A Spatial Panel Structural Vector Autoregressive Model with Interactive Effects and Its Simulation
Abstract
:1. Introduction
2. The Model
3. Estimation of ISpSVAR
3.1. Estimation of ISpVAR with Common Factors Known
3.2. Estimation of ISpVAR with Common Factors Unknown
3.3. Estimation of ISpSVAR
4. Monte Carlo Simulation
4.1. Data Generation
4.2. Finite Sample Properties of Estimators
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VAR | Vector AutoRegression Model |
SVAR | Structural Vector AutoRegression Model |
SpVAR | Spatial Panel Vector AutoRegression Model |
SpSVAR | Spatial Panel Structural Vector AutoRegression Model |
ISpSVAR | Interactive Effects Spatial Panel Structural Vector AutoRegression Model |
References
- Yang, J. Parametric and Semi parametric Estimation of Linear & Nonlinear Panel Structural VAR Model. J. Quant. Tech. Econ. 2011, 3, 140–151. [Google Scholar]
- Anselin, L.; Getis, A. Spatial statistical analysis and geographic information systems. In Perspectives on Spatial Data Analysis; Advances in Spatial Science (The Regional Science Series); Anselin, L., Rey, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Elhorst, J.P. Specification and estimation of spatial panel data models. Int. Reg. Sci. Rev. 2003, 26, 244–268. [Google Scholar] [CrossRef]
- Di Giacinto, V. Differential regional effects of monetary policy: A geographical SVAR approach. Int. Reg. Sci. Rev. 2003, 26, 313–341. [Google Scholar] [CrossRef]
- Beenstock, M.; Felsenstein, D. Spatial vector auto regressions. Spat. Econ. Anal. 2007, 2, 167–196. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, J.A. Pollution Havens: A Spatial Panel VAR Approach; Working Paper; University of Neuchatel: Neuchatel, Switzerland, 2009. [Google Scholar]
- Márquez, M.A.; Ramajo, J.; Hewings, G.J. Regional growth and spatial spillovers: Evidence from an SpVAR for the Spanish regions. Pap. Reg. Sci. 2014, 94, S1–S18. [Google Scholar] [CrossRef]
- Bai, J. Panel data models with interactive fixed effects. Econometrica 2009, 77, 1229–1279. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Xu, J.; Wu, X. Income growth, environmental cost and health problems. Econ. Res. J. 2013, 12, 17–29. [Google Scholar]
- Di Giacinto, V. On vector autoregressive modeling in space and time. SSRN Electron. J. 2010, 12, 125–154. [Google Scholar] [CrossRef]
- Lee, L.-F.; Yu, J. Estimation of spatial autoregressive panel data models with fixed effects. J. Econ. 2010, 154, 165–185. [Google Scholar] [CrossRef]
- Amisano, G.; Giannini, C. Topics in Structural VAR Econometrics; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Hahn, J.; Kuersteiner, G.M. Asymptotically unbiased inference for a dynamic panel model with fixed effects when both n and T are large. Econometrica 2000, 70, 1639–1657. [Google Scholar] [CrossRef] [Green Version]
- Bai, J.; Ng, S. Panel unit root tests with cross-section dependence: A further investigation. Econ. Theory 2009, 26, 1088–1114. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; de Jong, R.; Lee, L.-F. Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large. J. Econ. 2008, 146, 118–134. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Tian, M. Quantile regression for panel data and its simulation study. Stat. Res. 2010, 27, 81–87. [Google Scholar]
- Zhao, G. Advanced Econometrics: Theory and Method; China Renmin University Press: Beijing, China, 2011. [Google Scholar]
N = 10 T = 5 | N = 10 T =10 | N = 10 T =30 | N = 20 T =5 | N = 20 T =10 | N = 20 T =30 | N = 30 T =5 | N = 30 T =10 | N = 30 T =30 | ||
---|---|---|---|---|---|---|---|---|---|---|
θ11 | Bias | 0.0911 | 0.0201 | 0.0126 | 0.0325 | 0.0213 | 0.0074 | 0.0574 | 0.0271 | 0.0234 |
RMSE | 0.0186 | 0.0109 | 0.0050 | 0.0143 | 0.0084 | 0.0046 | 0.0133 | 0.0069 | 0.0045 | |
Bias | 0.2207 | 0.1658 | 0.2125 | 0.0996 | 0.1792 | 0.1645 | −0.2216 | −0.1839 | −0.2716 | |
RMSE | 0.0528 | 0.0307 | 0.0245 | 0.0352 | 0.0266 | 0.0200 | 0.0301 | 0.0223 | 0.0221 | |
Bias | −0.1419 | −0.1185 | −0.1293 | −0.1137 | −0.1266 | −0.1191 | −0.0601 | −0.0521 | −0.0427 | |
RMSE | 0.0162 | 0.0135 | 0.0132 | 0.0136 | 0.0134 | 0.0122 | 0.0237 | 0.0068 | 0.005 | |
θ22 | Bias | 0.0658 | 0.0274 | 0.0208 | 0.048 | 0.0443 | 0.0313 | 0.0655 | 0.0588 | 0.034 |
RMSE | 0.0175 | 0.0094 | 0.0057 | 0.0144 | 0.0109 | 0.0052 | 0.0622 | 0.0097 | 0.0054 | |
Bias | −0.0518 | −0.0169 | −0.0063 | −0.0282 | −0.0188 | −0.0046 | −0.0237 | −0.0088 | −0.0043 | |
RMSE | 0.0092 | 0.004 | 0.0021 | 0.0067 | 0.0034 | 0.0019 | 0.0051 | 0.0024 | 0.0013 | |
Bias | 0.0437 | 0.0188 | 0.0096 | 0.0148 | 0.019 | 0.019 | 0.0216 | 0.0166 | 0.0062 | |
RMSE | 0.0107 | 0.0047 | 0.0027 | 0.0083 | 0.0045 | 0.0061 | 0.0065 | 0.0037 | 0.0019 | |
Bias | 0.0223 | 0.0047 | 0.0017 | 0.0036 | 0.0014 | 0.0042 | 0.0127 | 0.0032 | 0.0037 | |
RMSE | 0.0078 | 0.0042 | 0.0022 | 0.0048 | 0.0026 | 0.0015 | 0.0033 | 0.0022 | 0.0011 | |
Bias | 0.0811 | 0.0134 | 0.0094 | 0.0386 | 0.013 | 0.0048 | 0.0505 | 0.0175 | 0.0186 | |
RMSE | 0.0162 | 0.0096 | 0.0046 | 0.0135 | 0.0075 | 0.004 | 0.0113 | 0.0058 | 0.0039 | |
Bias | 0.0376 | 0.051 | 0.0891 | −0.0126 | 0.0499 | 0.062 | 0.1009 | −0.0945 | −0.0917 | |
RMSE | 0.0287 | 0.0181 | 0.0117 | 0.0227 | 0.0142 | 0.0093 | 0.0123 | 0.0125 | 0.0103 | |
Bias | −0.0252 | −0.0499 | −0.1060 | 0.0135 | −0.0593 | −0.0786 | 0.113 | 0.0494 | 0.0514 | |
RMSE | 0.0246 | 0.017 | 0.013 | 0.024 | 0.0146 | 0.0105 | 0.022 | 0.0199 | 0.0075 | |
Bias | −0.0187 | 0.0282 | 0.0983 | −0.0544 | 0.0438 | 0.0668 | −0.2105 | −0.1329 | −0.1272 | |
RMSE | 0.0294 | 0.0173 | 0.0127 | 0.0238 | 0.0132 | 0.0094 | 0.0268 | 0.0162 | 0.0135 | |
Bias | 0.0962 | 0.0205 | 0.0214 | 0.0387 | 0.0336 | 0.0115 | −0.0805 | −0.0642 | −0.1054 | |
RMSE | 0.0311 | 0.0158 | 0.0096 | 0.0199 | 0.0124 | 0.0067 | 0.0183 | 0.013 | 0.012 | |
Bias | 0.0067 | 0.0065 | 0.0116 | −0.0093 | −0.0075 | −0.0102 | −0.0076 | −0.0004 | −0.0001 | |
RMSE | 0.0419 | 0.0308 | 0.0196 | 0.0342 | 0.0264 | 0.0161 | 0.0478 | 0.0341 | 0.022 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Ouyang, H.; Wei, X. A Spatial Panel Structural Vector Autoregressive Model with Interactive Effects and Its Simulation. Mathematics 2021, 9, 883. https://doi.org/10.3390/math9080883
Liu Y, Ouyang H, Wei X. A Spatial Panel Structural Vector Autoregressive Model with Interactive Effects and Its Simulation. Mathematics. 2021; 9(8):883. https://doi.org/10.3390/math9080883
Chicago/Turabian StyleLiu, Yaqing, Hongbing Ouyang, and Xiaolu Wei. 2021. "A Spatial Panel Structural Vector Autoregressive Model with Interactive Effects and Its Simulation" Mathematics 9, no. 8: 883. https://doi.org/10.3390/math9080883
APA StyleLiu, Y., Ouyang, H., & Wei, X. (2021). A Spatial Panel Structural Vector Autoregressive Model with Interactive Effects and Its Simulation. Mathematics, 9(8), 883. https://doi.org/10.3390/math9080883