduchon, P.; Mazet, E. Le Spectre D’une Varieté Riemanniene; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1971; Volume 194. [Google Scholar]
- Blair, D.E. Contact Manifolds in Riemannian Geometry; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1976; Volume 509. [Google Scholar]
- Duggal, K.L. Space-time manifolds and contact structures. Int. J. Math. Math. Sci. 1990, 13, 545–554. [Google Scholar] [CrossRef]
- Takahashi, T. Sasakian manifolds with pseudo-Riemannian metric. Tohoku Math. J. 1969, 21, 271–290. [Google Scholar] [CrossRef]
- Wolf, J.A. Spaces of Constant Curvature; Publish or Perish, Inc.: Wilmington, DE, USA, 1984. [Google Scholar]
- Barletta, E.; Dragomir, S.; Duggal, K.L. Foliations in Cauchy-Riemann geometry. In Mathematical Surveys and Monographs; American Mathematical Society: Providence, RI, USA, 2007; Volume 140. [Google Scholar]
- Dragomir, S.; Tomassini, G. Differential Geometry and Analysis on CR Manifolds; Progress in Mathematics; Birkhäuser: Boston, MA, USA; Basel, Switzerland; Berlin, Germany, 2006; Volume 246. [Google Scholar]
- Barletta, E. On the pseudohermitian sectional curvature of a strictly pseudoconvex CR manifold. Differ. Geom. Its Appl. 2007, 25, 612–631. [Google Scholar] [CrossRef] [Green Version]
- Chern, S.S.; Moser, J.K. Real hypersurfaces in complex manifolds. Acta Math. 1974, 133, 219–271. [Google Scholar] [CrossRef]
- Gray, A.; Hervella, L.M. The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. 1980, 123, 35–58. [Google Scholar] [CrossRef]
- Kirichenko, V. Conformally flat and locally conformal Kähler manifolds. Math. Notes 1992, 51, 462–468. [Google Scholar] [CrossRef]
- Wu, H. Decomposition of Riemannian manifolds. Bull. Am. math. Soc. 1964, 70, 610–617. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barletta, E.; Dragomir, S.; Esposito, F. On the Canonical Foliation of an Indefinite Locally Conformal Kähler Manifold with a Parallel Lee Form. Mathematics 2021, 9, 333. https://doi.org/10.3390/math9040333
Barletta E, Dragomir S, Esposito F. On the Canonical Foliation of an Indefinite Locally Conformal Kähler Manifold with a Parallel Lee Form. Mathematics. 2021; 9(4):333. https://doi.org/10.3390/math9040333
Chicago/Turabian StyleBarletta, Elisabetta, Sorin Dragomir, and Francesco Esposito. 2021. "On the Canonical Foliation of an Indefinite Locally Conformal Kähler Manifold with a Parallel Lee Form" Mathematics 9, no. 4: 333. https://doi.org/10.3390/math9040333
APA StyleBarletta, E., Dragomir, S., & Esposito, F. (2021). On the Canonical Foliation of an Indefinite Locally Conformal Kähler Manifold with a Parallel Lee Form. Mathematics, 9(4), 333. https://doi.org/10.3390/math9040333