A Novel Master-Slave Architecture to Detect COVID-19 in Chest X-ray Image Sequences Using Transfer-Learning Techniques
Abstract
:1. Introduction
2. Literature Review
3. Methodology
Algorithm 1: Proposed Master-Slave Algorithm for detecting COVID-19. |
Assume i = chest X-ray image, p = pre-processing Step 1: Read(i) Step 2: Perform p(i) 2.1 Resize (i) to 256 × 256 2.2 Normalize pixel values (i) 2.3 Data sampling Step 3: Feature extraction (pretrained models: DarkNet, VGG16, ResNet, SqueezeNet, DenseNet) Step 4: Optimization (freeze layers, learning rate by using optimization technique) 4.1 Finding the best learning rate (lr) 4.2 Retraining the model concerning lr 4.3 Data sampling Step 5: Performance evaluation Step 6: Comparison (state-of-the-art recent technique) |
3.1. Dataset
3.2. Data Pre-Processing
3.3. Transfer Learning
3.3.1. ResNets
3.3.2. DenseNet
3.3.3. DarkNet
3.3.4. VGG16
3.3.5. SqueezeNet
3.4. Performance Measure
3.4.1. Accuracy
3.4.2. Cross-Entropy Loss or Logloss
3.5. Training and Classification
3.6. Test and Evaluation
4. Results and Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheng, V.C.C.; Lau, S.K.P.; Woo, P.C.Y.; Yuen, K.-Y. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin. Microbiol. Rev. 2007, 20, 660–694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, J.F.; Lau, S.K.; To, K.K.; Cheng, V.C.; Woo, P.C.; Yuen, K.Y. Middle East respiratory syndrome coronavirus: Another zoonotic betacoronavirus causing SARS-like disease. Clin. Microbiol. Rev. 2015, 28, 465–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aishwarya, T.; Kumar, V.R. Machine Learning and Deep Learning Approaches to Analyze and Detect COVID-19: A Review. SN Comput. Sci. 2021, 2, 226. [Google Scholar] [CrossRef] [PubMed]
- Rousan, L.A.; Elobeid, E.; Karrar, M.; Khader, Y. Chest X-ray findings and temporal lung changes in patients with COVID-19 pneumonia. BMC Pulm. Med. 2020, 20, 245. [Google Scholar] [CrossRef]
- Wang, D.; Khosla, A.; Gargeya, R.; Irshad, H.; Beck, A.H. Deep learning for identifying metastatic breast cancer. arXiv 2016, arXiv:1606.05718. [Google Scholar]
- Suk, H.I.; Shen, D. Deep learning-based feature representation for AD/MCI classification. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Nagoya, Japan, 22–26 September 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 583–590. [Google Scholar]
- Liu, S.; Liu, S.; Cai, W.; Pujol, S.; Kikinis, R.; Feng, D. Early diagnosis of Alzheimer’s disease with deep learning. In Proceedings of the 11th International Symposium on Biomedical Imaging (ISBI), Beijing, China, 29 April–2 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1015–1018. [Google Scholar]
- Israni, P.; Patel, M. Medical Image Analysis (MedIA) using deep learning. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 2020, 9, 21–25. [Google Scholar]
- Cheng, J.-Z.; Ni, D.; Chou, Y.-H.; Qin, J.; Tiu, C.-M.; Chang, Y.-C.; Huang, C.-S.; Shen, D.; Chen, C.-M. Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scans. Sci. Rep. 2016, 6, 24454. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Chen, J.; Ding, H.-Y.; Pan, Q.-S.; Hong, W.-D.; Xu, G.; Yu, F.-Y.; Wang, Y.-M. Use of an artificial neural network to construct a model of predicting deep fungal infection in lung cancer patients. Asian Pac. J. Cancer Prev. 2015, 16, 5095–5099. [Google Scholar] [CrossRef] [Green Version]
- Israni, D.; Mewada, H. Identity Retention of Multiple Objects under Extreme Occlusion Scenarios using Feature Descriptors. J. Commun. Softw. Syst. 2018, 14, 290–301. [Google Scholar] [CrossRef]
- Israni, D.; Mewada, H. Feature descriptor based identity retention and tracking of players under intense occlusion in soccer videos. Int. J. Intell. Eng. Syst. 2018, 11, 31–41. [Google Scholar] [CrossRef]
- Israni, D.; Bhatt, M. Embedding Color Video Watermark in Image using Orthogonal and Bi-orthogonal Wavelet Transform. In Proceedings of the International Conference on Advances in Computer Science and Application, Lucknow, India, 21–22 June 2013; pp. 624–631. [Google Scholar]
- Israni, P. Breast cancer diagnosis (BCD) model using machine learning. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 4456–4463. [Google Scholar] [CrossRef]
- Israni, P.; Israni, D. An indexing technique for fuzzy object oriented database using R tree index. In Proceedings of the International Conference on Soft Computing and Its Engineering Applications (icSoftComp), Changa, India, 1–2 December 2017; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5. [Google Scholar]
- IApostolopoulos, I.D.; Mpesiana, T.A. COVID-19: Automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Phys. Eng. Sci. Med. 2020, 43, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Apostolopoulos, I.D.; Aznaouridis, S.I.; Tzani, M.A. Extracting possibly representativeCOVID-19 Biomarkers from X-Ray images with Deep Learning approach and image data related to Pulmonary Diseases. J. Med. Biol. Eng. 2020, 40, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Loey, M.; Smarandache, F.; Khalifa, N.E.M. Within the Lack of COVID-19 Benchmark Dataset: A Novel GAN with Deep Transfer Learning for Corona-virus Detection in Chest X-ray Images. Symmetry 2020, 12, 651. [Google Scholar] [CrossRef] [Green Version]
- Afshar, P.; Heidarian, S.; Naderkhani, F.; Oikonomou, A.; Plataniotis, K.N.; Mohammadi, A. Covid-caps: A capsule network-based framework for identification of covid-19 cases from x-ray images. Pattern Recognit. Lett. 2020, 138, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lin, Z.Q.; Wong, A. COVID-Net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest radiography images. Sci. Rep. 2020, 10, 19549. [Google Scholar] [CrossRef]
- Goel, T.; Murugan, R.; Mirjalili, S.; Chakrabartty, D.K. OptCoNet: An optimized con-volutional neural network for an automatic diagnosis of COVID-19. Appl. Intell. 2020, 51, 1351–1366. [Google Scholar] [CrossRef]
- Sahlol, A.T.; Yousri, D.; Ewees, A.A.; Al-Qaness, M.A.A.; Damasevicius, R.; Elaziz, M.A. COVID-19 image classification using deep features and fractional-ordermarine predators algorithm. Sci. Rep. 2020, 10, 15364. [Google Scholar] [CrossRef]
- Morís, D.I.; Ramos, J.J.D.M.; Buján, J.N.; Hortas, M.O. Data augmentation approaches using cycle-consistent adversarial networks for improving COVID-19 screening in portable chest X-ray images. Expert Syst. Appl. 2021, 185, 115681. [Google Scholar] [CrossRef]
- Arora, R.; Bansal, V.; Buckchash, H.; Kumar, R.; Sahayasheela, V.J.; Narayanan, N.; Pandian, G.N.; Raman, B. AI-based diagnosis of COVID-19 patients using X-ray scans with stochastic ensemble of CNNs. Phys. Eng. Sci. Med. 2021, 44, 1257–1271. [Google Scholar] [CrossRef]
- Chamseddine, E.; Mansouri, N.; Soui, M.; Abed, M. Handling class imbalance in COVID-19 chest X-ray images classification: Using SMOTE and weighted loss. Appl. Soft Comput. 2022, 129, 109588. [Google Scholar] [CrossRef] [PubMed]
- Soui, M.; Mansouri, N.; Alhamad, R.; Kessentini, M.; Ghedira, K. NSGA-II as feature selection technique and AdaBoost classifier for COVID-19 prediction using patient’s symptoms. Non-Linear Dyn. 2021, 106, 1453–1475. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, N.; Soui, M.; Alhassan, I.; Abed, M. TextBlob and BiLSTM for Sentiment analysis toward COVID-19 vaccines. In Proceedings of the 7th International Conference on Data Science and Machine Learning Applications (CDMA), Salahuddin, Riyadh, 1–3 March 2022; pp. 73–78. [Google Scholar] [CrossRef]
- Cohen, J.P. COVID-19 Image Data Collection. 2020. Available online: https://github.com/ieee8023/COVID-chestxray-dataset (accessed on 10 October 2022).
- Wang, X.; Peng, Y.; Lu, L.; Lu, Z.; Bagheri, M.; Summers, R.M. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2097–2106. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, T.; Talo, M.; Yildirim, E.A.; Baloglu, U.B.; Yildirim, O.; Acharya, U.R. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med. 2020, 121, 103792. [Google Scholar] [CrossRef] [PubMed]
- Talo, M. Covid-19. 2021. Available online: https://github.com/muhammedtalo/COVID-19 (accessed on 10 October 2022).
- Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining, Practical Machine Learning Tools and Techniques, 3rd ed.; Morgan Kaufmann Publishers: San Francisco, CA, USA, 2011. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2009, 22, 1345–1359. [Google Scholar] [CrossRef]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; Volume 37, pp. 448–456. [Google Scholar] [CrossRef]
- Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, Fort Lauderdale, FL, USA, 11–13 April 2011; pp. 315–323. [Google Scholar]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1–9. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. Yolo9000: Better, Faster, Stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd International Conference on Learning Representations, ICLR, San Diego, CA, USA, 7–9 May 2015; pp. 1–14. [Google Scholar]
- Landola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360. [Google Scholar]
- Saxsena, S. Binary Cross Entropy/Log Loss for Binary Classification. 2021. Available online: https://www.analyticsvidhya.com/blog/2021/03/binary-cross-entropy-log-loss-for-binary-classification/ (accessed on 2 July 2021).
- Pal, M.; Tiwari, Y.; Reddy, T.V.; Parisineni, S.R.A.; Panigrahi, P.K. An integrative method for COVID-19 patients classification from chest X-ray using deep learning network with image visibility graph as feature extractor. medRxiv 2021, 1–22. [Google Scholar] [CrossRef]
- Panthakkan, A.; Anzar, S.; Al Mansoori, S.; Al Ahmad, H. Accurate prediction of covid-19 (+) using ai deep vgg16 model. In Proceedings of the 3rd International Conference on Signal Processing and Information Security (ICSPIS), Dubai, United Arab Emirates, 25–26 November 2020; pp. 1–4. [Google Scholar] [CrossRef]
Model | Depth | Number of Parameters | Optimizer |
---|---|---|---|
DarkNet | 56 | 1,167,586 | Adam |
ResNet34 | 34 | 21,814,083 | Adam |
VGG16 | 16 | 15,252,547 | Adam |
SqueezeNet1_0 | 14 | 1,264,835 | Adam |
DenseNet201 | 201 | 20,069,763 | Adam |
Model | Train Loss | Valid loss | Accuracy |
---|---|---|---|
DarkNet | 0.638718 | 0.515339 | 0.800000 |
ResNet34 | 0.233139 | 0.823872 | 0.750000 |
VGG16 | 0.171060 | 0.792268 | 0.766667 |
SqueezeNet1_0 | 0.168784 | 0.516652 | 0.783333 |
DenseNet201 | 0.135499 | 0.601770 | 0.833333 |
Model | Initial Learning Rate | Learning Rate after Fine-Tuning | Accuracy before Fine-Tuning | Accuracy after Fine-Tuning |
---|---|---|---|---|
DarkNet [22] | 3e−3 | - | 0.800000 | - |
ResNet34 [44] | Default | 1e−06, 1e−07 | 0.750000 | 0.783333 |
VGG16 [45] | Default | 1e−07, 1e−06 | 0.766667 | 0.800000 |
SqueezeNet1_0 | Default | 1e−06, 1e−07 | 0.783333 | 0.800000 |
DenseNet201 | Default | 1.58e−06 | 0.833333 | 0.833333 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljohani, A.; Alharbe, N. A Novel Master-Slave Architecture to Detect COVID-19 in Chest X-ray Image Sequences Using Transfer-Learning Techniques. Healthcare 2022, 10, 2443. https://doi.org/10.3390/healthcare10122443
Aljohani A, Alharbe N. A Novel Master-Slave Architecture to Detect COVID-19 in Chest X-ray Image Sequences Using Transfer-Learning Techniques. Healthcare. 2022; 10(12):2443. https://doi.org/10.3390/healthcare10122443
Chicago/Turabian StyleAljohani, Abeer, and Nawaf Alharbe. 2022. "A Novel Master-Slave Architecture to Detect COVID-19 in Chest X-ray Image Sequences Using Transfer-Learning Techniques" Healthcare 10, no. 12: 2443. https://doi.org/10.3390/healthcare10122443
APA StyleAljohani, A., & Alharbe, N. (2022). A Novel Master-Slave Architecture to Detect COVID-19 in Chest X-ray Image Sequences Using Transfer-Learning Techniques. Healthcare, 10(12), 2443. https://doi.org/10.3390/healthcare10122443