Autism Spectrum as an Etiologic Systemic Disorder: A Protocol for an Umbrella Review
Abstract
:1. Introduction
1.1. Autism Spectrum Disorder
1.2. Genetic Aetiology
1.3. Epigenetic Aetiology
1.4. Organic Aetiology
1.5. Psychogenic Aetiology
1.6. Environmental Aetiology
1.7. Future Steps for Integrated Care Services
2. Materials and Methods
2.1. Search Strategy
2.1.1. Database Search
2.1.2. Search Terms
2.2. Eligibility Criteria
2.2.1. Study Design
2.2.2. Inclusion/Exclusion Criteria
2.2.3. Study Selection
2.2.4. Data Extraction
2.2.5. Assessment of Methodological Quality
2.2.6. Results
3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zablotsky, B.; Black, L.I.; Maenner, M.J.; Schieve, L.A.; Blumberg, S.J. Estimated Prevalence of Autism and Other Developmental Disabilities Following Questionnaire Changes in the 2014 National Health Interview Survey. Natl. Health Stat. Rep. 2015, 87, 1–20. [Google Scholar]
- Maenner, M.J.; Shaw, K.A.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Esler, A.; Furnier, S.M.; Hallas, L.; Hall-Lande, J.; Hudson, A. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2018. MMWR CDC Surveill. Summ. 2021, 2021, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Amendah, D.; Grosse, S.D.; Peacock, G.; Mandell, D.S. The Economic Costs of Autism: A Review; Amaral, D., Geschwind, D., Dawson, G., Eds.; Oxford University Press: Oxford, UK, 2011; p. 1347. [Google Scholar]
- Han, G.T.; Trevisan, D.A.; Abel, E.A.; Cummings, E.M.; Carlos, C.; Bagdasarov, A.; Kala, S.; Parker, T.; Canapari, C.; McPartland, J.C. Associations between sleep problems and domains relevant to daytime functioning and clinical symptomatology in autism: A meta-analysis. Autism Res. 2022, 15, 1249–1260. [Google Scholar] [CrossRef] [PubMed]
- Enriquez, K.D.; Gupta, A.R.; Hoffman, E.J. Signaling Pathways and Sex Differential Processes in Autism Spectrum Disorder. Front. Psychiatry 2021, 12, 716673. [Google Scholar] [CrossRef] [PubMed]
- Bransfield, R.C.; Wulfman, J.S.; Harvey, W.T.; Usman, A.I. The association between tick-borne infections, Lyme borreliosis and autism spectrum disorders. Med. Hypotheses 2008, 70, 967–974. [Google Scholar] [CrossRef]
- Wang, L.; Tang, S.; Wu, S.; Yao, L.; Su, D.; Wang, Y. Maternal Exposure to Pesticides and Risk of Autism Spectrum Disorders in Offspring: A Meta-analysis. J. Autism Dev. Disord. 2021, 52, 1640–1651. [Google Scholar] [CrossRef]
- Baranova, A.; Wang, J.; Cao, H.; Chen, J.H.; Chen, J.; Chen, M.; Ni, S.; Xu, X.; Ke, X.; Xie, S.; et al. Shared genetics between autism spectrum disorder and atten-tion-deficit/hyperactivity disorder and their association with extraversion. Psychiatry Res. 2022, 314, 114679. [Google Scholar] [CrossRef]
- Mpoulimari, I.; Zintzaras, E. Synthesis of genetic association studies on autism spectrum disorders using a genetic model-free approach. Psychiatr. Genet. 2022, 32, 91–104. [Google Scholar] [CrossRef]
- Mpoulimari, I.; Zintzaras, E. Identification of Chromosomal Regions Linked to Autism-Spectrum Disorders: A Meta-Analysis of Genome-Wide Linkage Scans. Genet. Test. Mol. Biomark. 2022, 26, 59–69. [Google Scholar] [CrossRef]
- Al-Gadani, Y.; El-Ansary, A.; Attas, O.; Al-Ayadhi, L. Metabolic biomarkers related to oxidative stress and antioxidant status in Saudi autistic children. Clin. Biochem. 2009, 42, 1032–1040. [Google Scholar] [CrossRef]
- Manivasagam, T.; Arunadevi, S.; Essa, M.M.; SaravanaBabu, C.; Borah, A.; Thenmozhi, A.J.; Qoronfleh, M.W. Role of Oxidative Stress and An-tioxidants in Autism. Adv. Neurobiol. 2020, 24, 193–206. [Google Scholar]
- Faraone, S.V.; Banaschewski, T.; Coghill, D.; Zheng, Y.; Biederman, J.; Bellgrove, M.A.; Newcorn, J.H.; Gignac, M.; Al Saud, N.M.; Manor, I.; et al. The World Federation of ADHD Inter-national Consensus Statement: 208 Evidence-based conclusions about the disorder. Neurosci. Biobehav. Rev. 2021, 128, 789–818. [Google Scholar] [CrossRef]
- Sarovic, D. A Unifying Theory for Autism: The Pathogenetic Triad as a Theoretical Framework. Front. Psychiatry 2021, 12, 767075. [Google Scholar] [CrossRef]
- Gabriele, S.; Sacco, R.; Persico, A.M. Blood serotonin levels in autism spectrum disorder: A systematic review and meta-analysis. Eur. Neuropsychopharmacol. 2014, 24, 919–929. [Google Scholar] [CrossRef]
- McPartland, J.C. Considerations in biomarker development for neurodevelopmental disorders. Curr. Opin. Neurol. 2016, 29, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Zheng, P.; Zou, X. Peripheral Blood S100B Levels in Autism Spectrum Disorder: A Systematic Review and Me-ta-Analysis. J. Autism Dev. Disord. 2021, 51, 2569–2577. [Google Scholar] [CrossRef]
- Arenella, M.; Cadby, G.; De Witte, W.; Jones, R.M.; Whitehouse, A.J.; Moses, E.K.; Fornito, A.; Bellgrove, M.A.; Hawi, Z.; Johnson, B.; et al. sj-pdf-1-aut-10.1177_13623613211019547—Supplemental material for Potential role for immune-related genes in autism spectrum disorders: Evidence from genome-wide association meta-analysis of autistic traits. SAGE J. 2021. [Google Scholar] [CrossRef]
- Palmieri, L.; Persico, A.M. Mitochondrial dysfunction in autism spectrum disorders: Cause or effect? Biochim. Biophys. Acta 2010, 1797, 1130–1137. [Google Scholar] [CrossRef] [Green Version]
- Andreo-Martínez, P.; Rubio-Aparicio, M.; Sánchez-Meca, J.; Veas, A.; Martínez-González, A.E. A Meta-analysis of Gut Microbiota in Children with Autism. J. Autism Dev. Disord. 2021, 52, 1374–1387. [Google Scholar] [CrossRef]
- Prosperi, M.; Santocchi, E.; Guiducci, L.; Frinzi, J.; Morales, M.A.; Tancredi, R.; Muratori, F.; Calderoni, S. Interventions on Microbiota: Where Do We Stand on a Gut–Brain Link in Autism? A Systematic Review. Nutrients 2022, 14, 462. [Google Scholar] [CrossRef]
- Kim, J.Y.; Choi, M.J.; Ha, S.; Hwang, J.; Koyanagi, A.; Dragioti, E.; Radua, J.; Smith, L.; Jacob, L.; de Pablo, G.S.; et al. Association between autism spectrum disorder and inflam-matory bowel disease: A systematic review and meta-analysis. Autism Res. 2022, 15, 340–352. [Google Scholar] [CrossRef] [PubMed]
- Sigra, S.; Hesselmark, E.; Bejerot, S. Treatment of PANDAS and PANS: A systematic review. Neurosci. Biobehav. Rev. 2018, 86, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Zambrelli, E.; Lividini, A.; Spadavecchia, S.; Turner, K.; Canevini, M.P. Effects of Supplementation with Antioxidant Agents on Sleep in Autism Spectrum Disorder: A Review. Front. Psychiatry 2021, 12, 689277. [Google Scholar] [CrossRef] [PubMed]
- Pangrazzi, L.; Balasco, L.; Bozzi, Y. Natural Antioxidants: A Novel Therapeutic Approach to Autism Spectrum Disorders? An-tioxidants 2020, 9, 1186. [Google Scholar] [CrossRef]
- Datko, M.; Pineda, J.A.; Müller, R. Positive effects of neurofeedback on autism symptoms correlate with brain activation during imitation and observation. Eur. J. Neurosci. 2017, 47, 579–591. [Google Scholar] [CrossRef] [Green Version]
- Deisseroth, C.A.; Lerma, V.C.; Magyar, C.L.; Pfliger, J.M.; Nayak, A.; Bliss, N.D.; LeMaire, A.W.; Narayanan, V.; Balak, C.; Zanni, G.; et al. An Integrated Phenotypic and Genotypic Ap-proach Reveals a High-Risk Subtype Association for EBF3 Missense Variants Affecting the Zinc Finger Domain. Ann. Neurol. 2022, 92, 138–153. [Google Scholar] [CrossRef]
- Moerkerke, M.; Peeters, M.; de Vries, L.; Daniels, N.; Steyaert, J.; Alaerts, K.; Boets, B. Endogenous Oxytocin Levels in Autism—A Meta-Analysis. Brain Sci. 2021, 11, 1545. [Google Scholar] [CrossRef]
- Colizzi, M.; Bortoletto, R.; Costa, R.; Bhattacharyya, S.; Balestrieri, M. The Autism–Psychosis Continuum Conundrum: Exploring the Role of the Endocannabinoid System. Int. J. Environ. Res. Public Health 2022, 19, 5616. [Google Scholar] [CrossRef]
- Kim, J.Y.; Son, M.J.; Son, C.Y.; Radua, J.; Eisenhut, M.; Gressier, F.; Koyanagi, A.; Carvalho, A.F.; Stubbs, B.; Solmi, M.; et al. Environmental risk factors and biomarkers for autism spectrum disorder: An umbrella review of the evidence. Lancet Psychiatry 2019, 6, 590–600. [Google Scholar] [CrossRef] [Green Version]
- Lord, C.; Brugha, T.S.; Charman, T.; Cusack, J.; Dumas, G.; Frazier, T.; Jones, E.J.H.; Jones, R.M.; Pickles, A.; State, M.W.; et al. Autism spectrum disorder. Nat. Rev. Dis. Prim. 2020, 6, 5. [Google Scholar] [CrossRef]
- Amer, Y.S.; Alenezi, S.; Bashiri, F.A.; Alawami, A.H.; Alhazmi, A.S.; Aladamawi, S.A.; Alnemary, F.; Alqahtani, Y.; Buraik, M.W.; AlSuwailem, S.S.; et al. AGREEing on Clinical Practice Guidelines for Autism Spectrum Disorders in Children: A Systematic Review and Quality Assessment. Children 2022, 9, 1050. [Google Scholar] [CrossRef]
- Sadoyu, S.; Tanni, K.A.; Punrum, N.; Paengtrai, S.; Kategaew, W.; Promchit, N.; Lai, N.M.; Thakkinstian, A.; Ngorsuraches, S.; Bangpan, M.; et al. Methodological approaches for assessing cer-tainty of the evidence in umbrella reviews: A scoping review. PLoS ONE 2022, 17, e0269009. [Google Scholar] [CrossRef]
- Aromataris, E.; Fernandez, R.; Godfrey, C.M.; Holly, C.; Khalil, H.; Tungpunkom, P. Summarizing systematic reviews: Methodological development, conduct and reporting of an umbrella review approach. Int. J. Evid.-Based Healthc. 2015, 13, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Catallo, C.; Chung-Lee, L. How Has COVID-19 Changed the Way We Do Virtual Care? A Scoping Review Protocol. Healthcare 2022, 10, 1847. [Google Scholar] [CrossRef]
- Whiting, P.; Savović, J.; Higgins, J.P.T.; Caldwell, D.M.; Reeves, B.C.; Shea, B.; Davies, P.; Kleijnen, J.; Churchill, R.; ROBIS group. ROBIS: A new tool to assess risk of bias in systematic reviews was developed. J. Clin. Epidemiol. 2016, 69, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Gradepro. GRADEpro GDT: GRADEpro Guideline Development Tool [Software]: McMaster University and Evidence Prime. 2022. Available online: Gradepro.org (accessed on 18 October 2022).
- The PLoS Medicine Editors. Best practice in systematic reviews: The importance of protocols and registration. PLoS Med. 2011, 8, e1001009. [Google Scholar]
- Lindekilde, N.; Nefs, G.; Henriksen, J.E.; Lasgaard, M.; Schram, M.; Rubin, K.; Rutters, F.; Kivimaki, M.; Pouwer, F. Psychiatric disorders as risk factors for the de-velopment of type 2 diabetes mellitus: An umbrella review protocol. BMJ Open 2019, 9, e024981. [Google Scholar] [CrossRef] [Green Version]
- Garakani, A.; Freire, R.C.; Buono, F.D.; Thom, R.P.; Larkin, K.; Funaro, M.C.; Salehi, M.; Perez-Rodriguez, M.M. An umbrella review on the use of antipsychotics in anxiety disorders: A registered report protocol. PLoS ONE 2022, 17, e0269772. [Google Scholar] [CrossRef]
PICOT Research Question and Searching Keywords Analysis for ASD Aetiology as a Systemic Disorder | |
---|---|
Population | Autistic: Children Adults Animal models Postmortem people In vitro: Cell and bacteria cultures |
Issue addressed | Aetiology Etiology Causes Risks Biomarkers Pathological mechanisms Pathogenesis Pathophysiology Factors |
Conditions | n/a |
Outputs | Nº of eligible studies for each etiological category: 1. Genetic 2. Organic 3. Epigenetic 4. Psychogenic 5. Environmental Qualitative GRADE/ROBIS tables: (a) Evidence profile (b) Summary of findings (c) Evidence to decision framework (d) Interactive summary of findings (available only at GRADEpro GTD website) |
Timeframe | Meta-analysis and Systematic Reviews published between 2020–2022 |
Outcomes (Causes) | Population | Nº of Studies | Nº of Participants | Quality of the Evidence GRADE | Comments | Results/Findings |
---|---|---|---|---|---|---|
Genetic | Animal models: Rats, fish, and frogs | 389 | 10,890 | high | Past 10 years of remarkable progress in ASD risk gene discovery Pathway mechanisms involving these genes identification Regulation of gene expression | |
Epigenetic | Animal models: rodents | … | … | moderate | Estrogens in vivo animal models modulate high levels of testosterone and ASD behaviour decreases the correlation | |
Organic | Human beings: Children 3–9 Adults > 19 Postmortem studies (cadaverines). | … | … | Low | Insights into biological processes disrupted in ASD | |
Psychogenic | … | … | … | moderate | Synaptogenesis Excitatory-inhibitory imbalance | |
Environmental | … | … | … |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, L.T.; Rodrigues, J.M.; Baccarin, C.; Oliveira, K.; Abreu, M.; Ribeiro, V.; Anastácio, Z.C.; Machado, J.P. Autism Spectrum as an Etiologic Systemic Disorder: A Protocol for an Umbrella Review. Healthcare 2022, 10, 2200. https://doi.org/10.3390/healthcare10112200
Lopes LT, Rodrigues JM, Baccarin C, Oliveira K, Abreu M, Ribeiro V, Anastácio ZC, Machado JP. Autism Spectrum as an Etiologic Systemic Disorder: A Protocol for an Umbrella Review. Healthcare. 2022; 10(11):2200. https://doi.org/10.3390/healthcare10112200
Chicago/Turabian StyleLopes, Lara Teixeira, Jorge Magalhães Rodrigues, Celeste Baccarin, Kevin Oliveira, Manuela Abreu, Victor Ribeiro, Zélia Caçador Anastácio, and Jorge Pereira Machado. 2022. "Autism Spectrum as an Etiologic Systemic Disorder: A Protocol for an Umbrella Review" Healthcare 10, no. 11: 2200. https://doi.org/10.3390/healthcare10112200
APA StyleLopes, L. T., Rodrigues, J. M., Baccarin, C., Oliveira, K., Abreu, M., Ribeiro, V., Anastácio, Z. C., & Machado, J. P. (2022). Autism Spectrum as an Etiologic Systemic Disorder: A Protocol for an Umbrella Review. Healthcare, 10(11), 2200. https://doi.org/10.3390/healthcare10112200