An Autoregressive Disease Mapping Model for Spatio-Temporal Forecasting
Abstract
:1. Introduction
2. An Autoregressive Spatio-Temporal Model for Disease Mapping
3. A Motivating Analysis: A Comprehensive Spatio-Temporal Mortality Study in the Valencian Region
4. An Autoregressive Spatio-Temporal Model with a Specific Spatial Component
4.1. Modeling Proposal
4.2. Dependence Structure
5. A Re-Analysis of the Mortality Study in the Valencian Region
5.1. Comparison of the Temporal Correlation Coefficients of Both Models
5.2. Models’ Fit Comparison According to the DICs
5.3. Prediction for the Next Five Years
- The original AR model of Martinez-Beneito et al.
- The autoregressive model proposed in this paper.
- The spatio-temporal model of Bernardinelli et al. (1995) [6], which would assume spatially correlated linear time trends for the municipalities of the Valencian Region.
- The spatio-temporal model of Assunção et al. (2001) [7], which would assume spatially correlated quadratic time trends for the municipalities of the Valencian Region.
6. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Lawson, A.; Biggeri, A.; Bohning, D.; Lesaffre, E.; Viel, J.F.; Bertollini, R. (Eds.) Disease Mapping and Risk Assessment for Public Health; Wiley: Hoboken, NJ, USA, 1999. [Google Scholar]
- Lawson, A.B. Bayesian Disease Mapping: Hierarchical Modeling in Spatial Epidemiology, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Martinez-Beneito, M.A.; Botella Rocamora, P. Disease Mapping from Foundations to Multidimensional Modeling; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Besag, J.; York, J.; Mollié, A. Bayesian image restoration, with two applications in spatial statistics. Ann. Inst. Stat. Math. 1991, 43, 1–21. [Google Scholar] [CrossRef]
- Ocaña Riola, R. The misuse of count data aggregated over time for disease mapping. Stat. Med. 2007, 26, 4489–4504. [Google Scholar] [CrossRef] [PubMed]
- Bernardinelli, L.; Clayton, D.; Pascutto, C.; Montomoli, C.; Ghislandi, M.; Songini, M. Bayesian analysis of space-time variation in disease risk. Stat. Med. 1995, 14, 2433–2443. [Google Scholar] [CrossRef] [PubMed]
- Assunção, R.M.; Reis, I.A.; Oliveira, C.L. Diffusion and prediction of Leishmaniasis in a large metropolitan area in Brazil with a Bayesian space-time model. Stat. Med. 2001, 20, 2319–2335. [Google Scholar] [CrossRef] [PubMed]
- Torres-Avilés, F.; Martinez-Beneito, M.A. STANOVA: A smooth-ANOVA-based model for spatio-temporal disease mapping. Stoch. Environ. Res. Risk Assess. 2015, 29, 131–141. [Google Scholar] [CrossRef]
- Waller, L.A.; Carlin, B.P.; Xia, H.; Gelfand, A.E. Hierarchical spatio-temporal mapping of disease rates. J. Am. Stat. Assoc. 1997, 92, 607–617. [Google Scholar] [CrossRef]
- Xia, H.; Carlin, B.P. Spatio-temporal models with errors in covariates: Mapping Ohio lung cancer mortality. Stat. Med. 1998, 17, 2025–2043. [Google Scholar] [CrossRef]
- MacNab, Y.C.; Dean, C.B. Spatio-temporal modeling of rates for the construction of disease maps. Stat. Med. 2002, 21, 347–358. [Google Scholar] [CrossRef]
- MacNab, Y.C. Spline smoothing in Bayesian disease mapping. Environmetrics 2007, 18, 727–744. [Google Scholar] [CrossRef]
- Ugarte, M.D.; Goicoa, T.; Militino, A.F. Spatio-temporal modeling of mortality risks using penalized splines. Environmetrics 2010, 21, 270–289. [Google Scholar] [CrossRef]
- Ugarte, M.; Goicoa, T.; Militino, A.; Durbán, M. Spline smoothing in small area trend estimation and forecasting. Comput. Stat. Data Anal. 2009, 53, 3616–3629. [Google Scholar] [CrossRef]
- Ugarte, M.D.; Goicoa, T.; Etxebarria, J.; Militino, A.F. Projections of cancer mortality risks using spatio-temporal P-spline models. Stat. Methods Med Res. 2012, 21, 545–560. [Google Scholar] [CrossRef]
- Etxebarria, J.; Goicoa, T.; Ugarte, M.D.; Militino, A.F. Evaluating space-time models for short-term cancer mortality risk predictions in small areas. Biom. J. 2014, 56, 383–402. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Beneito, M.A.; López-Quílez, A.; Botella-Rocamora, P. An autoregressive approach to spatio-temporal disease mapping. Stat. Med. 2008, 27, 2874–2889. [Google Scholar] [CrossRef] [PubMed]
- Rubio, V. Bayesian Inference with INLA; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2020. [Google Scholar]
- Leroux, B.G.; Lei, X.; Breslow, N. Estimation of disease rates in small areas: A new mixed model for spatial dependence. In Statistical Models in Epidemiology, the Environment and Clinical Trials; Halloran, M.E., Berry, D., Eds.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1999. [Google Scholar]
- Knorr-Held, L. Bayesian modeling of inseparable space-time variation in disease risk. Stat. Med. 2000, 19, 2555–2567. [Google Scholar] [CrossRef] [Green Version]
- Goicoa, T.; Ugarte, M.D.; Etxebarria, J.; Militino, A.F. Age-space-time CAR models in Bayesian disease mapping. Stat. Med. 2016, 35, 2391–2405. [Google Scholar] [CrossRef]
- Goicoa, T.; Adin, A.; Ugarte, M.D.; Hodges, J.S. In spatio-temporal disease mapping model, identifiability constraints affect PQL and INLA. Stoch. Environ. Res. Risk Assess. 2018, 32, 749–770. [Google Scholar] [CrossRef]
- Zurriaga, O.; Martínez-Beneito, M.A.; Botella-Rocamora, P.; López-Quílez, A.; Melchor, I.; Amador, A.; Vanaclocha, H.; Nolasco, A. Spatio-Temporal Mortality Atlas of Comunitat Valenciana. 2010. Available online: http://www.geeitema.org/AtlasET/index.jsp?idioma=I (accessed on 2 May 2016).
- Spiegelhalter, D.J.; Best, N.G.; Carlin, B.P.; Van Der Linde, A. Bayesian measures of model complexity and fit (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol 2002, 64, 583–641. [Google Scholar] [CrossRef] [Green Version]
- Askanazi, R.; Diebold, F.X.; Schorfheide, F.; Shin, M. On the Comparison of Interval Forecasts. J. Time Ser. Anal. 2018, 39, 953–965. [Google Scholar] [CrossRef]
- Brooks, S.P.; Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 1998, 7, 434–455. [Google Scholar]
- Carlin, B.P.; Gelman, A.; Neal, R.M. Markov Chain Monte Carlo in Practice: A Roundtable Discussion. Am. Stat. 1998, 52, 93–100. [Google Scholar] [CrossRef]
- Botella-Rocamora, P.; Martinez-Beneito, M.A.; Banerjee, S. A unifying modeling framework for highly multivariate disease mapping. Stat. Med. 2015, 34, 1548–1559. [Google Scholar] [CrossRef] [PubMed]
Mortality Causes | Sex | ||
---|---|---|---|
Men | Women | ||
1. | All tumors | 0.981 | 0.963 |
(0.966–0.990) | (0.938–0.983) | ||
2. | Mouth | 0.956 | – |
(0.898–0.974) | |||
3. | Stomach | 0.960 | 0.890 |
(0.912–0.992) | (0.603–0.985) | ||
4. | Colorectal | 0.902 | 0.921 |
(0.802–0.962) | (0.794–0.981) | ||
5. | Colon | 0.903 | 0.828 |
(0.808–0.971) | (0.499–0.919) | ||
6. | Rectum | 0.945 | 0.888 |
(0.848–0.990) | (0.709–0.979) | ||
7. | Liver | 0.970 | 0.822 |
(0.932–0.993) | (0.562–0.950) | ||
8. | Vesicle | – | 0.960 |
(0.912–0.992) | |||
9. | Pancreas | 0.957 | 0.575 |
(0.868–0.995) | (−0.239–0.940) | ||
10. | Larynx | 0.972 | – |
(0.929–0.995) | |||
11. | Lung | 0.989 | 0.947 |
(0.977–0.997) | (0.882–0.987) | ||
12. | Breast | – | 0.965 |
(0.914–0.995) | |||
13. | Uterus | – | 0.893 |
(0.661–0.988) | |||
14. | Ovary | – | 0.874 |
(0.422–0.989) | |||
15. | Prostate | 0.960 | – |
(0.908–0.989) | |||
16. | Bladder | 0.974 | – |
(0.950–0.991) | |||
17. | Lymphatic | 0.934 | 0.842 |
(0.807–0.994) | (0.607–0.961) | ||
18. | Leukemia | 0.960 | 0.108 |
(0.912–0.992) | (−0.685–0.895) | ||
19. | Diabetes | 0.934 | 0.961 |
(0.887–0.964) | (0.935–0.979) | ||
20. | Hypertensive | 0.941 | 0.949 |
(0.867–0.984) | (0.917–0.973) | ||
21. | Ischemic | 0.961 | 0.950 |
(0.949–0.972) | (0.875–0.959) | ||
22. | Cerebrovascular | 0.953 | 0.940 |
(0.936–0.968) | (0.922–0.955) | ||
23. | Atherosclerosis | 0.954 | 0.942 |
(0.936–0.960) | (0.928–0.955) | ||
24. | Other Cardiovascular | 0.943 | 0.936 |
(0.919–0.963) | (0.916–0.951) | ||
25. | Pneumonia | 0.932 | 0.892 |
(0.889–0.967) | (0.837–0.910) | ||
26. | COPD | 0.961 | 0.951 |
(0.938–0.977) | (0.915–0.978) | ||
27. | Cirrhosis | 0.980 | 0.991 |
(0.964–0.992) | (0.978–0.999) |
Mortality Cause | Men | Women | |||
---|---|---|---|---|---|
Model 1 | Model 2 | Model 1 | Model 2 | ||
1. | All tumors | 0.981 | 0.872 | 0.963 | 0.890 |
[0.966, 0.990] | [0.632, 0.979] | [0.938, 0.983] | [0.687, 0.970] | ||
2. | Mouth | 0.956 | 0.178 | – | – |
[0.898, 0.991] | [−0.707, 0.920] | ||||
3. | Stomach | 0.960 | 0.484 | 0.890 | −0.219 |
[0.912, 0.992] | [−0.413, 0.940] | [0.603, 0.985] | [−0.883, 0.857] | ||
4. | Colorectal | 0.902 | 0.138 | 0.921 | 0.350 |
[0.801, 0.962] | [−0.345, 0.565] | [0.794, 0.981] | [−0.538, 0.901] | ||
5. | Colon | 0.903 | 0.320 | 0.828 | 0.234 |
[0.808, 0.971] | [−0.184, 0.829] | [0.499, 0.973] | [−0.698, 0.931] | ||
6. | Rectum | 0.945 | −0.201 | 0.888 | 0.207 |
[0.848, 0.990] | [−0.857, 0.685] | [0.709, 0.979] | [−0.645, 0.880] | ||
7. | Liver | 0.970 | −0.077 | 0.822 | 0.250 |
[0.932, 0.993] | [−0.690, 0.712] | [0.562, 0.950] | [−0.470, 0.861] | ||
8. | Vesicle | – | – | 0.887 | 0.037 |
[0.444, 0.990] | [−0.702, 0.875] | ||||
9. | Pancreas | 0.957 | 0.047 | 0.575 | 0.199 |
[0.868, 0.995] | [−0.680, 0.827] | [−0.239, 0.940] | [−0.620, 0.870] | ||
10. | Larynx | 0.972 | 0.412 | – | – |
[0.929, 0.995] | [−0.559, 0.961] | ||||
11. | Lung | 0.988 | 0.741 | 0.947 | 0.516 |
[0.977, 0.997] | [0.101, 0.976] | [0.882, 0.987] | [−0.597, 0.955] | ||
12. | Breast | – | – | 0.965 | 0.223 |
[0.914, 0.995] | [−0.621, 0.904] | ||||
13. | Uterus | – | – | 0.893 | 0.106 |
[0.661, 0.989] | [−0.604, 0.819] | ||||
14. | Ovary | – | – | 0.874 | −0.027 |
[0.421, 0.989] | [−0.882, 0.854] | ||||
15. | Prostate | 0.960 | 0.866 | – | – |
[0.908, 0.989] | [0.553, 0.978] | ||||
16. | Bladder | 0.974 | 0.640 | – | – |
[0.950, 0.991] | [−0.129, 0.976] | ||||
17. | Lymphatic | 0.934 | 0.100 | 0.842 | 0.461 |
[0.807, 0.994] | [−0.777, 0.910] | [0.607, 0.961] | [−0.652, 0.949] | ||
18. | Leukemia | 0.596 | −0.018 | 0.108 | −0.157 |
[−0.531, 0.973] | [−0.773, 0.858] | [−0.685, 0.895] | [−0.781, 0.709] | ||
19. | Diabetes | 0.934 | 0.862 | 0.961 | 0.916 |
[0.887, 0.964] | [0.699, 0.950] | [0.935, 0.979] | [0.778, 0.972] | ||
20. | Hypertensive | 0.941 | 0.632 | 0.949 | 0.905 |
[0.867, 0.984] | [−0.419, 0.964] | [0.917, 0.973] | [0.801, 0.958] | ||
21. | Ischemic | 0.961 | 0.935 | 0.950 | 0.929 |
[0.949, 0.972] | [0.890, 0.965] | [0.933, 0.963] | [0.879, 0.957] | ||
22. | Cerebrovascular | 0.953 | 0.946 | 0.940 | 0.922 |
[0.936, 0.968] | [0.912, 0.967] | [0.922, 0.955] | [0.887, 0.947] | ||
23. | Atherosclerosis | 0.954 | 0.947 | 0.942 | 0.935 |
[0.936, 0.967] | [0.916, 0.966] | [0.928, 0.955] | [0.911, 0.953] | ||
24. | Other Cardiovascular | 0.943 | 0.913 | 0.936 | 0.926 |
[0.919, 0.963] | [0.849, 0.954] | [0.916, 0.951] | [0.895, 0.948] | ||
25. | Pneumonia | 0.931 | 0.834 | 0.893 | 0.875 |
[0.889, 0.967] | [0.578, 0.950] | [0.837, 0.935] | [0.793, 0.934] | ||
26. | COPD | 0.961 | 0.936 | 0.951 | 0.887 |
[0.938, 0.977] | [0.861, 0.974] | [0.915, 0.977] | [0.687, 0.968] | ||
27. | Cirrhosis | 0.980 | 0.939 | 0.991 | 0.320 |
[0.964, 0.992] | [0.682, 0.993] | [0.978, 0.999] | [-0.630, 0.990] |
Mortality Cause | Men | Women | |||
---|---|---|---|---|---|
Model 1 | Model 2 | Model 1 | Model 2 | ||
1. | All tumors | 12,128.3 | 12,126.5 | 11,495.0 | 11,482.6 |
2. | Mouth | 4801.6 | 4800.8 | − | − |
3. | Stomach | 6901.1 | 6905.0 | 5798.1 | 5796.8 |
4. | Colorectal | 7906.1 | 7898.7 | 7652.7 | 7651.2 |
5. | Colon | 7261.5 | 7260.1 | 6966.8 | 6961.9 |
6. | Rectum | 4721.0 | 4719.7 | 4166.9 | 4162.7 |
7. | Liver | 5949.5 | 5945.6 | 5053.5 | 5052.8 |
8. | Vesicle | − | − | 3866.0 | 3863.4 |
9. | Pancreas | 5251.4 | 5248.6 | 4853.4 | 4848.9 |
10. | Larynx | 4897.8 | 4899.1 | − | − |
11. | Lung | 9692.4 | 9694.5 | 4675.0 | 4677.8 |
12. | Breast | − | − | 7712.1 | 7707.7 |
13. | Uterus | − | − | 5008.8 | 5004.3 |
14. | Ovary | − | − | 4648.4 | 4642.6 |
15. | Prostate | 8466.1 | 8469.1 | − | − |
16. | Bladder | 6548.3 | 6552.0 | − | − |
17. | Lymphatic | 5140.8 | 5138.1 | 4636.0 | 4638.2 |
18. | Leukemia | 4759.5 | 4753.4 | 4282.2 | 4275.9 |
19. | Diabetes | 7293.5 | 7294.7 | 8727.0 | 8730.9 |
20. | Hypertensive | 5224.8 | 5231.9 | 6609.3 | 6615.8 |
21. | Ischemic | 11,480.4 | 11,477.0 | 10,871.8 | 10,882.5 |
22. | Cerebrovascular | 11,611.7 | 11,608.1 | 12,012.9 | 11,986.7 |
23. | Atherosclerosis | 6400.6 | 6405.0 | 7623.1 | 7600.7 |
24. | Other Cardiovascular | 11,457.9 | 11,459.2 | 12,101.0 | 12,097.3 |
25. | Pneumonia | 7425.7 | 7426.7 | 7436.5 | 7414.3 |
26. | COPD | 10,180.8 | 10,176.2 | 7388.2 | 7396.4 |
27. | Cirrhosis | 6946.4 | 6944.9 | 5179.2 | 5182.3 |
2007 | 2008 | 2009 | 2010 | 2011 | Total | |||
---|---|---|---|---|---|---|---|---|
All tumors | Men | Model 1 | −1016.3 | −1060.1 | −1113.5 | −1099.5 | −1114.8 | −5404.3 |
Model 2 | −1019.6 | −1063.1 | −1119.0 | −1107.6 | −1117.9 | −5427.1 | ||
Model 3 | −1077.8 | −1112.7 | −1169.8 | −1155.6 | −1142.5 | −5658.4 | ||
Model 4 | −1046.2 | −1096.1 | −1171.4 | −1179.0 | −1182.6 | −5675.2 | ||
Women | Model 1 | −807.2 | −896.8 | −885.3 | −871.8 | −927.4 | −4452.0 | |
Model 2 | −871.2 | −898.9 | −885.5 | −872.5 | −926.4 | −4454.5 | ||
Model 3 | −890.9 | −921.0 | −906.0 | −882.3 | −917.6 | −4517.8 | ||
Model 4 | −885.1 | −918.3 | −905.9 | −884.6 | −920.7 | −4514.6 | ||
Mouth | Men | Model 1 | −212.7 | −200.9 | −221.4 | −232.0 | −233.9 | −1101.1 |
Model 2 | −210.6 | −199.1 | −220.9 | −230.8 | −232.2 | −1093.6 | ||
Model 3 | −213.1 | −205.8 | −222.7 | −234.1 | −229.0 | −1104.7 | ||
Model 4 | −209.9 | −203.4 | −222.8 | −236.6 | −232.0 | −1104.7 | ||
Stomach | Men | Model 1 | −331.8 | −318.9 | −336.0 | −344.2 | −354.8 | −1685.7 |
Model 2 | −330.2 | −318.0 | −331.6 | −339.9 | −348.4 | −1668.2 | ||
Model 3 | −370.1 | −359.2 | −357.4 | −368.3 | −367.1 | −1822.1 | ||
Model 4 | −366.8 | −357.8 | −357.4 | −369.5 | −369.2 | −1820.7 | ||
Women | Model 1 | −256.0 | −282.7 | −266.6 | −282.6 | −259.7 | −1374.6 | |
Model 2 | −256.3 | −281.7 | −265.4 | −281.6 | −257.9 | −1342.9 | ||
Model 3 | −270.7 | −294.6 | −279.4 | −297.2 | −266.8 | −1408.8 | ||
Model 4 | −271.3 | −294.8 | −279.1 | −296.6 | −266.1 | −1407.9 | ||
Colorectal | Men | Model 1 | −484.5 | −532.3 | −539.5 | −539.9 | −544.8 | −2641.0 |
Model 2 | −481.3 | −528.8 | −539.0 | −534.7 | −535.0 | −2618.9 | ||
Model 3 | −470.9 | −526.0 | −537.0 | −525.2 | −520.8 | −2579.8 | ||
Model 4 | −472.8 | −528.7 | −536.9 | −523.1 | −518.5 | −2579.9 | ||
Women | Model 1 | −411.1 | −470.4 | −439.0 | −452.1 | −452.6 | −2225.3 | |
Model 2 | −410.0 | −470.1 | −437.7 | −451.8 | −449.9 | −2219.4 | ||
Model 3 | −408.2 | −468.6 | −436.3 | −448.5 | −446.7 | −2208.3 | ||
Model 4 | −407.2 | −468.1 | −436.4 | −449.1 | −447.5 | −2208.2 | ||
Colon | Men | Model 1 | −409.8 | −483.8 | −461.4 | −493.3 | −486.3 | −2334.7 |
Model 2 | −407.5 | −480.3 | −458.8 | −485.8 | −477.3 | −2309.8 | ||
Model 3 | −399.2 | −482.9 | −461.5 | −479.8 | −468.2 | −2291.5 | ||
Model 4 | −402.0 | −487.6 | −461.6 | −478.1 | −465.2 | −2294.5 | ||
Women | Model 1 | −371.5 | −423.6 | −388.0 | −405.0 | −414.6 | −2002.6 | |
Model 2 | −369.9 | −422.5 | −386.6 | −404.0 | −413.2 | −1996.1 | ||
Model 3 | −367.2 | −419.7 | −384.0 | −398.8 | −406.7 | −1976.5 | ||
Model 4 | −366.7 | −419.4 | −384.0 | −399.3 | −407.7 | −1977.1 | ||
Rectum | Men | Model 1 | −243.2 | −236.6 | −294.4 | −260.7 | −266.2 | −1301.2 |
Model 2 | −242.1 | −235.9 | −295.2 | −258.2 | −263.1 | −1294.5 | ||
Model 3 | −240.3 | −234.4 | −293.8 | −256.5 | −261.3 | −1286.3 | ||
Model 4 | −240.4 | −234.2 | −294.1 | −256.5 | −261.4 | −1286.6 | ||
Women | Model 1 | −179.4 | −198.3 | −218.7 | −214.3 | −194.0 | −1004.8 | |
Model 2 | −177.8 | −198.3 | −216.3 | −211.8 | −191.6 | −995.8 | ||
Model 3 | −178.4 | −199.5 | −213.3 | −208.7 | −189.2 | −989.0 | ||
Model 4 | −179.1 | −199.9 | −213.4 | −208.8 | −188.6 | −989.6 | ||
Liver | Men | Model 1 | −274.0 | −280.5 | −275.3 | −320.8 | −315.6 | −1466.2 |
Model 2 | −272.7 | −279.6 | −274.3 | −318.7 | −311.0 | −1456.3 | ||
Model 3 | −279.6 | −288.7 | −280.8 | −315.9 | −307.4 | −1472.4 | ||
Model 4 | −273.9 | −285.2 | −280.8 | −317.7 | −311.1 | −1468.8 | ||
Women | Model 1 | −198.7 | −191.9 | −221.5 | −210.3 | −213.3 | −1035.8 | |
Model 2 | −197.3 | −190.1 | −220.2 | −206.8 | −210.8 | −1025.3 | ||
Model 3 | −206.3 | −197.6 | −223.2 | −206.2 | −209.1 | −1042.4 | ||
Model 4 | −206.6 | −197.6 | −223.2 | −205.8 | −208.6 | −1041.9 | ||
Vesicle | Women | Model 1 | −126.4 | −138.9 | −145.8 | −138.3 | −142.4 | −691.7 |
Model 2 | −126.6 | −138.0 | −146.0 | −137.7 | −141.8 | −690.1 | ||
Model 3 | −142.6 | −147.7 | −153.9 | −145.4 | −146.0 | −735.7 | ||
Model 4 | −138.0 | −145.8 | −153.7 | −146.9 | −148.4 | −732.8 | ||
Pancreas | Men | Model 1 | −290.2 | −301.3 | −310.9 | −334.2 | −351.1 | −1587.6 |
Model 2 | −291.4 | −301.5 | −309.4 | −333.8 | −349.0 | −1585.3 | ||
Model 3 | −291.4 | −301.5 | −308.5 | −332.7 | −347.6 | −1581.7 | ||
Model 4 | −292.5 | −302.2 | −308.3 | −332.4 | −346.0 | −1581.4 | ||
Women | Model 1 | −247.6 | −239.00 | −268.3 | −328.1 | −309.7 | −1392.7 | |
Model 2 | −247.7 | −236.9 | −266.6 | −324.4 | −307.1 | −1382.6 | ||
Model 3 | −247.3 | −236.7 | −267.0 | −326.6 | −307.5 | −1385.3 | ||
Model 4 | −247.6 | −236.8 | −267.0 | −326.6 | −307.2 | −1385.3 | ||
Larynx | Men | Model 1 | −214.8 | −220.6 | −215.1 | −199.8 | −211.2 | −1061.6 |
Model 2 | −214.2 | −218.9 | −214.2 | −199.6 | −210.4 | −1057.4 | ||
Model 3 | −233.2 | −226.7 | −234.7 | −214.4 | −224.8 | −1133.8 | ||
Model 4 | −227.1 | −224.7 | −234.7 | −217.3 | −230.4 | −1134.2 | ||
Lung | Men | Model 1 | −683.1 | −682.9 | −723.2 | −707.8 | −713.2 | −3510.1 |
Model 2 | −684.1 | −682.1 | −724.4 | −709.3 | −710.7 | −3510.6 | ||
Model 3 | −688.1 | −679.9 | −722.7 | −708.5 | −706.6 | −3505.9 | ||
Model 4 | −683.6 | −677.7 | −723.1 | −715.3 | −719.6 | −3519.2 | ||
Women | Model 1 | −307.7 | −316.6 | −304.3 | −308.6 | −357.5 | −1594.7 | |
Model 2 | −305.3 | −313.9 | −303.0 | −305.6 | −354.1 | −1582.0 | ||
Model 3 | −322.7 | −328.5 | −310.4 | −319.9 | −366.8 | −1648.2 | ||
Model 4 | −319.6 | −327.2 | −310.8 | −322.1 | −370.8 | −1650.5 | ||
Breast | Women | Model 1 | −427.1 | −428.4 | −436.4 | −444.6 | −470.6 | −2207.2 |
Model 2 | −426.9 | −428.0 | −434.0 | −443.2 | −469.1 | −2201.3 | ||
Model 3 | −438.8 | −436.7 | −438.9 | −450.2 | −468.4 | −2233.0 | ||
Model 4 | −432.9 | −434.2 | −439.0 | −452.7 | −471.6 | −2230.4 | ||
Uterus | Women | Model 1 | −218.2 | −203.0 | −231.6 | −225.0 | −247.9 | −1125.7 |
Model 2 | −217.7 | −202.2 | −230.5 | −224.9 | −245.6 | −1120.9 | ||
Model 3 | −222.0 | −204.9 | −231.8 | −222.5 | −239.6 | −1120.8 | ||
Model 4 | −222.0 | −204.9 | −231.6 | −222.4 | −239.6 | −1120.6 | ||
Ovary | Women | Model 1 | −230.2 | −244.1 | −223.4 | −239.5 | −258.0 | −1195.1 |
Model 2 | −229.8 | −244.5 | −222.9 | −239.2 | −257.8 | −1194.2 | ||
Model 3 | −230.2 | −242.0 | −219.7 | −235.8 | −254.3 | −1181.9 | ||
Model 4 | −232.4 | −241.9 | −219.8 | −236.3 | −255.3 | −1185.7 | ||
Prostate | Men | Model 1 | −439.7 | −429.6 | −447.5 | −473.9 | −497.5 | −2288.3 |
Model 2 | −439.9 | −429.0 | −447.5 | −473.0 | −495.8 | −2285.3 | ||
Model 3 | −457.1 | −461.4 | −468.2 | −486.6 | −508.4 | −2381.7 | ||
Model 4 | −445.9 | −452.0 | −468.7 | −494.2 | −523.8 | −2384.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corpas-Burgos, F.; Martinez-Beneito, M.A. An Autoregressive Disease Mapping Model for Spatio-Temporal Forecasting. Mathematics 2021, 9, 384. https://doi.org/10.3390/math9040384
Corpas-Burgos F, Martinez-Beneito MA. An Autoregressive Disease Mapping Model for Spatio-Temporal Forecasting. Mathematics. 2021; 9(4):384. https://doi.org/10.3390/math9040384
Chicago/Turabian StyleCorpas-Burgos, Francisca, and Miguel A. Martinez-Beneito. 2021. "An Autoregressive Disease Mapping Model for Spatio-Temporal Forecasting" Mathematics 9, no. 4: 384. https://doi.org/10.3390/math9040384
APA StyleCorpas-Burgos, F., & Martinez-Beneito, M. A. (2021). An Autoregressive Disease Mapping Model for Spatio-Temporal Forecasting. Mathematics, 9(4), 384. https://doi.org/10.3390/math9040384