Endodontic Dentistry: Analysis of Dentinal Stress and Strain Development during Shaping of Curved Root Canals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Discretization of the Tooth Structure and Root Canal
2.2. Establishing the Working Premises
2.3. The Embedding of the Dental Root into the Bone Structure
3. Results
3.1. Dentinal Stress and Strain Occurring during Endodontic Instrumentation of a Curved Root Canal
3.2. Dentinal Stress and Strain Occurring during Endodontic Instrumentation of a Root Canal with an Apical Third Curvature of 25°
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prada, I.; Micó-Muñoz, P.; Giner-Lluesma, T.; Micó-Martínez, P.; Collado-Castellano, N.; Manzano-Saiz, A. Influence of microbiology on endodontic failure. Literature review. Med. Oral Patol. Oral Cir. Bucal 2019, 24, e364–e372. [Google Scholar] [CrossRef] [PubMed]
- Lo Giudice, G.; Cutroneo, G.; Centofanti, A.; Artemisia, A.; Bramanti, E.; Militi, A.; Rizzo, G.; Favaloro, A.; Irrera, A.; Lo Giudice, R.; et al. Dentin Morphology of Root Canal Surface: A Quantitative Evaluation Based on a Scanning Electronic Microscopy Study. BioMed Res. Int. 2015, 2015, 164065. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shen, Y.; Haapasalo, M. Root Canal Wall Dentin Structure in Uninstrumented but Cleaned Human Premolars: A Scanning Electron Microscopic Study. J. Endod. 2018, 44, 842–884. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.; Patel, A.; Chandak, M.; Kashikar, R. Minimally invasive endodontics a promising future concept: A review article. Int. J. Sci. Study 2017, 5, 245–251. [Google Scholar]
- García-Guerrero, C.; Parra-Junco, C.; Quijano-Guauque, S.; Molano, N.; Pineda, G.A.; Marín-Zuluaga, D.J. Vertical root fractures in endodontically-treated teeth: A retrospective analysis of possible risk factors. J. Investig. Clin. Dent. 2018, 9, e12273. [Google Scholar] [CrossRef]
- Soares, C.; Rodrigues, M.; Faria-E-Silva, A.; Santos-Filho, P.; Veríssimo, C.; Kim, H.-C.; Versluis, A. How biomechanics can affect the endodontic treated teeth and their restorative procedures? Braz. Oral Res. 2018, 32 (Suppl. 1), e76. [Google Scholar] [CrossRef]
- Sawant, K.; Pawar, A.M.; Banga, K.S.; Machado, R.; Karobari, M.I.; Marya, A.; Messina, P.; Scardina, G.A. Dentinal Microcracks after Root Canal Instrumentation Using Instruments Manufactured with Different NiTi Alloys and the SAF System: A Systematic Review. Appl. Sci. 2021, 11, 4984. [Google Scholar] [CrossRef]
- Imura, N.; Kato, A.S.; Hata, G.I.; Uemura, M.; Toda, T.; Weine, F. A comparison of the relative efficacies of four hand and rotary instrumentation techniques during endodontic retreatment. Int. Endod. J. 2000, 33, 361–366. [Google Scholar] [CrossRef]
- Wan, B.; Han Chung, B.; Zhang, M.R.; Kim, S.A.; Swain, M.; Peters, O.A.; Krishnan, U.; Moule, A. The Effect of Varying Occlusal Loading Conditions on Stress Distribution in Roots of Sound and Instrumented Molar Teeth: A Finite Element Analysis. J. Endod. 2022, 48, 893–901. [Google Scholar] [CrossRef]
- Dane, A.; Capar, I.D.; Arslan, H.; Akçay, M.; Uysal, B. Effect of Different Torque Settings on Crack Formation in Root Dentin. J. Endod. 2016, 42, 304–306. [Google Scholar] [CrossRef]
- Solomonov, M.; Kim, H.-C.; Hadad, A.; Levy, D.H.; Itzhak, J.B.; Levinson, O.; Azizi, H. Age-dependent root canal instrumentation techniques: A comprehensive narrative review. Restor. Dent. Endod. 2020, 45, e21. [Google Scholar] [CrossRef] [PubMed]
- Shemesh, H.; Lindtner, T.; Portoles, C.A.; Zaslansky, P. Dehydration Induces Cracking in Root Dentin Irrespective of Instrumentation: A Two-dimensional and Three-dimensional Study. J. Endod. 2018, 44, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Barcellos, D.P.D.C.; Farina, A.P.; Barcellos, R. Effect of a new irrigant solution containing glycolic acid on smear layer removal and chemical/mechanical properties of dentin. Sci. Rep. 2020, 10, 7313. [Google Scholar] [CrossRef]
- Uzunoglu-Özyürek, E.; Küçükkaya, E.S.; Karahan, S. Effect of root canal sealers on the fracture resistance of endodontically treated teeth: A systematic review of in vitro studies. Clin. Oral Investig. 2018, 22, 2475–2485. [Google Scholar] [CrossRef]
- Shinno, Y.; Ishimoto, T.; Saito, M.; Uemura, R.; Arino, M.; Marumo, K.; Nakano, T.; Hayashi, M. Comprehensive analyses of how tubule occlusion and advanced glycation end-products diminish strength of aged dentin. Sci. Rep. 2016, 6, 19849. [Google Scholar] [CrossRef]
- Yan, W.; Montoya, C.; Øilo, M.; Ossa, A.; Paranjpe, A.; Zhang, H.; Arola, D. Reduction in Fracture Resistance of the Root with Aging. J. Endod. 2017, 43, 1494–1498. [Google Scholar] [CrossRef]
- Yan, W.; Montoya, C.; Øilo, M.; Ossa, A.; Paranjpe, A.; Zhang, H.; Arola, D.D. Contribution of Root Canal Treatment to the Fracture Resistance of Dentin. J. Endod. 2019, 45, 189–193. [Google Scholar] [CrossRef]
- Pradeepkumar, A.R.; Shemesh, H.; Chang, J.W.; Bhowmik, A.; Sibi, S.; Gopikrishna, V.; Lakshmi-Narayanan, L.; Kishen, A. Preexisting dentinal microcracks in nonendodontically treated teeth: An ex vivo micro-computed tomographic analysis. J. Endod. 2017, 43, 896–900. [Google Scholar] [CrossRef]
- Argunova, T.S.; Gudkina, Z.V.; Gutkin, M.Y. A Model of Microcrack Development in Human Tooth Dentin Using Data of Microtomography. Tech. Phys. Lett. 2020, 46, 505–509. [Google Scholar] [CrossRef]
- Tawil, P.Z.; Arnarsdottir, E.K.; Coelho, M.S. Root-originating dentinal defects: Methodological aspects and clinical relevance. Evid.-Based Endod. 2017, 2, 8. [Google Scholar] [CrossRef]
- Miguéns-Vila, R.; Martín-Biedma, B.; Varela-Patiño, P.; Ruíz-Piñón, M.; Castelo-Baz, P. Vertical Root Fracture initiation in curved roots after root canal preparation: A dentinal micro-crack analysis with LED transillumination. J. Clin. Exp. Dent. 2017, 9, e1218-23. [Google Scholar] [CrossRef]
- Kfir, A.; Elkes, D.; Pawar, A.; Weissman, A.; Tsesis, I. Incidence of microcracks in maxillary first premolars after instrumentation with three different mechanized file systems: A comparative ex vivo study. Clin. Oral Investig. 2017, 21, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Li, S.H.; Lu, Y.; Song, D.; Zhou, X.; Zheng, Q.H.; Gao, Y.; Huang, D.M. Occurrence of Dentinal Microcracks in Severely Curved Root Canals with ProTaper Universal, WaveOne, and ProTaper Next File Systems. J. Endod. 2015, 41, 1875–1879. [Google Scholar] [CrossRef]
- Kim, H.C.; Lee, M.H.; Yum, J.; Versluis, A.; Lee, C.J.; Kim, B.M. Potential relationship between design of nickel-titanium rotary instruments and vertical root fracture. J. Endod. 2010, 36, 1195–1199. [Google Scholar] [CrossRef] [PubMed]
- Awawdeh, L.; Hemaidat, K.; Al-Omari, W. Higher Maximal Occlusal Bite Force in Endodontically Treated Teeth Versus Vital Contralateral Counterparts. J. Endod. 2017, 43, 871–875. [Google Scholar] [CrossRef] [PubMed]
- Bingbing, A.; Yuanzhi, X.; Dongsheng, Z. Crack initiation and propagation in composite microstructure of dentin. Int. J. Solids Struct. 2017, 110–111, 36–43. [Google Scholar]
- Matsushita-Tokugawa, M.; Miura, J.; Iwami, Y.; Sakagami, T.; Izumi, Y.; Mori, N.; Ebisu, S. Detection of dentinal microcracks using infrared thermography. J. Endod. 2013, 39, 88–91. [Google Scholar] [CrossRef]
- Abou El Nasr, H.M.; Abd El Kader, K.G. Dentinal damage and fracture resistance of oval roots prepared with single-file systems using different kinematics. J. Endod. 2014, 40, 849–851. [Google Scholar] [CrossRef]
- Kwak, S.W.; Shen, Y.; Liu, H.; Kim, H.-C.; Haapasalo, M. Torque Generation of the Endodontic Instruments: A Narrative Review. Materials 2022, 15, 664. [Google Scholar] [CrossRef]
- Das, D.; Barai, S.; Kumar, R.; Bhattacharyya, S.; Maity, A.B.; Shankarappa, P. Comparative evaluation of incidence of dentinal defects after root canal preparation using hand, rotary, and reciprocating files: An ex vivo study. J. Int. Oral Health 2022, 14, 78–85. [Google Scholar] [CrossRef]
- Zuolo, M.L.; De-Deus, G.; Belladonna, F.G.; Silva, E.J.; Lopes, R.T.; Souza, E.M.; Zaia, A.A. Micro-computed tomography assessment of dentinal microcracks after root canal preparation with TRUShape and self-adjusting file systems. J. Endod. 2017, 43, 619–622. [Google Scholar] [CrossRef] [PubMed]
- Saber, S.E.; Schafer, E. Incidence of dentinal defects after preparation of severely curved root canals using the Reciproc single-file system with and without prior creation of a glide path. Int. Endod. J. 2016, 49, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.K.; Li, S.; Park, H.S. Eighty Years of the Finite Element Method: Birth, Evolution, and Future. Arch. Comput. Methods Eng. 2022, 29, 4431–4453. [Google Scholar] [CrossRef]
- Zhang, M.; Gong, H. Translation of engineering to medicine: A focus on finite element analysis. J. Orthop. Transl. 2019, 27, 1–2. [Google Scholar] [CrossRef]
- Magomedov, I.; Khaliev, M.; Elmurzaev, A. Application of Finite Element Analysis in medicine. J. Phys. Conf. Ser. 2020, 1679, 022057. [Google Scholar] [CrossRef]
- Walker, J.C.; Ratcliffe, M.B.; Zhang, P.; Wallace, A.W.; Fata, B.; Hsu, E.W.; Guccione, J.M. MRI-based finite-element analysis of left ventricular aneurysm. Am. J. Physiol.-Heart Circ. Physiol. 2005, 289, H692–H700. [Google Scholar] [CrossRef]
- Boutroy, S.; Van Rietbergen, B.; Sornay-Rendu, E.; Munoz, F.; Bouxsein, M.L.; Delmas, P.D. Finite element analysis based on in vivo HR-pQCT images of the distal radius is associated with wrist fracture in postmenopausal women. J. Bone Miner. Res. 2008, 23, 392–399. [Google Scholar] [CrossRef]
- Omasta, M.; Paloušek, D.; Návrat, T.; Rosický, J. Finite element analysis for the evaluation of the structural behaviour, of a prosthesis for trans-tibial amputees. Med. Eng. Phys. 2012, 34, 38–45. [Google Scholar] [CrossRef]
- Szücs, A.; Bujtár, P.; Sándor, G.K.; Barabás, J. Finite element analysis of the human mandible to assess the effect of removing an impacted third molar. J. Can. Dent. Assoc. 2010, 76, a72. [Google Scholar]
- Geng, J.P.; Tan, K.B.; Liu, G.R. Application of finite element analysis in implant dentistry: A review of the literature. J. Prosthet. Dent. 2001, 85, 585–598. [Google Scholar] [CrossRef]
- Bandela, V.; Saraswathi, K. Finite Element Analysis and Its Applications in Dentistry. Finite Element Methods and Their Applications; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Chien, P.; Walsh, L.; Peters, O. Finite element analysis of rotary nickel-titanium endodontic instruments: A critical review of the methodology. Eur. J. Oral Sci. 2021, 129, e12802. [Google Scholar] [CrossRef]
- Narang, A.; Saurav, K.; Nagle, D.; Bhardwaj, A.; Katoch, V.; Khandeparker, R.V. Finite element method and it’s theoretical basis in endodontics: A review. J. Int. Oral Health 2015, 7, 144–147. [Google Scholar]
- Roda-Casanova, V.; Zubizarreta-Macho, Á.; Sanchez-Marin, F.; Alonso Ezpeleta, Ó.; Albaladejo Martínez, A.; Galparsoro Catalán, A. Computerized generation and finite element stress analysis of endodontic rotary files. Appl. Sci. 2021, 11, 4329. [Google Scholar] [CrossRef]
- Peters, O.A.; Peters, C.I.; Schönenberger, K.; Barbakow, F. ProTaper rotary root canal preparation: Assessment of torque and force in relation to canal anatomy. Int. Endod. J. 2003, 6, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Deari, S.; Zehnder, M.; Al-Jadaa, A. Effect of dentine cutting efficiency on the lateral force created by torque-controlled rotary instruments. Int. Endod. J. 2020, 53, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.; Bindra, S.S.; Singh, G.; Kaur, H. Endodontic rotary systems-a review. J. Adv. Med. Dent. Sci. Res. 2016, 4, 62. [Google Scholar] [CrossRef]
- Rui, H.; Jun Ni, J. Design improvement and failure reduction of endodontic files through finite element analysis: Application to V-Taper file designs. J. Endod. 2010, 36, 1552–1557. [Google Scholar]
- Priya, N.T.; Chandrasekhar, V.; Anita, S.; Tummala, M.; Raj, T.B.; Badami, V.; Kumar, P.; Soujanya, E. Dentinal microcracks after root canal preparation- a comparative evaluation with hand, rotary and reciprocating instrumentation. J. Clin. Diagn. Res. 2014, 8, ZC70–ZC72. [Google Scholar] [CrossRef]
- Andrejovská, J.; Petruš, O.; Medveď, D.; Vojtko, M.; Riznič, M.; Kizek, P.; Dusza, J. Hardness and indentation modulus of human enamel and dentin. Surf. Interface Anal. 2023, 55, 270–278. [Google Scholar] [CrossRef]
- Machoy, M.; Szyszka-Sommerfeld, L.; Duda, P.; Wawrzyk, A.; Woźniak, K.; Wilczyński, S. Impact of the Enamel Cleaning Procedure during Debonding on Endodontium Temperature: In Vitro Tests. Appl. Sci. 2020, 10, 8672. [Google Scholar] [CrossRef]
- Gharbi, H.; Wenlong, W.; Giraudet, C.; Allain, J.-M.; Vennat, E. Measure of the hygroscopic expansion of human dentin. arXiv 2022, arXiv:2211.12273. [Google Scholar]
- Sharma, S.; Londhe, S.M.; Hegde, M.N.; Sadananda, V. Are Bioceramics the Dernier Cri in the Management of Stage 4 Developed Root? A Finite Element Analysis. J. Contemp. Dent. Pract. 2020, 21, 961–969. [Google Scholar] [PubMed]
- Kucher, M.; Dannemann, M.; Modler, N.; Haim, D.; Hannig, C.; Weber, M.T. Continuous Measurement of Three-Dimensional Root Canal Curvature Using Cone-Beam Computed and Micro-Computed Tomography: A Comparative Study. Dent. J. 2020, 8, 16. [Google Scholar] [CrossRef]
- Kucher, M.; Dannemann, M.; Modler, N.; Böhm, R.; Hannig, C.; Kühne, M.-T. Determination of a Representative and 3D-Printable Root Canal Geometry for Endodontic Investigations and Pre-Clinical Endodontic Training—An Ex Vivo Study. Dent. J. 2023, 11, 133. [Google Scholar] [CrossRef] [PubMed]
- El Ayouti, A.; Hülber, J.M.; Judenhofer, M.; Connert, T.; Mannheim, J.G.; Löst, C.; Pichler, B.; von Ohle, C. Apical constriction: Location and dimensions in molars-a micro-computed tomography study. J. Endod. 2014, 40, 1095–1099. [Google Scholar] [CrossRef]
- Patnana, A.K.; Chugh, A. Endodontic Management of Curved Canals with ProTaper Next: A Case Series. Contemp. Clin. Dent. 2018, 9 (Suppl. 1), S168–S172. [Google Scholar] [CrossRef]
- Mehta, S.D.; Sunil, M.; Chahat, B. Latrogenic Complications Arising from Cleaning and Shaping–A Review. Int. J. Health Sci. 2021, 5, 56–62. [Google Scholar]
- Faraj, B.M. Estimation Accuracy of Root Canal Curvatures from Different Dental Diagnostic Imaging Techniques: An In Vitro Experimental Study. BioMed Res. Int. 2021, 2021, 6699635. [Google Scholar] [CrossRef]
- Peters, O.A. Current challenges and concepts in the preparation of root canal systems: A review. J. Endod. 2004, 30, 559–567. [Google Scholar] [CrossRef]
- Amza, O.E.; Nitoi, D.; Dimitriu, B.; Suciu, I.; Chirila, M. Evaluation by Finite Element Analysis of Dentinal Stress and Strain During Endodontic Instrumentation of Straight Root Canals. Rom. Rep. Phys. 2022, 72, 608. [Google Scholar]
- Lee, M.H.; Versluis, A.; Kim, B.M.; Lee, C.J.; Hur, B.; Kim, H.C. Correlation between experimental cyclic fatigue resistance and numerical stress analysis for nickel-titanium rotary files. J. Endod. 2011, 37, 1152–1157. [Google Scholar] [CrossRef] [PubMed]
- Basheer Ahamed, S.B.; Vanajassun, P.P.; Rajkumar, K.; Mahalaxmi, S. Comparative evaluation of stress distribution in experimentally designed nickel-titanium rotary files with varying cross sections: A finite element analysis. J. Endod. 2018, 44, 654–658. [Google Scholar] [CrossRef] [PubMed]
- Versluis, A.; Messer, H.H.; Pintado, M.R. Changes in compaction stress distributions in roots resulting from canal preparation. Int. Endod. J. 2002, 39, 931–939. [Google Scholar] [CrossRef] [PubMed]
- Prati, C.; Tribst, J.P.M.; Dal Piva, A.M.D.O.; Borges, A.L.S.; Ventre, M.; Zamparini, F.; Ausiello, P. 3D finite element analysis of rotary instruments in root canal dentine with different elastic moduli. Appl. Sci. 2021, 11, 2547. [Google Scholar] [CrossRef]
- Nouri, H.; Amini, K.; Jahromi, M.Z. Comparison of full rotation and reciprocating movements in regaining apical patency during endodontic retreatment. Dent. Res. J. 2021, 18, 85. [Google Scholar]
- Rathi, A.; Chowdhry, P.; Kaushik, M.; Reddy, P.; Roshni Mehra, N. Effect of different periodontal ligament simulating materials on the incidence of dentinal cracks during root canal preparation. J. Dent. Res. Dent. Clin. Dent. Prospect. 2018, 12, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Tomer Anil, K.; Saini, N.; Jain, S.; Sabharwal, G.; Guin, A. Endodontic postoperative flare up: A review. Int. J. Appl. Dent. Sci. 2022, 8, 285–292. [Google Scholar] [CrossRef]
Properties | Value |
---|---|
Elastic modulus—Young’s modulus | 19.794 ± 0.93 GPa [50] |
Hardness | 0.65 ± 0.52 GPa [50] |
Density | 2.12 ± 0.1874 g/cm3 [51] |
Poisson’s ratio | 0.29–0.31 [52,53] |
Root Model | Force Applied | Stress (Tensile Stress) | Strain (Deformation) |
---|---|---|---|
1. Root canal with uniform curvature | 5 N | 0.09 × 108 N/m2 | 0.05 × 10−4 |
2. Root canal with 25° curvature in the apical third | 2 N | 0.14 × 108 N/m2 | 0.08 × 10−4 |
7 N | 0.49 × 108 N/m2 | 0.3 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iosif, L.; Dimitriu, B.; Niţoi, D.F.; Amza, O. Endodontic Dentistry: Analysis of Dentinal Stress and Strain Development during Shaping of Curved Root Canals. Healthcare 2023, 11, 2918. https://doi.org/10.3390/healthcare11222918
Iosif L, Dimitriu B, Niţoi DF, Amza O. Endodontic Dentistry: Analysis of Dentinal Stress and Strain Development during Shaping of Curved Root Canals. Healthcare. 2023; 11(22):2918. https://doi.org/10.3390/healthcare11222918
Chicago/Turabian StyleIosif, Laura, Bogdan Dimitriu, Dan Florin Niţoi, and Oana Amza. 2023. "Endodontic Dentistry: Analysis of Dentinal Stress and Strain Development during Shaping of Curved Root Canals" Healthcare 11, no. 22: 2918. https://doi.org/10.3390/healthcare11222918
APA StyleIosif, L., Dimitriu, B., Niţoi, D. F., & Amza, O. (2023). Endodontic Dentistry: Analysis of Dentinal Stress and Strain Development during Shaping of Curved Root Canals. Healthcare, 11(22), 2918. https://doi.org/10.3390/healthcare11222918