Basics of Sustainable Diets and Tools for Assessing Dietary Sustainability: A Primer for Researchers and Policy Actors
Abstract
:1. Introduction
2. Nutrition and Climate Change
2.1. Effects of Drought
2.2. Increase in CO2 Concentration
2.3. Effects on Human Health
2.4. Impact of Human Nutrition on Climate Change
2.5. Sustainable Diets
3. The EAT-Lancet Reference Diet
3.1. Methodological Limitations of the EAT-Lancet Reference Diet
3.2. Economic Limitations of the EAT-Lancet Reference Diet
3.3. Nutritional Adequacy of the EAT-Lancet Diet
3.4. Restriction of Animal-Sourced Foods
3.5. Application of the Reference Diet to Specific Patient Populations
4. Indexes Assessing Dietary Sustainability Based on the EAT-Lancet Reference Diet
4.1. The EAT-Lancet Diet Score
4.2. The World Index for Sustainability and Health (WISH)
4.3. The Planetary Health Diet Index (PHDI)
4.4. The Sustainable-HEalthy-Diet (SHED) Index
4.5. Indice de Dieta Saludable y Sostenible (IDSS)
5. Other Indexes Assessing Dietary Sustainability, Developed Independently of the EAT-Lancet Reference Diet
5.1. The Healthy and Sustainable Diet Index (HSDI)
5.2. The Sustainable Diet Index (SDI)
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vassilakou, T.; Grammatikopoulou, M.G.; Gkiouras, K.; Lampropoulou, M.A.; Pepa, A.; Katsaridis, S.; Alexandropoulou, I.; Bobora, D.; Bati, Z.; Vamvakis, A.; et al. Practical Sustainable Nutrition Guide for Young People: Shifting Our Dietary Habits from Animal, to Plant-Based Foods; WWF World Wild Fund: Athens, Greece, 2022. [Google Scholar]
- DaMatta, F.M.; Grandis, A.; Arenque, B.C.; Buckeridge, M.S. Impacts of climate changes on crop physiology and food quality. Food Res. Int. 2010, 43, 1814–1823. [Google Scholar] [CrossRef]
- Escarcha, J.F.; Lassa, J.A.; Zander, K.K. Livestock Under Climate Change: A Systematic Review of Impacts and Adaptation. Climate 2018, 6, 54. [Google Scholar] [CrossRef]
- Brander, K. Impacts of climate change on fisheries. J. Mar. Syst. 2010, 79, 389–402. [Google Scholar] [CrossRef]
- Zhu, C.; Kobayashi, K.; Loladze, I.; Zhu, J.; Jiang, Q.; Xu, X.; Liu, G.; Seneweera, S.; Ebi, K.L.; Drewnowski, A.; et al. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries. Sci. Adv. 2018, 4, eaaq1012. [Google Scholar] [CrossRef]
- Medek, D.E.; Schwartz, J.; Myers, S.S. Estimated Effects of Future Atmospheric CO2 Concentrations on Protein Intake and the Risk of Protein Deficiency by Country and Region. Environ. Health Perspect. 2017, 125, 087002. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Grossi, G.; Goglio, P.; Vitali, A.; Williams, A.G. Livestock and climate change: Impact of livestock on climate and mitigation strategies. Anim. Front. 2019, 9, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; FAO: Rome, Italy, 2013.
- Open Working Group on Sustainable Development Goals (OWG). Sustainable Development Goals; Technical report by the Bureau of the United Nations Statistical Commission (UNSC) on the process of the development of an indicator framework for the goals and targets of the post-2015 development agenda; United Nations Foundation: Washington, DC, USA, 2015. [Google Scholar]
- Food and Agriculture Organization (FAO). Sustainable Diets and Biodiversity—Directions and Solutions for Policy, Research and Action; Burlingame, B., Dernini, S., Nutrition and Consumer Protection Division, Eds.; FAO: Rome, Italy, 2012.
- Food and Agriculture Organization of the United Nations; World Health Organization. Sustainable Healthy Diets: Guiding Principles; FAO: Rome, Italy, 2019.
- Trijsburg, L.; Talsma, E.F.; Crispim, S.P.; Garrett, J.; Kennedy, G.; de Vries, J.H.M.; Brouwer, I.D. Method for the Development of WISH, a Globally Applicable Index for Healthy Diets from Sustainable Food Systems. Nutrients 2021, 13, 93. [Google Scholar] [CrossRef]
- Frederick Grassle, J. Marine Ecosystems. In Encyclopedia of Biodiversity, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 45–55. [Google Scholar] [CrossRef]
- Hummel, M.; Hallahan, B.F.; Brychkova, G.; Ramirez-Villegas, J.; Guwela, V.; Chataika, B.; Curley, E.; McKeown, P.C.; Morrison, L.; Talsma, E.F.; et al. Reduction in nutritional quality and growing area suitability of common bean under climate change induced drought stress in Africa. Sci. Rep. 2018, 8, 16187. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.R.; Myers, S.S. Impact of anthropogenic CO2 emissions on global human nutrition. Nat. Clim. Chang. 2018, 8, 834–839. [Google Scholar] [CrossRef]
- Bista, D.R.; Heckathorn, S.A.; Jayawardena, D.M.; Mishra, S.; Boldt, J.K. Effects of Drought on Nutrient Uptake and the Levels of Nutrient-Uptake Proteins in Roots of Drought-Sensitive and -Tolerant Grasses. Plants 2018, 7, 28. [Google Scholar] [CrossRef]
- Schmutz, J.; McClean, P.E.; Mamidi, S.; Wu, G.A.; Cannon, S.B.; Grimwood, J.; Jenkins, J.; Shu, S.; Song, Q.; Chavarro, C.; et al. A reference genome for common bean and genome-wide analysis of dual domestications. Nat. Genet. 2014, 46, 707–713. [Google Scholar] [CrossRef]
- Lloyd, S.J.; Sari Kovats, R.; Chalabi, Z. Climate change, crop yields, and undernutrition: Development of a model to quantify the impact of climate scenarios on child undernutrition. Environ. Health Perspect. 2011, 119, 1817–1823. [Google Scholar] [CrossRef]
- Challinor, A.; Wheeler, T.; Garforth, C.; Craufurd, P.; Kassam, A. Assessing the vulnerability of food crop systems in Africa to climate change. Clim. Change 2007, 83, 381–399. [Google Scholar] [CrossRef]
- Beebe, S.; Ramirez, J.; Jarvis, A.; Rao, I.M.; Mosquera, G.; Bueno, J.M.; Blair, M.W. Genetic Improvement of Common Beans and the Challenges of Climate Change. In Crop Adaptation to Climate Change; Yadav, S.S., Redden, R.J., Hatfield, J.L., Lotze-Campen, H., Hall, A.E., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011; pp. 356–369. ISBN 9780813820163. [Google Scholar]
- Rouphael, Y.; Cardarelli, M.; Schwarz, D.; Franken, P.; Colla, G. Effects of drought on nutrient uptake and assimilation in vegetable crops. In Plant Responses to Drought Stress: From Morphological to Molecular Features; Aroca, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 9783642326, pp. 171–195. ISBN 9783642326530. [Google Scholar]
- Gong, M.; Chen, S.; Song, Y.; Li, Z. Effect of calcium and calmodulin on intrinsic heat tolerance in relation to antioxidant systems in maize seedlings. Funct. Plant Biol. 1997, 24, 371. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Yu, Y.; Chen, S.; He, Z.; Wang, Y.; Jiang, L.; Wang, G.; Yang, C.; Liu, B.; et al. Drought Enhances Nitrogen Uptake and Assimilation in Maize Roots. Agron. J. 2017, 109, 39–46. [Google Scholar] [CrossRef]
- Nacry, P.; Bouguyon, E.; Gojon, A. Nitrogen acquisition by roots: Physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil 2013, 370, 1–29. [Google Scholar] [CrossRef]
- Myers, S.S.; Zanobetti, A.; Kloog, I.; Huybers, P.; Leakey, A.D.B.; Bloom, A.J.; Carlisle, E.; Dietterich, L.H.; Fitzgerald, G.; Hasegawa, T.; et al. Increasing CO2 threatens human nutrition. Nature 2014, 510, 139–142. [Google Scholar] [CrossRef]
- Kajala, K.; Covshoff, S.; Karki, S.; Woodfield, H.; Tolley, B.J.; Dionora, M.J.A.; Mogul, R.T.; Mabilangan, A.E.; Danila, F.R.; Hibberd, J.M.; et al. Strategies for engineering a two-celled C4 photosynthetic pathway into rice. J. Exp. Bot. 2011, 62, 3001–3010. [Google Scholar] [CrossRef] [PubMed]
- Masson-Delmotte, V.; Zhai, P.; Portner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.R.; Rirani, A.; Moufouma-Okia, W.; Pean, C.; Pidcock, R.; et al. Global Warming of 1.5 °C; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018.
- Bennett, M.K. Wheat in National Diets. Stanford Univ. Food Res. Inst. 1941, 18, 1–44. [Google Scholar]
- The Core Writing Team; Pachauri, R.K.; Meyer, L. Synthesis Report—Climate Change 2014 Contribution of Working Groups I, II and III to the Fifth Assessment Report; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2015. [Google Scholar]
- Smith, M.R.; Myers, S.S. Global Health Implications of Nutrient Changes in Rice Under High Atmospheric Carbon Dioxide. GeoHealth 2019, 3, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Ewing, B.; Goldfinger, S.; Oursler, A.; Reed, A.; Moore, D.; Wackernagel, M. Ecological Footprint Atlas 2009; Global Footprint Network, Research Standards Department: Geneva, Switzerland, 2009.
- Rose, D.; Heller, M.C.; Roberto, C.A. Position of the Society for Nutrition Education and Behavior: The Importance of Including Environmental Sustainability in Dietary Guidance. J. Nutr. Educ. Behav. 2019, 51, 3–15.e1. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, J.; Vennard, D.; Waite, R.; Dumas, P.; Lipinski, B.; Searchinger, T. GLOBAGRI-WRR model authors. In Shifting Diets for a Sustainable Food Future; World Resources Institute: Washington, DC, USA, 2016. [Google Scholar]
- Alexandratos, N.; Bruinsma, J.; Global Perspective Studies Team; FAO Agricultural Development Economics Division. World Agriculture towards 2030/2050: The 2012 Revision. ESA Working Paper No. 12-03; FAO: Rome, Italy, 2012.
- MacDiarmid, J.I.; Whybrow, S. Nutrition from a climate change perspective. Proc. Nutr. Soc. 2019, 78, 380–387. [Google Scholar] [CrossRef]
- Garnett, T.; Scarborough, P.; Finch, J. What is a healthy sustainable eating pattern? In Foodsource: Chapters; Food Climate Research Network, University of Oxford: Oxford, UK, 2016. [Google Scholar]
- Hallström, E.; Carlsson-Kanyama, A.; Börjesson, P. Environmental impact of dietary change: A systematic review. J. Clean. Prod. 2015, 91, 1–11. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; de Boer, I.J.M. Environmental Impact of the Production of Mealworms as a Protein Source for Humans—A Life Cycle Assessment. PLoS ONE 2012, 7, e51145. [Google Scholar] [CrossRef]
- Lynch, J.; Pierrehumbert, R. Climate Impacts of Cultured Meat and Beef Cattle. Front. Sustain. Food Syst. 2019, 3, 5. [Google Scholar] [CrossRef]
- EAT Forum. EAT—The Science-Based Global Platform for Food System Transformation. Available online: https://eatforum.org/ (accessed on 3 August 2022).
- Morrison, O. Industry Braces for EAT-Lancet: The Sequel. Available online: https://www.foodnavigator.com/Article/2022/06/06/industry-braces-for-eat-lancet-the-sequel (accessed on 4 August 2022).
- Keys, A.; Mienotti, A.; Karvonen, M.J.; Aravanis, C.; Blackburn, H.; Buzina, R.; Djordjevic, B.S.; Dontas, A.S.; Fidanza, F.; Keys, M.H.; et al. The diet and 15-year death rate in the Seven countries study. Am. J. Epidemiol. 1986, 124, 903–915. [Google Scholar] [CrossRef]
- Grammatikopoulou, M.G.; Nigdelis, M.P.; Theodoridis, X.; Gkiouras, K.; Tranidou, A.; Papamitsou, T.; Bogdanos, D.P.; Goulis, D.G. How fragile are Mediterranean diet interventions? A research-on-research study of randomised controlled trials. BMJ Nutr. Prev. Health 2021, 4, 115–131. [Google Scholar] [CrossRef]
- Pett, K.D.; Willett, W.C.; Vartiainen, E.; Katz, D.L. The Seven Countries Study. Eur. Heart J. 2017, 38, 3119–3121. [Google Scholar] [CrossRef]
- Zagmutt, F.J.; Pouzou, J.G.; Costard, S. The EAT-Lancet Commission: A flawed approach? Lancet 2019, 394, 1140–1141. [Google Scholar] [CrossRef] [Green Version]
- Thorkildsen, T.; Reksnes, D.H. The Proof is Not in the EATing. EuroChoices 2020, 19, 11–16. [Google Scholar] [CrossRef]
- Zagmutt, F.J.; Pouzou, J.G.; Costard, S. The EAT-Lancet Commission’s Dietary Composition May Not Prevent Noncommunicable Disease Mortality. J. Nutr. 2020, 150, 985–988. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, J.D.; Ioannidis, J.P. Is everything we eat associated with cancer? A systematic cookbook review. Am. J. Clin. Nutr. 2013, 97, 127–134. [Google Scholar] [CrossRef]
- Ioannidis, J.P. Implausible results in human nutrition research. BMJ 2013, 347, f6698. [Google Scholar] [CrossRef]
- Zeraatkar, D.; Han, M.A.; Guyatt, G.H.; Vernooij, R.W.M.; El Dib, R.; Cheung, K.; Milio, K.; Zworth, M.; Bartoszko, J.J.; Valli, C.; et al. Red and Processed Meat Consumption and Risk for All-Cause Mortality and Cardiometabolic Outcomes: A Systematic Review and Meta-analysis of Cohort Studies. Ann. Intern. Med. 2019, 171, 703–710. [Google Scholar] [CrossRef]
- Guyatt, G.; Oxman, A.D.; Akl, E.A.; Kunz, R.; Vist, G.; Brozek, J.; Norris, S.; Falck-Ytter, Y.; Glasziou, P.; de Beer, H.; et al. GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of findings tables. J. Clin. Epidemiol. 2011, 64, 383–394. [Google Scholar] [CrossRef]
- Han, M.A.; Zeraatkar, D.; Guyatt, G.H.; Vernooij, R.W.M.; El Dib, R.; Zhang, Y.; Algarni, A.; Leung, G.; Storman, D.; Valli, C.; et al. Reduction of Red and Processed Meat Intake and Cancer Mortality and Incidence: A Systematic Review and Meta-analysis of Cohort Studies. Ann. Intern. Med. 2019, 171, 711–720. [Google Scholar] [CrossRef]
- Vernooij, R.W.M.; Zeraatkar, D.; Han, M.A.; El Dib, R.; Zworth, M.; Milio, K.; Sit, D.; Lee, Y.; Gomaa, H.; Valli, C.; et al. Patterns of Red and Processed Meat Consumption and Risk for Cardiometabolic and Cancer Outcomes: A Systematic Review and Meta-analysis of Cohort Studies. Ann. Intern. Med. 2019, 171, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Platz, T. Methods for the Development of Healthcare Practice Recommendations Using Systematic Reviews and Meta-Analyses. Front. Neurol. 2021, 12, 1016. [Google Scholar] [CrossRef]
- Brouwers, M.C.; Kho, M.E.; Browman, G.P.; Burgers, J.S.; Cluzeau, F.; Feder, G.; Fervers, B.; Graham, I.D.; Grimshaw, J.; Hanna, S.E.; et al. AGREE II: Advancing guideline development, reporting and evaluation in health care. J. Clin. Epidemiol. 2010, 63, 1308–1311. [Google Scholar] [CrossRef] [PubMed]
- Harcombe, Z. US dietary guidelines: Is saturated fat a nutrient of concern? Br. J. Sports Med. 2019, 53, 1393–1396. [Google Scholar] [CrossRef]
- Harcombe, Z.; Baker, J.S.; DiNicolantonio, J.J.; Grace, F.; Davies, B. Original research article: Evidence from randomised controlled trials does not support current dietary fat guidelines: A systematic review and meta-analysis. Open Heart 2016, 3, 409. [Google Scholar] [CrossRef]
- DiNicolantonio, J.J.; Harcombe, Z.; O’Keefe, J.H. Problems with the 2015 Dietary Guidelines for Americans: An Alternative. Mo. Med. 2016, 113, 93. [Google Scholar]
- Harcombe, Z. Designed by the food industry for wealth, not health: The “Eatwell Guide”. Br. J. Sports Med. 2017, 51, 1730–1731. [Google Scholar] [CrossRef]
- Lunny, C.; Ramasubbu, C.; Puil, L.; Liu, T.; Gerrish, S.; Salzwedel, D.M.; Mintzes, B.; Wright, J.M. Over half of clinical practice guidelines use non-systematic methods to inform recommendations: A methods study. PLoS ONE 2021, 16, e0250356. [Google Scholar] [CrossRef]
- Grammatikopoulou, M.G.; Vassilakou, T.; Goulis, D.G.; Theodoridis, X.; Nigdelis, M.P.; Petalidou, A.; Gkiouras, K.; Poulimeneas, D.; Alexatou, O.; Tsiroukidou, K.; et al. Standards of nutritional care for patients with cystic fibrosis: A methodological primer and agree ii analysis of guidelines. Children 2021, 8, 1180. [Google Scholar] [CrossRef]
- Wayant, C.; Puljak, L.; Bibens, M.; Vassar, M. Risk of Bias and Quality of Reporting in Colon and Rectal Cancer Systematic Reviews Cited by National Comprehensive Cancer Network Guidelines. J. Gen. Intern. Med. 2020, 35, 2352–2356. [Google Scholar] [CrossRef]
- Kaiser, M. 58. ‘What is wrong with the EAT Lancet report?’. In Justice and Food Security in a Changing Climate; Schübel, H., Wallimann-Helmer, I., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2021; pp. 374–380. [Google Scholar]
- Burnett, D.; Carney, M.A.; Carruth, L.; Chard, S.; Dickinson, M.; Gálvez, A.; Garth, H.; Hardin, J.; Hite, A.; Howard, H.; et al. Anthropologists Respond to the Lancet EAT Commission. Rev. Bionatura 2020, 5, 1023–1024. [Google Scholar] [CrossRef]
- Hill, H.D.; Rowhani-Rahbar, A. Income Support as a Health Intervention. JAMA Netw. Open 2022, 5, e2143363. [Google Scholar] [CrossRef]
- Gkiouras, K.; Cheristanidis, S.; Papailia, T.D.; Grammatikopoulou, M.G.; Karamitsios, N.; Goulis, D.G.; Papamitsou, T. Malnutrition and Food Insecurity Might Pose a Double Burden for Older Adults. Nutrients 2020, 12, 2407. [Google Scholar] [CrossRef]
- Hirvonen, K.; Bai, Y.; Headey, D.; Masters, W.A. Affordability of the EAT–Lancet reference diet: A global analysis. Lancet Glob. Health 2020, 8, e59–e66. [Google Scholar] [CrossRef] [Green Version]
- Drewnowski, A. Analysing the affordability of the EAT–Lancet diet. Lancet Glob. Health 2020, 8, e6–e7. [Google Scholar] [CrossRef]
- Kousta, S. The cost of a healthy diet. Lancet Glob. Health 2020, 4, 9. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Vemireddy, V.; Singh, D.K.; Pingali, P. Ground truthing the cost of achieving the EAT lancet recommended diets: Evidence from rural India. Glob. Food Sec. 2021, 28, 100498. [Google Scholar] [CrossRef]
- Bloch, S. World Health Organization Drops Its High-Profile Sponsorship of the EAT-Lancet Diet|The Counter. Available online: https://thecounter.org/world-health-organization-drops-its-high-profile-endorsement-of-the-eat-lancet-diet/ (accessed on 25 June 2022).
- Nutritioninsight Who Withdraws Endorsement of EAT-Lancet Diet. Available online: https://www.nutritioninsight.com/news/who-withdraws-endorsement-of-eat-lancet-diet.html (accessed on 25 June 2022).
- Rappresentanza Permanente d’Italia ONU—Ginevra Press Release on the Launch of the EAT-Lancet Commission Report on Healthy Diets from Sustainable Food Systems (Geneva, 28 March 2019). Available online: https://italiarappginevra.esteri.it/rappginevra/en/ambasciata/news/dall-ambasciata/2019/03/comunicato-stampa-sul-lancio-del.html (accessed on 25 June 2022).
- Zagmutt, F.; Pouzou, J.; Costard, S. Continuing the Dialogue on EAT-Lancet. Available online: https://www.epixanalytics.com/eat-lancet-criticism-correspondence.html (accessed on 25 June 2022).
- MacMillan, S. ILRI/Livestock Science Leader Named to EAT-Lancet 2.0 Commission. Available online: https://www.ilri.org/news/ilri-livestock-scientist-named-eat-lancet-20-commission (accessed on 25 June 2022).
- Knuppel, A.; Papier, K.; Key, T.J.; Travis, R.C. EAT-Lancet score and major health outcomes: The EPIC-Oxford study. Lancet 2019, 394, 213–214. [Google Scholar] [CrossRef]
- Cacau, L.T.; De Carli, E.; de Carvalho, A.M.; Lotufo, P.A.; Moreno, L.A.; Bensenor, I.M.; Marchioni, D.M. Development and Validation of an Index Based on EAT-Lancet Recommendations: The Planetary Health Diet Index. Nutrients 2021, 13, 1698. [Google Scholar] [CrossRef]
- Tepper, S.; Geva, D.; Shahar, D.R.; Shepon, A.; Mendelsohn, O.; Golan, M.; Adler, D.; Golan, R. The SHED Index: A tool for assessing a Sustainable HEalthy Diet. Eur. J. Nutr. 2021, 60, 3897–3909. [Google Scholar] [CrossRef]
- Shamah-Levy, T.; Gaona-Pineda, E.; Mundo-Rosas, V.; Méndez Gómez-Humarán, I.; Rodríguez-Ramírez, S. Association of a healthy and sustainable dietary index and overweight and obesity in Mexican adults. Salud Publica Mex. 2020, 62, 745–753. [Google Scholar] [CrossRef]
- Harray, A.J.; Boushey, C.J.; Pollard, C.M.; Delp, E.J.; Ahmad, Z.; Dhaliwal, S.S.; Mukhtar, S.A.; Kerr, D.A. A Novel Dietary Assessment Method to Measure a Healthy and Sustainable Diet Using the Mobile Food Record: Protocol and Methodology. Nutrients 2015, 7, 5375–5395. [Google Scholar] [CrossRef]
- Seconda, L.; Baudry, J.; Pointereau, P.; Lacour, C.; Langevin, B.; Hercberg, S.; Lairon, D.; Allès, B.; Kesse-Guyot, E. Development and validation of an individual sustainable diet index in the NutriNet-Santé study cohort. Br. J. Nutr. 2019, 121, 1166–1177. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean Diet and Survival in a Greek Population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [Green Version]
- Verger, E.O.; Mariotti, F.; Holmes, B.A.; Paineau, D.; Huneau, J.F. Evaluation of a diet quality index based on the probability of adequate nutrient intake (PANDiet) using national French and US dietary surveys. PLoS ONE 2012, 7, e42155. [Google Scholar] [CrossRef]
- Looman, M.; Feskens, E.J.M.; De Rijk, M.; Meijboom, S.; Biesbroek, S.; Temme, E.H.M.; De Vries, J.; Geelen, A. Development and evaluation of the Dutch Healthy Diet index 2015. Public Health Nutr. 2017, 20, 2289–2299. [Google Scholar] [CrossRef]
- Guenther, P.M.; Reedy, J.; Krebs-Smith, S.M.; Reeve, B.B. Evaluation of the Healthy Eating Index-2005. J. Am. Diet. Assoc. 2008, 108, 1854–1864. [Google Scholar] [CrossRef]
- Previdelli, Á.N.; De Andrade, S.C.; Pires, M.M.; Ferreira, S.R.G.; Fisberg, R.M.; Marchioni, D.M. A revised version of the Healthy Eating Index for the Brazilian population. Rev. Saude Publica 2011, 45, 794–798. [Google Scholar] [CrossRef]
- Garzillo, J.; Machado, P.; Louzada, M.; Levy, R. Pegadas dos Alimentos e das Preparações Culinárias Consumidos No Brasil; FSP/USP: São Paulo, Brazil, 2019. [Google Scholar]
- Cacau, L.T.; Benseñor, I.M.; Goulart, A.C.; Cardoso, L.O.; Lotufo, P.A.; Moreno, L.A.; Marchioni, D.M. Adherence to the Planetary Health Diet Index and Obesity Indicators in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Nutrients 2021, 13, 3691. [Google Scholar] [CrossRef]
- Marchioni, D.M.; Cacau, L.T.; De Carli, E.; de Carvalho, A.M.; Rulli, M.C. Low Adherence to the EAT-Lancet Sustainable Reference Diet in the Brazilian Population: Findings from the National Dietary Survey 2017–2018. Nutrients 2022, 14, 1187. [Google Scholar] [CrossRef] [PubMed]
- Shahar, D.; Shai, I.; Vardi, H.; Brener-Azrad, A.; Fraser, D. Development of a semi-quantitative Food Frequency Questionnaire (FFQ) to assess dietary intake of multiethnic populations. Eur. J. Epidemiol. 2003, 18, 855–861. [Google Scholar] [CrossRef]
- Kesse-Guyot, E.; Castetbon, K.; Touvier, M.; Hercberg, S.; Galan, P. Relative validity and reproducibility of a food frequency questionnaire designed for French adults. Ann. Nutr. Metab. 2010, 57, 153–162. [Google Scholar] [CrossRef]
- Waijers, P.M.C.M.; Feskens, E.J.M.; Ocké, M.C. A critical review of predefined diet quality scores. Br. J. Nutr. 2007, 97, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Steenson, S.; Buttriss, J.L. Healthier and more sustainable diets: What changes are needed in high-income countries? Nutr. Bull. 2021, 46, 279–309. [Google Scholar] [CrossRef]
- Springmann, M.; Spajic, L.; Clark, M.A.; Poore, J.; Herforth, A.; Webb, P.; Rayner, M.; Scarborough, P. The healthiness and sustainability of national and global food based dietary guidelines: Modelling study. BMJ 2020, 370, 2322. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, B.; Miller, L.; Heller, M.C.; Rose, D. The carbon footprint of dietary guidelines around the world: A seven country modeling study. Nutr. J. 2021, 20, 15. [Google Scholar] [CrossRef] [PubMed]
- Delabre, I.; Rodriguez, L.O.; Smallwood, J.M.; Scharlemann, J.P.W.; Alcamo, J.; Antonarakis, A.S.; Rowhani, P.; Hazell, R.J.; Aksnes, D.L.; Balvanera, P.; et al. Actions on sustainable food production and consumption for the post-2020 global biodiversity framework. Sci. Adv. 2021, 7, 8259. [Google Scholar] [CrossRef] [PubMed]
- Mazac, R.; Renwick, K.; Seed, B.; Black, J.L. An Approach for Integrating and Analyzing Sustainability in Food-Based Dietary Guidelines. Front. Sustain. Food Syst. 2021, 5, 84. [Google Scholar] [CrossRef]
- Smith, P.; Bustamante, M.; Ahammad, H.; Clark, H.; Ding, H.; Elsiddig, E.A.; Halberg, H.; Harper, R.; House, J.; Jafari, M.; et al. Agriculture, Forestry and Other Land Use (AFOLU). In Climate Mitigaton of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Pres: Cambridge, UK; New York, NY, USA, 2014; pp. 811–922. [Google Scholar]
- Harrison, M.R.; Palma, G.; Buendia, T.; Bueno-Tarodo, M.; Quell, D.; Hachem, F. A Scoping Review of Indicators for Sustainable Healthy Diets. Front. Sustain. Food Syst. 2022, 5, 536. [Google Scholar] [CrossRef]
- Perignon, M.; Vieux, F.; Soler, L.G.; Masset, G.; Darmon, N. Improving diet sustainability through evolution of food choices: Review of epidemiological studies on the environmental impact of diets. Nutr. Rev. 2017, 75, 2–17. [Google Scholar] [CrossRef]
- Eme, P.E.; Douwes, J.; Kim, N.; Foliaki, S.; Burlingame, B. Review of Methodologies for Assessing Sustainable Diets and Potential for Development of Harmonised Indicators. Int. J. Environ. Res. Public Health 2019, 16, 1184. [Google Scholar] [CrossRef]
- Tsekos, C.A.; Vassilakou, T. Food Choices, Morality, and the Role of Environmental Ethics. Philos. Study 2022, 12, 147–152. [Google Scholar] [CrossRef]
Index Name | Origin | Main Domains of the Index | Components | Dietary Intake Domains (Foods and Food Groups) | Environmental Impact | Based on the EAT-Lancet Reference Diet [7] | Score Range |
---|---|---|---|---|---|---|---|
EAT-Lancet diet score [77] | U.K. | Dietary intake | 14 food items, each providing a score of 0 or 1. | Whole grains, tubers, starchy vegetables (potatoes and cassava), vegetables, fruits, dairy foods, protein sources (meat, eggs, fish, legumes, nuts), added fats, added sugars. | Not accounted for | Yes | 0–14 |
WISH [13] | Global (The Netherlands, Italy, Brazil, USA) | Dietary intake | 13 components, each scored between 0 and 10. | Whole grains, vegetables, fruits, dairy foods, red meat, fish, eggs, chicken/poultry, legumes, nuts, unsaturated fats, saturated fats, added sugars. | GHGe, land use, eutrophication, acidification, scarcity weighted water | Yes | 0–130 |
PHDI [78] | Brazil | Dietary intake | 16 food items, each providing a maximum score of 10 or 5 and a minimum of 0. | Nuts and peanuts, legumes, fruits, total vegetables, whole grains, eggs, fish and seafood, tubers and potatoes, dairy, vegetable oils, dark green vegetables/total vegetable ratio, red and orange/total vegetable ratio, red meats, chicken and substitutes, animal fats, added sugars. | Not accounted for | Yes | 0–150 |
SHED Index [79] | Israel | Healthy eating (overall dietary consumption), drinking habits (intake of sweetened beverages and bottled water), sustainable eating (plant-based), socio-cultural aspects (organic foods, food consumerism), intake of ultra-processed and plant-based foods, environmental aspects (food waste, domestic waste streams) | 30 items, each with a different weight to the score. | The healthy eating domain includes consumption frequency questions regarding meat products, plant-based foods, fruit/vegetable variety, preference for plant-based over animal products, drinking water preference, low-salt products, ultra-processed products, low-sugar foods, sweetened beverages, sweets, salt intake, recycle food scraps with a composter, preferring foods made in the country. | Accounted for, although it does not quantify GHGe | Yes, and the MDS | 0–100 |
IDSS [80] | Mexico | Dietary intake | 13 food items, each providing a binary score of 0 or 1. | Whole-grain foods, tubers and starchy vegetables, vegetables, fruits, milk and by-products, beef/pork, chicken and other birds, eggs, fish and seafood, legumes/soybeans/tree nuts, saturated fats, unsaturated oils, added sugars. | Not accounted for | Yes | 0–13 |
HSDI [81] | Australia | NR | NR | NR | NR | No | NR |
SDI [82] | France | Environmental, nutritional, economic, and socio-cultural aspects of the diet | 4 components, providing a score of 1–5. | A nutritional sub-index reflects the adequacy between energy intake and needs. The PANDiet is included as a sub-index, assessing the adequacy in nutrient intake based on the French recommendations for 24 nutrients. | Accounted for | No | 4–20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexandropoulou, I.; Goulis, D.G.; Merou, T.; Vassilakou, T.; Bogdanos, D.P.; Grammatikopoulou, M.G. Basics of Sustainable Diets and Tools for Assessing Dietary Sustainability: A Primer for Researchers and Policy Actors. Healthcare 2022, 10, 1668. https://doi.org/10.3390/healthcare10091668
Alexandropoulou I, Goulis DG, Merou T, Vassilakou T, Bogdanos DP, Grammatikopoulou MG. Basics of Sustainable Diets and Tools for Assessing Dietary Sustainability: A Primer for Researchers and Policy Actors. Healthcare. 2022; 10(9):1668. https://doi.org/10.3390/healthcare10091668
Chicago/Turabian StyleAlexandropoulou, Ioanna, Dimitrios G. Goulis, Theodora Merou, Tonia Vassilakou, Dimitrios P. Bogdanos, and Maria G. Grammatikopoulou. 2022. "Basics of Sustainable Diets and Tools for Assessing Dietary Sustainability: A Primer for Researchers and Policy Actors" Healthcare 10, no. 9: 1668. https://doi.org/10.3390/healthcare10091668
APA StyleAlexandropoulou, I., Goulis, D. G., Merou, T., Vassilakou, T., Bogdanos, D. P., & Grammatikopoulou, M. G. (2022). Basics of Sustainable Diets and Tools for Assessing Dietary Sustainability: A Primer for Researchers and Policy Actors. Healthcare, 10(9), 1668. https://doi.org/10.3390/healthcare10091668