A Note on Some Definite Integrals of Arthur Erdélyi and George Watson
Abstract
:1. Introduction
2. Definite Integral of the Contour Integrals
2.1. The Hyperbolic Cotangent Contour Integral
2.2. The Hyperbolic Cosecant Contour Integral
3. The Lerch Function
4. Infinite Sum of the Contour Integral
4.1. The Hyperbolic Cotangent Contour Integral
4.2. The Hyperbolic Cosecant Contour Integral
5. Definite Integrals in Terms of the Lerch Function
6. Table of Definite Integrals in and Special Cases
6.1. Derivation of Entry (3.554.6)
6.2. Derivation of Entry (3.554.1)
6.3. Derivation of Entry (3.554.4)
6.4. Derivation of Entry (3.554.2)
6.5. Derivation of Entry (3.554.5)
6.6. Derivation of Entry (3.554.3)
6.7. Special Cases Using Theorems
6.7.1. Example 1
6.7.2. Example 2
7. Definite Integrals in Terms of the Hypergeometric Function
7.1. Example 1
7.2. Example 2
7.3. Example 3
7.4. Example 4
8. Definite Integral Involving Logarithmic and Sine Function and Quotient
8.1. Example 1
8.2. Example 2
9. Derivation of the Fourier Cosine Transform of Binet’s Integral
Example of a Special Case in Terms of the Sine Integral Function,
10. Discussion
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Erdéyli, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company, Inc.: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953; Volume I. [Google Scholar]
- Whittaker, E.T.; Watson, G.N. A Course in Modern Analysis, 4th ed.; Cambridge University Press: Cambridge, UK, 1990; pp. 268–269. [Google Scholar]
- Bertrand, J.; Bertrand, P.; Ovarlez, J.-P. The Mellin Transform. The Transformsand Applications Handbook: Second Edition; CRC Press LLC: Boca Raton, FL, USA, 2000. [Google Scholar]
- Reynolds, R.; Stauffer, A. Definite Integral of Arctangent and Polylogarithmic Functions Expressed as a Series. Mathematics 2019, 7, 1099. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, R.; Stauffer, A. A Definite Integral Involving the Logarithmic Function in Terms of the Lerch Function. Mathematics 2019, 7, 1148. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, R.; Stauffer, A. Derivation of Logarithmic and Logarithmic Hyperbolic Tangent Integrals Expressed in Terms of Special Functions. Mathematics 2020, 8, 687. [Google Scholar] [CrossRef]
- Reynolds, R.; Stauffer, A. Definite integrals involving product of logarithmic functions and logarithm of square root functions expressed in terms of special functions. AIMS Math. 2020, 5, 5724–5733. [Google Scholar] [CrossRef]
- Reynolds, R.; Stauffer, A. A Method for Evaluating Definite Integrals in Terms of Special Functions with Examples. Int. Math. Forum 2020, 15, 235–244. [Google Scholar] [CrossRef]
- Reynolds, R.; Stauffer, A. Integrals in Gradshteyn and Ryzhik: Hyperbolic and algebraic functions. Int. Math. Forum 2020, 15, 255–263. [Google Scholar] [CrossRef]
- Erdéyli, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Tables of Integral Transforms; McGraw-Hill Book Company, Inc.: New York, NY, USA; Toronto, ON, Canada; London, UK, 1954; Volume I. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Tables of Integrals, Series and Products, 6th ed.; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Olver, F.W.J.; Daalhuis, A.B.O.; Lozier, D.W.; Schneider, B.I.; Boisvert, R.F.; Clark, C.W.; Miller, B.R.; Saunders, B.V.; Cohl, H.S.; McClain, M.A. NIST Digital Library of Mathematical Functions. Release 1.1.0 of 15 December 2020. Available online: http://dlmf.nist.gov/ (accessed on 12 January 2021).
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th ed.; Dover: New York, NY, USA, 1982. [Google Scholar]
- Van der Laan, C.G.; Temme, N.M. Calculation of Special Functions: The Gamma Function, the Exponential Integrals and Error-Like Functions; Mathematisch Centrum voor Wiskunde en Informatica: Amsterdam, The Netherlands, 1984; ISBN 90-6196-277-3. [Google Scholar]
- Brychkov, Y.A.; Marichev, O.I.; Savischenko, N.V. Handbook of Mellin Transforms; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2019. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reynolds, R.; Stauffer, A. A Note on Some Definite Integrals of Arthur Erdélyi and George Watson. Mathematics 2021, 9, 674. https://doi.org/10.3390/math9060674
Reynolds R, Stauffer A. A Note on Some Definite Integrals of Arthur Erdélyi and George Watson. Mathematics. 2021; 9(6):674. https://doi.org/10.3390/math9060674
Chicago/Turabian StyleReynolds, Robert, and Allan Stauffer. 2021. "A Note on Some Definite Integrals of Arthur Erdélyi and George Watson" Mathematics 9, no. 6: 674. https://doi.org/10.3390/math9060674
APA StyleReynolds, R., & Stauffer, A. (2021). A Note on Some Definite Integrals of Arthur Erdélyi and George Watson. Mathematics, 9(6), 674. https://doi.org/10.3390/math9060674