Cervical Cancer Prophylaxis—State-of-the-Art and Perspectives
Abstract
:1. Introduction
2. Aim of the Review
3. Review Results
3.1. Cervical Cancer Oncogenesis—Perspectives in Surveillance Programs
3.2. Cervical Cancer Prevention—Current Practice and Future Directions
3.2.1. Cervical Cancer Screening
3.2.2. Human Papillomavirus Vaccination
3.2.3. Cervical Cancer Prevention Programs in Europe
3.3. Cervical Cancer—The Impact of the COVID-19 Pandemic
4. Conclusions
- (a)
- No uniform standards of CC prevention for European countries;
- (b)
- Lack of implementation of a nationally funded HPV vaccination program in some European countries (e.g., Poland);
- (c)
- Differences in risk of death from CC between European countries;
- (d)
- Continued widening of inequalities in CC prevention delivery due to disruptions caused by the COVID-19 pandemic.
- (a)
- The dissemination of new screening methods, such as LBC, HPV-Tests, p16/Ki67, self-testing, and use of AI in colposcopic evaluation;
- (b)
- The acceleration of the evaluation of the clinical utility of new diagnostics, e.g., ultra-sensitive E6/E7 mRNA assays, SOX1/SOX14, and new therapeutic pathways using JAK/STAT signaling pathways, Notch, or the concept of nanotheranostics;
- (c)
- The development of HPV vaccines with broader HPV genotype coverage and shorter dosing schedules.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajaram, S.; Gupta, B. Screening for cervical cancer: Choices & dilemmas. Indian J. Med. Res. 2021, 154, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Wierzba, W.; Jankowski, M.; Placiszewski, K.; Ciompa, P.; Jakimiuk, A.J.; Danska-Bidzinska, A. Overall survival (OS) in patients after chemotherapy for cervical cancer in Poland in years 2008–2015. Ginekol. Pol. 2021. [Google Scholar] [CrossRef]
- Martínez-Rodríguez, F.; Limones-González, J.E.; Mendoza-Almanza, B.; Esparza-Ibarra, E.L.; Gallegos-Flores, P.I.; Ayala-Luján, J.L.; Godina-González, S.; Salinas, E.; Mendoza-Almanza, G. Understanding Cervical Cancer through Proteomics. Cells 2021, 10, 1854. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.B.; McCathran, C.E. Cervical Dysplasia. 2021 Dec. 16. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Olusola, P.; Banerjee, H.N.; Philley, J.V.; Dasgupta, S. Human Papilloma Virus-Associated Cervical Cancer and Health Disparities. Cells 2019, 8, 622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Batur, P. Human papillomavirus in 2019: An update on cervical cancer prevention and screening guidelines. Clevel. Clin. J. Med. 2019, 86, 173–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canfell, K.; Kim, J.J.; Brisson, M.; Keane, A.; Simms, K.T.; Caruana, M.; Burger, E.A.; Martin, D.; Nguyen, D.T.N.; Bénard, E.; et al. Mortality impact of achieving WHO cervical cancer elimination targets: A comparative modelling analysis in 78 low-income and lower-middle-income countries. Lancet 2020, 395, 591–603. [Google Scholar] [CrossRef] [Green Version]
- Balasubramaniam, S.D.; Balakrishnan, V.; Oon, C.E.; Kaur, G. Key Molecular Events in Cervical Cancer Development. Medicina 2019, 55, 384. [Google Scholar] [CrossRef] [Green Version]
- Volkova, L.V.; Pashov, A.I.; Omelchuk, N.N. Cervical Carcinoma: Oncobiology and Biomarkers. Int. J. Mol. Sci. 2021, 22, 12571. [Google Scholar] [CrossRef]
- Giorgi Rossi, P.; Carozzi, F.; Ronco, G.; Allia, E.; Bisanzi, S.; Gillio-Tos, A.; De Marco, L.; Rizzolo, R.; Gustinucci, D.; Del Mistro, A.; et al. p16/ki67 and E6/E7 mRNA Accuracy and Prognostic Value in Triaging HPV DNA-Positive Women. J. Natl. Cancer Inst. 2021, 113, 292–300, Erratum in J. Natl. Cancer Inst. 2021, 114, 324. [Google Scholar] [CrossRef]
- Sehnal, B.; Sláma, J. What next in cervical cancer screening? Ceska Gynekol. 2020, 85, 236–243. (In English) [Google Scholar]
- Zhao, J.; Cao, H.; Zhang, W.; Fan, Y.; Shi, S.; Wang, R. SOX14 hypermethylation as a tumour biomarker in cervical cancer. BMC Cancer 2021, 21, 675. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Zhang, S.; Jiao, J.; Zhang, T.; Qu, W.; Muloye, G.M.; Kong, B.; Zhang, Q.; Cui, B. Promoter methylation of SEPT9 as a potential biomarker for early detection of cervical cancer and its overexpression predicts radioresistance. Clin. Epigenet. 2019, 11, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, N.; He, Y.; Mi, P.; Hu, Y. ZNF582 methylation as a potential biomarker to predict cervical intraepithelial neoplasia type III/worse: A meta-analysis of related studies in Chinese population. Medicine 2019, 98, e14297. [Google Scholar] [CrossRef] [PubMed]
- Fang, C.; Wang, S.Y.; Liou, Y.L.; Chen, M.H.; Ouyang, W.; Duan, K.M. The promising role of PAX1 (aliases: HUP48, OFC2) gene methylation in cancer screening. Mol. Genet. Genom. Med. 2019, 7, e506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Yu, J.; Huang, W.; Zhang, H.; Xu, J.; Cai, H. A Sensitive and Simplified Classifier of Cervical Lesions Based on a Methylation-Specific PCR Assay: A Chinese Cohort Study. Cancer Manag. Res. 2020, 12, 2567–2576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pešut, E.; Đukić, A.; Lulić, L.; Skelin, J.; Šimić, I.; Gašperov, N.M.; Tomaić, V.; Sabol, I.; Grce, M. Human Papillomaviruses-Associated Cancers: An Update of Current Knowledge. Viruses 2021, 13, 2234. [Google Scholar] [CrossRef]
- Liu, S.; Chang, W.; Jin, Y.; Feng, C.; Wu, S.; He, J.; Xu, T. The function of histone acetylation in cervical cancer development. Biosci. Rep. 2019, 39, BSR20190527. [Google Scholar] [CrossRef]
- Lourenço de Freitas, N.; Deberaldini, M.G.; Gomes, D.; Pavan, A.R.; Sousa, A.; Dos Santos, J.L.; Soares, C.P. Histone Deacetylase Inhibitors as Therapeutic Interventions on Cervical Cancer Induced by Human Papillomavirus. Front. Cell Dev. Biol. 2021, 8, 592868. [Google Scholar] [CrossRef]
- Gutiérrez-Hoya, A.; Soto-Cruz, I. Role of the JAK/STAT Pathway in Cervical Cancer: Its Relationship with HPV E6/E7 Oncoproteins. Cells 2020, 9, 2297. [Google Scholar] [CrossRef]
- Rodrigues, C.; Joy, L.R.; Sachithanandan, S.P.; Krishna, S. Notch signalling in cervical cancer. Exp. Cell Res. 2019, 385, 111682. [Google Scholar] [CrossRef]
- Revathidevi, S.; Murugan, A.K.; Nakaoka, H.; Inoue, I.; Munirajan, A.K. APOBEC: A molecular driver in cervical cancer pathogenesis. Cancer Lett. 2021, 496, 104–116. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Hoya, A.; Soto-Cruz, I. NK Cell Regulation in Cervical Cancer and Strategies for Immunotherapy. Cells 2021, 10, 3104. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, D.; Schürmann, P.; Mao, Q.; Wang, Y.; Bretschneider, L.M.; Speith, L.M.; Hülse, F.; Enßen, J.; Bousset, K.; Jentschke, M.; et al. Association of genomic variants at the human leukocyte antigen locus with cervical cancer risk, HPV status and gene expression levels. Int. J. Cancer 2020, 147, 2458–2468. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, D.; Dörk, T. Genomic Risk Factors for Cervical Cancer. Cancers 2021, 13, 5137. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Shiraishi, K.; Kato, T. Molecular Pathology of Human Papilloma Virus-Negative Cervical Cancers. Cancers 2021, 13, 6351. [Google Scholar] [CrossRef] [PubMed]
- Shami, S.; Coombs, J. Cervical cancer screening guidelines. J. Am. Acad. Physician Assist. 2021, 34, 21–24. [Google Scholar] [CrossRef]
- Hussain, E.; Mahanta, L.B.; Borah, H.; Das, C.R. Liquid based-cytology Pap smear dataset for automated multi-class diagnosis of pre-cancerous and cervical cancer lesions. Data Brief 2020, 30, 105589. [Google Scholar] [CrossRef]
- Armstrong, S.F.; Guest, J.F. Cost-Effectiveness and Cost-Benefit of Cervical Cancer Screening with Liquid Based Cytology Compared with Conventional Cytology in Germany. Clin. Outcomes Res. 2020, 12, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Xu, H.; Zhang, L.; Qiao, Y. Cervical cancer: Epidemiology, risk factors and screening. Chin. J. Cancer Res. 2020, 32, 720–728. [Google Scholar] [CrossRef]
- Kamineni, V.; Nair, P.; Deshpande, A. Can LBC Completely Replace Conventional Pap Smear in Developing Countries. J. Obstet. Gynecol. India 2019, 69, 69–76. [Google Scholar] [CrossRef]
- Bogdanova, A.; Andrawos, C.; Constantinou, C. Cervical cancer, geographical inequalities, prevention and barriers in resource depleted countries (Review). Oncol. Lett. 2022, 23, 113. [Google Scholar] [CrossRef]
- Najib, F.S.; Hashemi, M.; Shiravani, Z.; Poordast, T.; Sharifi, S.; Askary, E. Diagnostic Accuracy of Cervical Pap Smear and Colposcopy in Detecting Premalignant and Malignant Lesions of Cervix. Indian J. Surg. Oncol. 2020, 11, 453–458. [Google Scholar] [CrossRef]
- Pankaj, S.; Nazneen, S.; Kumari, S.; Kumari, A.; Kumari, A.; Kumari, J.; Choudhary, V.; Kumar, S. Comparison of conventional Pap smear and liquid-based cytology: A study of cervical cancer screening at a tertiary care center in Bihar. Indian J. Cancer 2018, 55, 80–83. [Google Scholar] [CrossRef] [PubMed]
- Nkwabong, E.; Badjan, I.L.B.; Sando, Z. Pap smear accuracy for the diagnosis of cervical precancerous lesions. Trop. Dr. 2018, 49, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Phaliwong, P.; Pariyawateekul, P.; Khuakoonratt, N.; Sirichai, W.; Bhamarapravatana, K.; Suwannarurk, K. Cervical Cancer Detection between Conventional and Liquid Based Cervical Cytology: A 6-Year Experience in Northern Bangkok Thailand. Asian Pac. J. Cancer Prev. 2018, 19, 1331–1336. [Google Scholar] [CrossRef] [PubMed]
- Hashmi, A.A.; Naz, S.; Ahmed, O.; Yaqeen, S.R.; Irfan, M.; Asif, M.G.; Kamal, A.; Faridi, N. Comparison of Liquid-Based Cytology and Conventional Papanicolaou Smear for Cervical Cancer Screening: An Experience From Pakistan. Cureus 2020, 12, e12293. [Google Scholar] [CrossRef]
- Gupta, R.; Yadav, R.; Sharda, A.; Kumar, D.; Sandeep; Mehrotra, R.; Gupta, S. Comparative evaluation of conventional cytology and a low-cost liquid-based cytology technique, EziPREP™, for cervicovaginal smear reporting: A split sample study. Cytojournal 2019, 16, 22. [Google Scholar] [CrossRef]
- Shobana, R.; Saranya, B. Comparison of conventional Papanicolaou smear and liquid-based cytology for cervical cancer screening. Int. J. Sci. Study 2019, 6, 64–73. [Google Scholar]
- Krishna, C.; Chandraiah, S.; Krishna, C. Comparison of conventional Papanicolaou smear and liquid-based cytology: A study of cervical cancer screening at a tertiary care centre in Bengaluru. Int. J. Reprod. Contracept. Obstet. Gynecol. 2021, 10, 3106–3112. [Google Scholar] [CrossRef]
- Hillemanns, P.; Friese, K.; Dannecker, C.; Klug, S.; Seifert, U.; Iftner, T.; Hädicke, J.; Löning, T.; Horn, L.; Schmidt, D.; et al. Prevention of Cervical Cancer: Guideline of the DGGG and the DKG (S3 Level, AWMF Register Number 015/027OL, December 2017)—Part 1 with Introduction, Screening and the Pathology of Cervical Dysplasia. Geburtshilfe Frauenheilkd 2019, 79, 148–159. [Google Scholar] [CrossRef] [Green Version]
- Singh, U.; Anjum; Qureshi, S.; Negi, N.; Singh, N.; Goel, M.; Srivastava, K. Comparative study between liquid-based cytology & conventional Pap smear for cytological follow up of treated patients of cancer cervix. Indian J. Med. Res. 2018, 147, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Honarvar, Z.; Zarisfi, Z.; Salari Sedigh, S.; Masoumi Shahrbabak, M. Comparison of conventional and liquid-based Pap smear methods in the diagnosis of precancerous cervical lesions. J. Obstet. Gynaecol. 2022, 17, 1–5. [Google Scholar] [CrossRef]
- Perkins, R.B.; Guido, R.L.; Saraiya, M.; Sawaya, G.F.; Wentzensen, N.; Schiffman, M.; Feldman, S. Summary of Current Guidelines for Cervical Cancer Screening and Management of Abnormal Test Results: 2016–2020. J. Women’s Health 2021, 30, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Arbyn, M.; Simon, M.; Peeters, E.; Xu, L.; Meijer, C.J.L.M.; Berkhof, J.; Cuschieri, K.; Bonde, J.; Ostrbenk Vanlencak, A.; Zhao, F.-H.; et al. 2020 list of human papillomavirus assays suitable for primary cervical cancer screening. Clin. Microbiol. Infect. 2021, 27, 1083–1095. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, M.; de Sanjose, S. False positive cervical HPV screening test results. Papillomavirus Res. 2019, 7, 184–187. [Google Scholar] [CrossRef]
- Veijalainen, O.; Kares, S.; Kotaniemi-Talonen, L.; Kujala, P.; Vuento, R.; Luukkaala, T.; Kholová, I.; Mäenpää, J. Primary HPV screening for cervical cancer: Results after two screening rounds in a regional screening program in Finland. Acta Obstet. Gynecol. Scand. 2021, 100, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.G.; Saidu, R.; Svanholm-Barrie, C.; Boa, R.; Moodley, J.; Tergas, A.; Persing, D.; Campbell, S.A.; Tsai, W.Y.; Wright, T.C.; et al. Clinical Utility of Reflex Testing with Cancer Biomarkers to Improve Diagnostic Accuracy of Primary Human Papillomavirus Screening. Cancer Epidemiol. Biomark. Prev. 2022, 31, 595–603. [Google Scholar] [CrossRef]
- Chrysostomou, A.C.; Kostrikis, L.G. Methodologies of Primary HPV Testing Currently Applied for Cervical Cancer Screening. Life 2020, 10, 290. [Google Scholar] [CrossRef]
- Heideman, D.A.M.; Xu, L.; Hesselink, A.T.; Doorn, S.; Ejegod, D.M.; Pedersen, H.; Quint, W.G.V.; Bonde, J.; Arbyn, M. Clinical performance of the HPV-Risk assay on cervical samples in SurePath medium using the VALGENT-4 panel. J. Clin. Virol. 2019, 121, 104201. [Google Scholar] [CrossRef]
- Wei, B.; Mei, P.; Huang, S.; Yu, X.; Zhi, T.; Wang, G.; Xu, X.; Xiao, L.; Dong, X.; Cui, W. Evaluation of the SureX HPV genotyping test for the detection of high-risk HPV in cervical cancer screening. Virol. J. 2020, 17, 171. [Google Scholar] [CrossRef]
- Gustavsson, I.; Aarnio, R.; Myrnäs, M.; Hedlund-Lindberg, J.; Taku, O.; Meiring, T.; Wikström, I.; Enroth, S.; Williamson, A.-L.; Olovsson, M.; et al. Clinical validation of the HPVIR high-risk HPV test on cervical samples according to the international guidelines for human papillomavirus DNA test requirements for cervical cancer screening. Virol. J. 2019, 16, 107. [Google Scholar] [CrossRef] [Green Version]
- Demarco, M.; Carter-Pokras, O.; Hyun, N.; Castle, P.E.; He, X.; Dallal, C.M.; Chen, J.; Gage, J.C.; Befano, B.; Fetterman, B.; et al. Validation of a Human Papillomavirus (HPV) DNA Cervical Screening Test That Provides Expanded HPV Typing. J. Clin. Microbiol. 2018, 56, e01910-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gottschlich, A.; van Niekerk, D.; Smith, L.W.; Gondara, L.; Melinikow, J.; Cook, D.A.; Lee, M.; Stuart, G.; Martin, R.E.; Peacock, S.; et al. Assessing 10-Year Safety of a Single Negative HPV Test for Cervical Cancer Screening: Evidence from FOCAL-DECADE Cohort. Cancer Epidemiol. Biomark. Prev. 2021, 30, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Ogilvie, G.S.; Van Niekerk, D.; Krajden, M.; Smith, L.W.; Cook, D.; Gondara, L.; Ceballos, K.; Quinlan, D.; Lee, M.; Martin, R.E.; et al. Effect of Screening with Primary Cervical HPV Testing vs Cytology Testing on High-grade Cervical Intraepithelial Neoplasia at 48 Months: The HPV FOCAL Randomized Clinical Trial. JAMA 2018, 320, 43–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibáñez, R.; Roura, E.; Monfil, L.; Rodríguez, L.A.; Sardà, M.; Crespo, N.; Pascual, A.; Martí, C.; Fibla, M.; Gutiérrez, C.; et al. Long-term protection of HPV test in women at risk of cervical cancer. PLoS ONE 2020, 15, e0237988. [Google Scholar] [CrossRef]
- Gilham, C.; Sargent, A.; Kitchener, H.C.; Peto, J. HPV testing compared with routine cytology in cervical screening: Long-term follow-up of ARTISTIC RCT. Health Technol. Assess. 2019, 23, 1–44. [Google Scholar] [CrossRef] [Green Version]
- Bergengren, L.; Ryen, L.; Flodström, C.; Fadl, H.; Udumyen, R.; Karlsson, M.G.; Helenius, G. Effectiveness and costs of an implemented primary HPV cervical screening programme in Sweden—A population based cohort study. Prev. Med. Rep. 2021, 25, 101675. [Google Scholar] [CrossRef] [PubMed]
- Vale, D.B.; Silva, M.T.; Discacciati, M.G.; Polegatto, I.; Teixeira, J.C.; Zeferino, L.C. Is the HPV-test more cost-effective than cytology in cervical cancer screening? An economic analysis from a middle-income country. PLoS ONE 2021, 16, e0251688. [Google Scholar] [CrossRef]
- Cuzick, J.; Du, R.; Adcock, R.; Kinney, W.; Joste, N.; McDonald, R.M.; English, K.; Torres, S.M.; Saslow, D.; Wheeler, C.M.; et al. Uptake of co-testing with HPV and cytology for cervical screening: A population-based evaluation in the United States. Gynecol. Oncol. 2021, 162, 555–559. [Google Scholar] [CrossRef]
- Horn, J.; Denecke, A.; Luyten, A.; Rothe, B.; Reinecke-Lüthge, A.; Mikolajczyk, R.; Petry, K.U. Reduction of cervical cancer incidence within a primary HPV screening pilot project (WOLPHSCREEN) in Wolfsburg, Germany. Br. J. Cancer 2019, 120, 1015–1022. [Google Scholar] [CrossRef]
- Zhang, R.; Ge, X.; You, K.; Guo, Y.; Guo, H.; Wang, Y.; Geng, L. p16/Ki67 dual staining improves the detection specificity of high-grade cervical lesions. J. Obstet. Gynaecol. Res. 2018, 44, 2077–2084. [Google Scholar] [CrossRef]
- Areán-Cuns, C.; Mercado-Gutiérrez, M.; Paniello-Alastruey, I.; Mallor-Giménez, F.; Córdoba-Iturriagagoitia, A.; Lozano-Escario, M.; Santamaria-Martínez, M. Dual staining for p16/Ki67 is a more specific test than cytology for triage of HPV-positive women. Virchows Arch. 2018, 473, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Shen, G.; Zhou, L.; Li, Y.; Wang, T.; Ma, X. Artificial Intelligence in Cervical Cancer Screening and Diagnosis. Front. Oncol. 2022, 12, 851367. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Pan, W.; Jin, L.; Huang, W.; Li, Y.; Wu, D.; Gao, C.; Ma, D.; Liao, S. Human papillomavirus vaccine against cervical cancer: Opportunity and challenge. Cancer Lett. 2020, 471, 88–102. [Google Scholar] [CrossRef] [PubMed]
- Bruni, L.; Saura-Lázaro, A.; Montoliu, A.; Brotons, M.; Alemany, L.; Diallo, M.S.; Afsar, O.Z.; LaMontagne, D.S.; Mosina, L.; Contreras, M.; et al. HPV vaccination introduction worldwide and WHO and UNICEF estimates of national HPV immunization coverage 2010–2019. Prev. Med. 2021, 144, 106399. [Google Scholar] [CrossRef] [PubMed]
- Augustynowicz, A.; Bojar, I.; Borowska, M.; Bobiński, K.; Czerw, A. Self-government HPV vaccination programmes in Poland, 2009–2016. Ann. Agric. Environ. Med. 2020, 27, 379–383. [Google Scholar] [CrossRef]
- Tsu, V.D.; LaMontagne, D.S.; Atuhebwe, P.; Bloem, P.N.; Ndiaye, C. National implementation of HPV vaccination programs in low-resource countries: Lessons, challenges, and future prospects. Prev. Med. 2021, 144, 106335. [Google Scholar] [CrossRef]
- Oyedeji, O.; Maples, J.M.; Gregory, S.; Chamberlin, S.M.; Gatwood, J.D.; Wilson, A.Q.; Zite, N.B.; Kilgore, L.C. Pharmacists’ Perceived Barriers to Human Papillomavirus (HPV) Vaccination: A Systematic Literature Review. Vaccines 2021, 9, 1360. [Google Scholar] [CrossRef]
- Toh, Z.Q.; Russell, F.M.; Garland, S.M.; Mulholland, E.K.; Patton, G.; Licciardi, P.V. Human Papillomavirus Vaccination After COVID-19. JNCI Cancer Spectr. 2021, 5, pkab011. [Google Scholar] [CrossRef]
- Smolarczyk, K.; Duszewska, A.; Drozd, S.; Majewski, S. Parents’ Knowledge and Attitude towards HPV and HPV Vaccination in Poland. Vaccines 2022, 10, 228. [Google Scholar] [CrossRef]
- Dilley, S.; Miller, K.M.; Huh, W.K. Human papillomavirus vaccination: Ongoing challenges and future directions. Gynecol. Oncol. 2020, 156, 498–502. [Google Scholar] [CrossRef]
- Chrysostomou, A.C.; Stylianou, D.C.; Constantinidou, A.; Kostrikis, L.G. Cervical Cancer Screening Programs in Europe: The Transition Towards HPV Vaccination and Population-Based HPV Testing. Viruses 2018, 10, 729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sroczynski, G.; Esteban, E.; Widschwendter, A.; Oberaigner, W.; Borena, W.; Von Laer, D.; Hackl, M.; Endel, G.; Siebert, U. Reducing overtreatment associated with overdiagnosis in cervical cancer screening—A model-based benefit–harm analysis for Austria. Int. J. Cancer 2020, 147, 1131–1142. [Google Scholar] [CrossRef] [PubMed]
- Jolidon, V.; De Prez, V.; Willems, B.; Bracke, P.; Cullati, S.; Burton-Jeangros, C. Never and under cervical cancer screening in Switzerland and Belgium: Trends and inequalities. BMC Public Health 2020, 20, 1517. [Google Scholar] [CrossRef]
- Altová, A.; Kulhánová, I.; Brůha, L.; Lustigová, M. Breast and cervical cancer screening attendance among Czech women. Central Eur. J. Public Health 2021, 29, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Záhumenský, J.; Pšenková, P.; Nadzámová, A.; Drabiščáková, P.; Hruban, L.; Weinberger, V.; Kacerovský, M.; Dosedla, E. Comparison of opinions of Slovak and Czech female medical students on HPV vaccination. Central Eur. J. Public Health 2020, 28, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, K.; Fogelberg, S.; Thamsborg, L.H.; Clements, M.; Nygård, M.; Kristiansen, I.S.; Lynge, E.; Sparén, P.; Kim, J.J.; Burger, E.A. An overview of cervical cancer epidemiology and prevention in Scandinavia. Acta Obstet. Gynecol. Scand. 2018, 97, 795–807. [Google Scholar] [CrossRef]
- Ojamaa, K.; Innos, K.; Baburin, A.; Everaus, H.; Veerus, P. Trends in cervical cancer incidence and survival in Estonia from 1995 to 2014. BMC Cancer 2018, 18, 1075. [Google Scholar] [CrossRef] [Green Version]
- De Rycke, Y.; Tubach, F.; Lafourcade, A.; Guillo, S.; Dalichampt, M.; Dahlab, A.; Bresse, X.; Uhart, M.; Bergeron, C.; Borne, H.; et al. Cervical cancer screening coverage, management of squamous intraepithelial lesions and related costs in France. PLoS ONE 2020, 15, e0228660. [Google Scholar] [CrossRef]
- Maver, P.J.; Poljak, M. Primary HPV-based cervical cancer screening in Europe: Implementation status, challenges, and future plans. Clin. Microbiol. Infect. 2020, 26, 579–583. [Google Scholar] [CrossRef]
- de Munter, A.C.; Klooster, T.M.S.-V.T.; van Lier, A.; Akkermans, R.; de Melker, H.E.; Ruijs, W.L.M. Determinants of HPV-vaccination uptake and subgroups with a lower uptake in the Netherlands. BMC Public Health 2021, 21, 1848. [Google Scholar] [CrossRef]
- Deguara, M.; Calleja, N.; England, K. Cervical cancer and screening: Knowledge, awareness and attitudes of women in Malta. J. Prev. Med. Hyg. 2021, 61, E584–E592. [Google Scholar] [PubMed]
- Hrgovic, Z.; Fures, R.; Jaska, S. Implementation of the Program for Early Detection of Cervical Cancer in the Federal Republic of Germany. Mater. Socio Med. 2020, 32, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Osowiecka, K.; Yahuza, S.; Szwiec, M.; Gwara, A.; Kasprzycka, K.; Godawska, M.; Olejniczak, D.; Nowacka, A.; Nowakowski, J.J.; Nawrocki, S.; et al. Students’ Knowledge about Cervical Cancer Prevention in Poland. Medicina 2021, 57, 1045. [Google Scholar] [CrossRef] [PubMed]
- Wojcinski, M. 14 Jahre HPV-Impfung: Was haben wir erreicht? Gynakologe 2021, 54, 801–809. [Google Scholar] [CrossRef]
- Marques, P.; Geraldes, M.; Gama, A.; Heleno, B.; Dias, S. Non-attendance in cervical cancer screening among migrant women in Portugal: A cross-sectional study. Women’s Health 2022, 18, 17455057221093034. [Google Scholar] [CrossRef]
- Fernandes, C.; Alves, J.; Rodrigues, A.; Azevedo, J. Group for the Study of HPV Vaccines. Epidemiological impact of the human papillomavirus vaccination program on genital warts in Portugal: A retrospective, chart review study. Vaccine 2022, 40, 275–281. [Google Scholar] [CrossRef]
- Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today; International Agency for Research on Cancer: Lyon, France, 2020; Available online: https://gco.iarc.fr/today (accessed on 30 May 2022).
- Smith, D.L.; Perkins, R.B. Low rates of HPV vaccination and cervical cancer screening: Challenges and opportunities in the context of the COVID-19 pandemic. Prev. Med. 2022, 159, 107070. [Google Scholar] [CrossRef]
- Wentzensen, N.; Clarke, M.A.; Perkins, R.B. Impact of COVID-19 on cervical cancer screening: Challenges and opportunities to improving resilience and reduce disparities. Prev. Med. 2021, 151, 106596. [Google Scholar] [CrossRef]
- Smith, M.A.; Burger, E.A.; Castanon, A.; de Kok, I.M.C.M.; Hanley, S.J.B.; Rebolj, M.; Hall, M.T.; Jansen, E.E.; Killen, J.; O’Farrell, X.; et al. Impact of disruptions and recovery for established cervical screening programs across a range of high-income country program designs, using COVID-19 as an example: A modelled analysis. Prev. Med. 2021, 151, 106623. [Google Scholar] [CrossRef]
- Burger, E.A.; Jansen, E.E.; Killen, J.; de Kok, I.M.; Smith, M.A.; Sy, S.; Dunnewind, N.; Campos, N.G.; Haas, J.S.; Kobrin, S.; et al. Impact of COVID-19-related care disruptions on cervical cancer screening in the United States. J. Med. Screen. 2021, 28, 213–216. [Google Scholar] [CrossRef]
- Del Pilar Estevez-Diz, M.; Bonadio, R.C.; Miranda, V.C.; Carvalho, J.P. Management of cervical cancer patients during the COVID-19 pandemic: A challenge for developing countries. Ecancermedicalscience 2020, 14, 1060. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Chauhan, A.S.; Prinja, S.; Pandey, A.K. Impact of COVID-19 on Outcomes for Patients With Cervical Cancer in India. JCO Glob. Oncol. 2021, 7, 716–725. [Google Scholar] [CrossRef] [PubMed]
- Lozar, T.; Nagvekar, R.; Rohrer, C.; Dube Mandishora, R.S.; Ivanus, U.; Fitzpatrick, M.B. Cervical Cancer Screening Postpandemic: Self-Sampling Opportunities to Accelerate the Elimination of Cervical Cancer. Int. J. Women’s Health 2021, 13, 841–859. [Google Scholar] [CrossRef] [PubMed]
- Ertik, F.C.; Kampers, J.; Hülse, F.; Stolte, C.; Böhmer, G.; Hillemanns, P.; Jentschke, M. CoCoss-Trial: Concurrent Comparison of Self-Sampling Devices for HPV-Detection. Int. J. Environ. Res. Public Health 2021, 18, 10388. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, M.; Bidzinski, M.; Wielgos, M. (Eds.) Cervical Cancer Screening—Recommendations of the Polish Society of GyneCologists and Obstetricians, 2021. Available online: https://ptgin.pl/node/82 (accessed on 25 June 2022).
- Zhao, Y.; Li, Y.; Xing, L.; Lei, H.; Chen, D.; Tang, C.; Li, X. The Performance of Artificial Intelligence in Cervical Colposcopy: A Retrospective Data Analysis. J. Oncol. 2022, 2022, 4370851. [Google Scholar] [CrossRef] [PubMed]
- Ciavattini, A.; Delli Carpini, G.; Giannella, L.; Arbyn, M.; Kyrgiou, M.; Joura, E.A.; Sehouli, J.; Carcopino, X.; Redman, C.W.; Nieminen, P.; et al. European Federation for Colposcopy (EFC) and European Society of Gynaecological Oncology (ESGO) joint considerations about human papillomavirus (HPV) vaccination, screening programs, colposcopy, and surgery during and after the COVID-19 pandemic. Int. J. Gynecol. Cancer 2020, 30, 1097–1100. [Google Scholar] [CrossRef]
- Hu, Z.; Ma, D. The precision prevention and therapy of HPV-related cervical cancer: New concepts and clinical implications. Cancer Med. 2018, 7, 5217–5236. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, G.; Cheng, J.; Yang, Y.-Y. Supramolecular Nanotheranostics. Theranostics 2019, 9, 3014–3016. [Google Scholar] [CrossRef]
- Ding, Y.; Tong, Z.; Jin, L.; Ye, B.; Zhou, J.; Sun, Z.; Yang, H.; Hong, L.; Huang, F.; Wang, W.; et al. An NIR Discrete Metallacycle Constructed from Perylene Bisimide and Tetraphenylethylene Fluorophores for Imaging-Guided Cancer Radio-Chemotherapy. Adv. Mater. 2022, 34, 2106388. [Google Scholar] [CrossRef]
- Xia, Y.; Tang, G.; Wang, C.; Zhong, J.; Chen, Y.; Hua, L.; Li, Y.; Liu, H.; Zhu, B. Functionalized selenium nanoparticles for targeted siRNA delivery silence Derlin1 and promote antitumor efficacy against cervical cancer. Drug Deliv. 2019, 27, 15–25. [Google Scholar] [CrossRef] [Green Version]
Potential Biomarker of Cervical Cancer | Sensitivity/Specificity [%] | Main Conclusion | Reference |
---|---|---|---|
SEPT9 | 89.5/63.3% | SEPT9 may be a potential screening and therapeutic biomarker in CC | Jiao et al. (2019) [13] |
ZNF582 | 71/81% | The use of HPV DNA testing and the ZNF582 methylation assay improves diagnostic accuracy compared to HPV DNA testing alone. | Li et al. (2019) [14] |
PAX1 | 86/85% | Diagnosis of PAX1 methylation can be incorporated into a CC screening regimen | Fang et al. (2019) [15] |
SOX1 | 96/99% | The sensitivity and specificity of SOX1 allow its use in early detection programs for CC | Zhang et al. (2020) [16] |
Country | National CC Screening Program | National HPV Vaccination Program | Reference |
---|---|---|---|
Austria | Pap smear after age 18 | Yes, for girls and boys | Sroczynski et al. (2020) [74] |
Belgium | Pap smear every 3 years, possibility of HPV DNA test | Yes | Jolidon et al. (2020) [75] |
Czech Republic | Pap smear every year over age 15 | Yes | Altova et al. (2021) [76] Záhumenský et al. (2020) [77] |
Denmark | Pap smear in women 23–49 years every 3 years 50–59 years every 5 years HPV test In women aged 60–64 years—once | Yes, girls 12 years old and older | Pedersen et al. (2018) [78] |
Estonia | Pap smear every 5 years in women aged 30–55 years | Yes, girls aged 12–14 | Ojamaa et al. (2018) [79] |
France | Pap smear every 3 years in women aged 25–65 years | Yes, girls aged 11–14 Additional opportunity to vaccinate girls aged 15–19 | de Rycke et al. (2020) [80] |
The Netherlands | HPV test in women aged 30–60 years (65 years if previous HPV test was positive) at intervals of every 5 years until age 40, then every 10 years | Yes, vaccination of girls at age 12 | Maver et al. (2020) [81] de Munter et al. (2021) [82] |
Malta | LBC in women aged 27–39, Pap smear in women aged 40–64 | Yes, girls at age 12 | Deguara et al. (2021) [83] |
Germany | Pap smear up to 35 years old, co-test 35–65 years old | Yes, for boys and girls aged 9–14 | Hrgovic et al. (2020) [84] Wojcinski (2021) [85] |
Poland | Pap smear in women aged 25–59, every 3 years | No | Osowiecka et al. (2021) [86] |
Portugal | Determined by individual regions of the country (HPV test, LBC, Pap smear) performed every 3 years, or every 5 years in age groups 25–60, 25–64, 30–65 | Yes, girls up to age 13 | Marques et al. (2022) [87] Fernandes et al. (2022) [88] |
Country | Age-Standardized Rate | Cumulative Mortality Risk |
---|---|---|
Austria | 1.8 | 0.37 |
Belgium | 2.0 | 0.42 |
Czech Republic | 3.6 | 0.73 |
Denmark | 2.2 | 0.53 |
Estonia | 4.3 | 0.81 |
The Netherlands | 1.4 | 0.32 |
France | 2.2 | 0.42 |
Malta | 1.1 | 0.26 |
Germany | 2.2 | 0.44 |
Poland | 5.9 | 1.04 |
Portugal | 3.2 | 0.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poniewierza, P.; Panek, G. Cervical Cancer Prophylaxis—State-of-the-Art and Perspectives. Healthcare 2022, 10, 1325. https://doi.org/10.3390/healthcare10071325
Poniewierza P, Panek G. Cervical Cancer Prophylaxis—State-of-the-Art and Perspectives. Healthcare. 2022; 10(7):1325. https://doi.org/10.3390/healthcare10071325
Chicago/Turabian StylePoniewierza, Patryk, and Grzegorz Panek. 2022. "Cervical Cancer Prophylaxis—State-of-the-Art and Perspectives" Healthcare 10, no. 7: 1325. https://doi.org/10.3390/healthcare10071325
APA StylePoniewierza, P., & Panek, G. (2022). Cervical Cancer Prophylaxis—State-of-the-Art and Perspectives. Healthcare, 10(7), 1325. https://doi.org/10.3390/healthcare10071325