On the Norm of the Abelian p-Group-Residuals
Abstract
:1. Introduction
- (1)
- if and only if ;
- (2)
- ;
- (3)
- if , then .
2. Elementary Properties on
- (1)
- If , then ;
- (2)
- if and , then ;
- (3)
- is nilpotent if and only if is nilpotent;
- (4)
- if , where and , then . In particular, .
- (1)
- Let . Since , is a p-group and so .
- (2)
- Let . Since . Conversely, and , so . Hence . Then.
- (3)
- Clearly, is nilpotent if and only if is nilpotent. So (3) follows from (2).
- (4)
- By and , we get . If , then . Thus . Hence, if , then by (1).
- (1)
- ;
- (2)
- is soluble;
- (3)
- if , then ;
- (4)
- if , then ;
- (5)
- if , where and , then .
- (1)
- Since and are characteristic subgroups of H, we have , that is, .If , then x is a normalizer of for all by Lemma 1 (1). Hence and so, .
- (2)
- It follows from (1) and is soluble in ([9], Proposition 2.4).
- (3)
- It is easy to see that .
- (4)
- If , then normalizes for all by Lemma 1 (2). Hence .
- (5)
- for all by the hypotheses. It follows from Lemma 1 (4) that . Hence
- (1)
- If is nilpotent, then .
- (2)
- If is a minimal normal subgroup of G and is nilpotent, then .
- (1)
- If , then G is abelian p-group and . If , then by Proposition 1 (1).
- (2)
- Since is a minimal normal subgroup of G, or 1. If ∩, then and so, . If ∩, then and . However, is nilpotent and hence . Thus, and we have .By Proposition 1 (1), . The nilpotency of implies that .
3. Proofs of Theorems 1 and 2
4. Minimal Subgroups and
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ballester-Bolinches, A.; Ezquerro, L. Classes of Finite Groups; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Baer, R. Der Kern eine charakteristische Untergruppe. Compos. Math. 1934, 1, 254–283. [Google Scholar]
- Wielandt, H. Uber den Normalisator der subnormalen Untergruppen. Math. Z. 1958, 69, 463–465. [Google Scholar] [CrossRef]
- Bryce, R.; Cossey, J. The Wielandt subgroup of a finite soluble group. J. Lond. Math. Soc. 1989, 40, 244–256. [Google Scholar] [CrossRef]
- Li, S.; Shen, Z. On the intersection of the normalizers of derived subgroups of all subgroups of a finite group. J. Algebra 2010, 323, 1349–1357. [Google Scholar] [CrossRef] [Green Version]
- Ballester-Bolinches, A.; Cossey, J.; Zhang, L. Generalised norms in finite groups. J. Algebra 2014, 402, 392–405. [Google Scholar] [CrossRef]
- Chen, X.; Guo, W. On the π-F-norm and H-F-norm of a finite group. J. Algebra 2014, 405, 213–231. [Google Scholar] [CrossRef] [Green Version]
- Gong, L.; Guo, X. On the intersection of the normalizers of the nilpotent residuals of all subgroups of a finite group. Algebra Colloq. 2013, 20, 349–360. [Google Scholar] [CrossRef]
- Li, X.; Guo, X. On Generalized Norms of Finite Groups. Comm. Algebra 2016, 44, 1088–1095. [Google Scholar] [CrossRef]
- Robinson, D. A Course in the Theory of Groups; Springer: New York, NY, USA, 1982. [Google Scholar]
- Li, B.; Gong, L. On f-hypercentral actions of finite group. Commun. Math. Stat. 2021. [Google Scholar] [CrossRef]
- Guo, W. The Theory of Classes of Groups; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Gong, L.; Guo, X. On normalizers of the nilpotent residuals of subgroups of a finite group. Bull. Malays. Math. Sci. Soc. 2016, 39, 957–970. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Han, Y.; Gong, L.; Jiang, T. On the Norm of the Abelian p-Group-Residuals. Mathematics 2021, 9, 842. https://doi.org/10.3390/math9080842
Li B, Han Y, Gong L, Jiang T. On the Norm of the Abelian p-Group-Residuals. Mathematics. 2021; 9(8):842. https://doi.org/10.3390/math9080842
Chicago/Turabian StyleLi, Baojun, Yu Han, Lü Gong, and Tong Jiang. 2021. "On the Norm of the Abelian p-Group-Residuals" Mathematics 9, no. 8: 842. https://doi.org/10.3390/math9080842
APA StyleLi, B., Han, Y., Gong, L., & Jiang, T. (2021). On the Norm of the Abelian p-Group-Residuals. Mathematics, 9(8), 842. https://doi.org/10.3390/math9080842