Identification of the Best Predictive Model for Mortality in Outborn Neonates—Retrospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Group and Subgroup Analysis
3.2. SNS Score to Predict Mortality
3.3. Use of an Improved SNS Score for Predicting Mortality
3.4. Evaluation of Mortality Risk with MSNS-AT Score
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Standards for Improving Quality of Maternal and Newborn Care in Health Facilities; World Health Organisation: Geneva, Switzerland, 2016; Available online: http://www.who.int (accessed on 3 September 2023).
- GBD 2019 Under-5 Mortality Collaborators. Global, regional, and national progress towards Sustainable Development Goal 3.2 for neonatal and child health: All-cause and cause-specific mortality findings from the Global Burden of Disease Study 2019. Lancet 2021, 398, 870–905. [Google Scholar] [CrossRef]
- Qu, W.; Shen, Y.; Qi, Y.; Jiang, M.; Zheng, X.; Zhang, J.; Wu, D.; He, W.; Geng, W.; Hei, M. Comparison of four neonatal transport scoring methods in the prediction of mortality risk in full-term, out-born infants: A single-center retrospective cohort study. Eur. J. Pediatr. 2022, 181, 3005–3011. [Google Scholar] [CrossRef]
- Neonatal Mortality-UNICEF Data. Available online: https://data.unicef.org/topic/child-survival/neonatal-mortality/ (accessed on 30 August 2023).
- Meshram, R.M.; Nimsarkar, R.A.; Nautiyal, A.P. Role of modified sick neonatal score in predicting the neonatal mortality at limited-resource setting of central India. J. Clin. Neonatol. 2023, 12, 1–6. [Google Scholar] [CrossRef]
- Cavallin, F.; Contin, A.; Alfeu, N.; Macmillian, B.; Seni, A.H.A.; Cebola, B.R.; Calgaro, S.; Putoto, G.; Trevisanuto, D. Prognostic role of TOPS in ambulance-transferred neonates in a low-resource setting: A retrospective observational study. BMC Pregnancy Childbirth 2022, 22, 726. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Pediatrics; Committee on Fetus and Newborn. Guidelines for Perinatal Care, 7th ed.; American College of Obstetricians and Gynecologists, Ed.; Committee on Obstetric Practice: Washington, DC, USA, 2012; pp. 1–19. [Google Scholar]
- Chang, A.S.; Berry, A.; Jones, L.J.; Sivasangari, S. Specialist teams for neonatal transport to neonatal intensive care units for prevention of morbidity and mortality. Cochrane Database Syst. Rev. 2015, 2015, CD007485. [Google Scholar] [CrossRef] [PubMed]
- Chheda, A.; Khadse, S.; Valvi, C.; Kulkarni, R.; Hiremath, A. Importance of Temperature, Oxygen Saturation, Perfusion, Sugar (TOPS) Parameters and the Concept of TOPS Score for Neonatal Transport in India—A Pilot Project. Pediatr. Oncall J. 2018, 15, 69–72. [Google Scholar] [CrossRef]
- Amer, R.; Moddemann, D.; Seshia, M.; Alvaro, R.; Synnes, A.; Lee, K.S.; Lee, S.K.; Shah, P.S.; Canadian Neonatal Network and Canadian Neonatal Follow-up Network Investigators. Neurodevelopmental Outcomes of Infants Born at <29 Weeks of Gestation Admitted to Canadian Neonatal Intensive Care Units Based on Location of Birth. J. Pediatr. 2018, 196, 31–37.e1. [Google Scholar] [PubMed]
- Whyte, H.E.; Jefferies, A.L.; Canadian Paediatric Society, Fetus and Newborn Committee. The interfacility transport of critically ill newborns. Paediatr. Child Health 2015, 20, 265–275. [Google Scholar] [CrossRef]
- Chen, W.H.; Su, C.H.; Lin, L.C.; Lin, H.C.; Lin, Y.J.; Hsieh, H.Y.; Sheen, J.M.; Lee, C.T. Neonatal mortality among outborn versus inborn babies. Pediatr. Neonatol. 2021, 62, 412–418. [Google Scholar] [CrossRef]
- Mohan, K.R.; Kumar, R. Study of indications, complications and outcomes of neonatal transport by a skilled team. Int. J. Contemp. Pediatr. 2019, 6, 2402–2405. [Google Scholar] [CrossRef]
- Rathod, D.; Adhisivam, B.; Bhat, B.V. Transport of sick neonates to a tertiary care hospital, South India: Condition at arrival and outcome. Trop. Dr. 2015, 45, 96–99. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, E.A.; Colaizy, T.T.; Brumbaugh, J.E.; Cress, G.A.; Johnson, K.J.; Klein, J.M.; Bell, E.F. Body temperatures of very low birth weight infants on admission to a neonatal intensive care unit. J. Matern. Fetal Neonatal Med. 2019, 32, 2763–2766. [Google Scholar] [CrossRef] [PubMed]
- Tay, V.Y.; Bolisetty, S.; Bajuk, B.; Lui, K.; Smyth, J.; The New South Wales and the Australian Capital Territory Neonatal Intensive Care Units’ Data Collection. Admission temperature and hospital outcomes in extremely preterm infants. J. Paediatr. Child Health 2019, 55, 216–223. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Standards for Improving Quality of Care For Small and Sick Newborns in Health Facilities; World Health Organization: Geneva, Switzerland, 2020; Available online: https://iris.who.int/bitstream/handle/10665/334126/9789240010765-eng.pdf?sequence=1 (accessed on 3 September 2023).
- Stroud, M.H.; Trautman, M.S.; Meyer, K.; Moss, M.M.; Schwartz, H.P.; Bigham, M.T.; Tsarouhas, N.; Douglas, W.P.; Romito, J.; Hauft, S.; et al. Pediatric and neonatal interfacility transport: Results from a national consensus conference. Pediatrics 2013, 132, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Das, R.R.; Sankar, J.; Sankar, M.J. Sick Neonate Score: Better than Others in Resource Restricted Settings? Indian J. Pediatr. 2016, 83, 97–98. [Google Scholar] [CrossRef]
- Ravikumar, S.P.; Kaliyan, A.; Jeganathan, S.; Manjunathan, R. Post-transport TOPS score as a predictive marker of mortality among transported neonates and its comparative analysis with SNAP-II PE. Heliyon 2022, 8, e10165. [Google Scholar] [CrossRef] [PubMed]
- Chellani, H.; Arya, S. Scoring Tools to Predict Neonatal Mortality: Where Do We Stand Today? Indian J. Pediatr. 2023, 90, 323. [Google Scholar] [CrossRef]
- Garg, B.; Sharma, D.; Farahbakhsh, N. Assessment of sickness severity of illness in neonates: Review of various neonatal illness scoring systems. J. Matern. Fetal Neonatal Med. 2018, 31, 1373–1380. [Google Scholar] [CrossRef]
- Lee, K.S. Neonatal transport metrics and quality improvement in a regional transport service. Transl. Pediatr. 2019, 8, 233–245. [Google Scholar] [CrossRef]
- Adhisivam, B. Clinical Scores for Sick Neonates. Indian J. Pediatr. 2023, 90, 324–325. [Google Scholar] [CrossRef]
- Dorling, J.S.; Field, D.J.; Manktelow, B. Neonatal disease severity scoring systems. Arch. Dis. Child Fetal Neonatal Ed. 2005, 90, F11–F16. [Google Scholar] [CrossRef]
- Padar, C.; Rajan, A.; Shriyan, A.; Oommen, R.A. Modified Sick Neonatal Score and Delta: Modified Sick Neonatal Scores As Prognostic Indicators in Neonatal Intensive Care Units. Cureus 2022, 14, e28414. [Google Scholar] [CrossRef] [PubMed]
- Reddy, P.; Gowda, B.R.A. A Study of the Prediction of Mortality in a Tertiary Care Hospital Using the Modified Sick Neonatal Score (MSNS): An Observational Cross-Sectional Study. Cureus 2023, 15, e38484. [Google Scholar] [CrossRef] [PubMed]
- Shivaramakrishnababji, N.; Rajesh, C.; Mekala, A.; Siddani, B.R. Validation of modified sick neonatal score, a simple clinical score for assessment of severity of illness and outcome in new-borns for resource poor settings. Int. J. Contemp. Pediatr. 2022, 9, 53–57. [Google Scholar]
- Agrawal, J. Sick Neonate Score: Role in Predicting Neonatal Mortality. Clin. Mother Child Health 2020, 17, 355. [Google Scholar]
- Rathod, D.; Adhisivam, B.; Bhat, B.V. Sick Neonate Score—A Simple Clinical Score for Predicting Mortality of Sick Neonates in Resource Restricted Settings. Indian J. Pediatr. 2016, 83, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Ordinul Ministrului Sănătăţiişi Familiei nr. 910 Privind Criteriile de Ierarhizare a Secţiilor de Spital de Specialitate Obstetrică, Ginecologie şi Neonatologie. Monitorul Oficial al României, 18 November 2002.
- Ordinului Ministrului Sănătăţii nr. 323/18.04.2011 Privind Aprobarea Metodologiei şi a Criteriilor Minime Obligatorii Pentru Clasificarea Spitalelorîn Funcţie de Competenţă. Monitorul Oficial al României, 19 April 2011.
- Hermansen, M.C.; Hasan, S.; Hoppin, J.; Cunningham, M.D. A validation of a scoring system to evaluate the condition of transported very-low-birthweight neonates. Am. J. Perinatol. 1988, 5, 74–78. [Google Scholar] [CrossRef] [PubMed]
- WHO. Newborn Mortality. 2021. Available online: https://www.who.int/news-room/factsheets/detail/levels-and-trends-in-child-mortality-report-2021 (accessed on 12 August 2023).
- Hirata, K.; Ueda, K.; Wada, K.; Ikehara, S.; Tanigawa, K.; Kimura, T.; Ozono, K.; Iso, H.; Japan Environment and Children’s Study Group. Long-term outcomes of children with neonatal transfer: The Japan Environment and Children’s Study. Eur. J. Pediatr. 2022, 181, 2501–2511. [Google Scholar] [CrossRef] [PubMed]
- Ashokcoomar, P.; Bhagwan, R. Towards a safer and more efficient neonatal transfer system in South Africa: A qualitative inquiry with ALS paramedics. Australas. J. Paramed. 2021, 18, 1–9. [Google Scholar] [CrossRef]
- Dempsey, E.M.; Barrington, K.J. Evaluation and treatment of hypotension in the preterm infant. Clin. Perinatol. 2009, 36, 75–85. [Google Scholar] [CrossRef]
- Bivoleanu, A.; Avasiloaiei, A.; Voicilă, C.; Stamatin, M.; Stoicescu, S.M. Echilibrarea Nou-născutului Pentru Transport și Transportul Neonatal, Aprobat Prin Ordinul Ministerului Sănătății 1232/2.08.2011. Monitorul Oficial al României, 18 August 2011. [Google Scholar]
- Ordinul Ministrului Sănătăţii nr. 417 Privind Înfiinţarea Unităţii de Transport Neonatal Specializat. Monitorul Oficial al României, 21 April 2004.
- Odinul Ministrului Sănătății Privind Aprobarea Metodologiei şi Criteriilor Minime Obligatorii de Ierarhizare a Structurilor de Obstetrică-Ginecologie, Neonatologie şi Pediatrie Care Asigură Servicii de Terapie Intensivă Pentru Nou-născuți și Pentru Modificarea și Completarea Ordinului Ministrului Sănătăţii nr. 323/2011 Privind Aprobarea Metodologiei şi a Criteriilor Minime Obligatorii Pentru Clasificarea Spitalelor în Funcţie de Competenţă. Available online: https://www.ms.ro/ro/transparenta-decizionala/acte-normative-in-transparenta/ordin-privind-aprobarea-metodologiei-%C5%9Fi-criteriilor-minime-obligatorii-de-ierarhizare-a-structurilor-de-obstetric%C4%83-ginecologie-neonatologie-%C5%9Fi-pediatrie-care-asigur%C4%83-servicii-de-terapie-intensiv%C4%83-pentru-nou-n%C4%83scu%C8%9Bi/ (accessed on 25 September 2023).
- Broughton, S.J.; Berry, A.; Jacobe, S.; Cheeseman, P.; Tarnow-Mordi, W.O.; Greenough, A.; Neonatal Intensive Care Unit Study Group. The mortality index for neonatal transportation score: A new mortality prediction model for retrieved neonates. Pediatrics 2004, 114, e424–e428. [Google Scholar] [CrossRef]
- Mathur, N.B.; Arora, D. Role of TOPS (a simplified assessment of neonatal acute physiology) in predicting mortality in transported neonates. Acta Paediatr. 2007, 96, 172–175. [Google Scholar] [CrossRef]
- Dorling, J.S.; Field, D.J. Value and validity of neonatal disease severity scoring systems. Arch. Dis. Child Fetal Neonatal Ed. 2008, 93, F80–F82. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.; Mondal, R.; Chatterjee, K.; Samanta, M.; Hazra, A.; Sabui, T.K. Extended Sick Neonate Score (ESNS) for Clinical Assessment and Mortality Prediction in Sick Newborns referred to Tertiary Care. Indian Pediatr. 2019, 56, 130–133. [Google Scholar] [CrossRef]
- Dammann, O.; Shah, B.; Naples, M.; Bednarek, F.; Zupancic, J.; Allred, E.N.; Leviton, A.; ELGAN Study Investigators. Interinstitutional variation in prediction of death by SNAP-II and SNAPPE-II among extremely preterm infants. Pediatrics 2009, 124, e1001–e1006. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J.; Hey, E.; Richmond, S. The PREM score: A graphical tool for predicting survival in very preterm births. Arch. Dis. Child Fetal Neonatal Ed. 2010, 95, F14–F19. [Google Scholar] [CrossRef] [PubMed]
- Helenius, K.; Longford, N.; Lehtonen, L.; Modi, N.; Gale, C.; Neonatal Data Analysis Unit and the United Kingdom Neonatal Collaborative. Association of early postnatal transfer and birth outside a tertiary hospital with mortality and severe brain injury in extremely preterm infants: Observational cohort study with propensity score matching. BMJ 2019, 367, l5678. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.L.; Mara, K.C.; Weaver, A.L.; Clark, R.H.; Carey, W.A. Outcomes of outborn extremely preterm neonates admitted to a NICU with respiratory distress. Arch. Dis. Child Fetal Neonatal Ed. 2020, 105, 33–40. [Google Scholar] [CrossRef]
- Shipley, L.; Gyorkos, T.; Dorling, J.; Tata, L.J.; Szatkowski, L.; Sharkey, D. Risk of Severe Intraventricular Hemorrhage in the First Week of Life in Preterm Infants Transported Before 72 Hours of Age. Pediatr. Crit. Care Med. 2019, 20, 638–644. [Google Scholar] [CrossRef]
- Jensen, E.A.; Lorch, S.A. Effects of a Birth Hospital’s Neonatal Intensive Care Unit Level and Annual Volume of Very Low-Birth-Weight Infant Deliveries on Morbidity and Mortality. JAMA Pediatr. 2015, 169, e151906. [Google Scholar] [CrossRef]
- Gupta, N.; Shipley, L.; Goel, N.; Browning Carmo, K.; Leslie, A.; Sharkey, D. Neurocritical care of high-risk infants during inter-hospital transport. Acta Paediatr. 2019, 108, 1965–1971. [Google Scholar] [CrossRef]
- Redpath, S.; Shah, P.S.; Moore, G.P.; Yang, J.; Toye, J.; Perreault, T.; Lee, K.S.; Canadian Neonatal Transport Network and Canadian Neonatal Network Investigators. Do transport factors increase the risk of severe brain injury in outborn infants <33 weeks gestational age? J. Perinatol. 2020, 40, 385–393. [Google Scholar] [PubMed]
- Behera, B.; Lal Meena, B. Outcomes of Sick Neonates Transported to a Tertiary Care Hospital by a Trained Team, in Northern India. Indian J. Neonatal Med. Res. 2021, 9, PO10–PO15. [Google Scholar] [CrossRef]
- Harsha, S.S.; Archana, B.R. SNAPPE-II (Score for Neonatal Acute Physiology with Perinatal Extension-II) in Predicting Mortality and Morbidity in NICU. J. Clin. Diagn. Res. 2015, 9, SC10–SC12. [Google Scholar] [CrossRef] [PubMed]
- Morse, S.; Groer, M.; Shelton, M.M.; Maguire, D.; Ashmeade, T. A Systematic Review: The Utility of the Revised Version of the Score for Neonatal Acute Physiology Among Critically Ill Neonates. J. Perinat. Neonatal Nurs. 2015, 29, 315–344. [Google Scholar] [CrossRef]
- Fleisher, B.E.; Murthy, L.; Lee, S.; Constantinou, J.C.; Benitz, W.E.; Stevenson, D.K. Neonatal severity of illness scoring systems: A comparison. Clin. Pediatr. 1997, 36, 223–227. [Google Scholar] [CrossRef]
- Mansoor, K.P.; Ravikiran, S.R.; Kulkarni, V.; Baliga, K.; Rao, S.; Bhat, K.G.; Baliga, B.S.; Kamath, N. Modified Sick Neonatal Score (MSNS): A Novel Neonatal Disease Severity Scoring System for Resource-Limited Settings. Crit. Care Res. Pract. 2019, 2019, 9059073. [Google Scholar] [CrossRef]
- Mori, R.; Fujimura, M.; Shiraishi, J.; Evans, B.; Corkett, M.; Negishi, H.; Doyle, P. Duration of inter-facility neonatal transport and neonatal mortality: Systematic review and cohort study. Pediatr. Int. 2007, 49, 452–458. [Google Scholar] [CrossRef]
Variables | Score | ||
---|---|---|---|
0 | 1 | 2 | |
Respiratory effort | Apnea or grunting | Tachypnea (>60/min) +/− retractions | Normal (40–60/min) |
Heart rate | Bradycardia/ Asystole | Tachycardia (>160/min) | Normal (100–160/min) |
Mean blood pressure (mmHg) | <30 | 30–39 | >39 |
Axillary temperature (°C) | <36 | 36–36.5 | 36.5–37.5 |
Capillary filling time (s) | >5 | 3–5 | <3 |
Random blood sugar (mg/dL) | <40 | 40–60 | >60 |
SpO2 in room air (%) | <85 | 85–92 | >92 |
Preterm Infants (N = 217) | Term Infants (N = 186) | All Infants (N = 403) | |
---|---|---|---|
Gestational age (weeks) (mean/SD/median + IQR) | 35.56 ± 2.87/33 (31–35) | 38.73 ± 1.31/39 (38–39) | 35.40 ± 3.83/36 (33–39) |
Birth weight (grams) (mean/SD/median + IQR) | 1788.55 ± 561.90/ 1750 (1400–2162.5) | 3119.30 ± 631.25/ 3100 (2800–3422.5) | 2402.74 ± 891.80/ 2330 (1700–3100) |
Male gender (N/%) | 113/52.1 | 111/59.7 | 224/55.6 |
Time to admission (hours) (mean/SD/median + IQR) | 17.33 ± 65.07/4 (3–7) | 27.06 ± 32.44/12.5 (5–36) | 21.82 ± 52.75/6 (3–21) |
Apgar score/1 min (mean/SD/median + IQR) | 6.60 ± 2.12/7 (6–8) | 7.30 ± 2.32/8 (6.75–9) | 6.92 ± 2.24/7 (6–8.75) |
Apgar score < 3/1 min (N/%) | 22/10.1 | 19/10.2 | 41/10.2 |
Early onset sepsis (N/%) | 37/17.1 | 75/40.3 | 112/27.8 |
Place of birth | |||
Home (N/%) | 8/3.7 | 5/2.7 | 13/3.2 |
Level I (N/%) | 125/57.6 | 126/67.7 | 251/62.3 |
Level II (N/%) | 83/38.2 | 55/29.6 | 138/34.3 |
Level III (N/%) | 1/0.5 | - | 1/0.2 |
Death (N/%) | 14/6.5 | 6/3.2 | 20/5.0 |
SNS score (mean/SD/median + IQR) | 10.04 ± 2.67/11 (8–12) | 11.85 ± 2.20/12.5 (10–16) | 10.87 ± 2.63/11 (9–13) |
Preterm Infants (N = 217) | Term Infants (N = 186) | All Infants (N = 403) | ||||
---|---|---|---|---|---|---|
Survivors (Mean/SD) | Non-Survivors (Mean/SD) | Survivors (Mean/SD) | Non-Survivors (Mean/SD) | Survivors (Mean/SD) | Non-Survivors (Mean/SD) | |
Gestational age (weeks) | 32.7/2.7 | 30.7/4.4 | 38.7/1.3 | 38.3/1.2 | 35.5/3.7 | 32.9/5.1 |
Birth weight (grams) | 1804/543 | 1557/767 | 3128/638 | 2853/261 | 2426/885 | 1946/889 |
Time to admission (hours) | 16.7/66.3 | 26.1/44.2 | 26.8/32.6 | 34.7/29.0 | 21.5/53.4 | 28.7/39.7 |
Apgar score/1 min | 6.6/2.2 | 5.7/2.0 | 7.3/2.4 | 8.3/1.6 | 6.9/2.3 | 6.5/2.2 |
SNS score | 10.4/2.4 | 5.3/2.1 | 11.9/2.2 | 10.2/2.2 | 11.1/2.4 | 6.8/3.0 |
Preterm Infants (N = 217) | Term Infants (N = 186) | All Infants (N = 403) | ||||
---|---|---|---|---|---|---|
Median (IQR) | p * | Median (IQR) | p * | Median (IQR) | p * | |
Gestational age (weeks) | 36 (31–35) | 0.077 | 39 (38–39) | 0.525 | 36 (33–39) | 0.026 |
Birth weight (grams) | 1750 (1400–2162.5) | 0.164 | 3100 (2800–3422.5) | 0.135 | 2330 (1700–3100) | 0.032 |
Time to admission (hours) | 4 (3–7) | <0.001 | 12.5 (5–36) | 0.343 | 6.0 (3–21) | 0.013 |
Apgar score/1 min. | 7 (6–8) | <0.001 | 8 (6.75–9) | 0.038 | 7 (6–8.75) | <0.001 |
SNS score | 11.0 (8–12) | <0.001 | 12.5 (10–14) | 0.038 | 11.0 (11–13) | <0.001 |
Preterm Infants | Term Infants | All | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Survivors (N/%) | Non-Survivors (N/%) | p-Value | OR (95%CI) | Survivors (N/%) | Non-Survivors (N/%) | p-Value | OR (95%CI) | Survivors (N/%) | Non-Survivors (N/%) | p-Value | OR (95%CI) | |
Male gender | 105/51.7 | 8/57.1 | 0.696 | 1.23 (0.44–3.42) | 106/58.9 | 5/83.3 | 0.232 | 3.38 (0.46–28.34) | 211/55.1 | 13/65.0 | 0.386 | 1.48 (0.60–3.64) |
Apgar score < 3 | 20/9.9 | 2/15.4 | 0.529 | 1.65 (0.34–7.99) | 19/10.6 | 0/0 | 0.404 | - | 39/10.2 | 2/10.5 | 0.995 | 1.03 (0.23–4.65) |
Early sepsis | 34/16.7 | 3/21.4 | 0.654 | 1.36 (0.36–5.12) | 72/40.0 | 3/50.0 | 0.626 | 1.50 (0.29–7.64) | 106/27.7 | 6/30.0 | 0.822 | 1.12 (0.42–2.99) |
SNS score ≤ 8 | 48/23.6 | 14/100 | <0.001 | 1.29 (1.13–1.48) | 18/10.0 | 1/16.7 | 0.598 | 1.80 (0.20–16.27) | 66/17.2 | 15/75.0 | <0.001 | 14.41 (5.06–41.02) |
Place of birth | ||||||||||||
Home | 7/3.4 | 1/7.1 | 0.013 | - | 5/2.8 | 0/0 | 0.750 | - | 12/3.1 | 1/5.0 | 0.014 | - |
Level I | 123/60.6 | 2/14.3 | 122/67.8 | 4/66.7 | 245/64.0 | 6/30.0 | ||||||
Level II | 72/35.5 | 11/78.6 | 53/29.4 | 2/33.3 | 125/32.6 | 13/65.0 | ||||||
Level III | 1/0.5 | 0/0 | 0/0 | 0/0 | 1/0.3 | 0/0 |
0 Points | 1 Points | 2 Points | 3 Points | |
---|---|---|---|---|
Gestational age (weeks) | <32 | 32–36 | ≥37 | - |
Birth weight (g) | <1500 | 1500–2499 | ≥2500 | - |
Time from birth to admission (h) | ≥12 | 6–12 | - | <6 |
Final MSNS-AT score | Points granted on the above variables are added to the SNS score |
Model | AUC | p-Value | 95% CI | |
---|---|---|---|---|
Lower | Upper | |||
SNS score in term infants | 0.809 | 0.010 | 0.698 | 0.920 |
MSNS-AT in term infants | 0.765 | 0.027 | 0.601 | 0.929 |
SNS score in preterm infants | 0.810 | 0.000 | 0.676 | 0.945 |
MSNS-AT in preterm infants | 0.885 | 0.000 | 0.800 | 0.970 |
SNS score in all infants | 0.735 | 0.001 | 0.622 | 0.848 |
MSNS-AT in all infants | 0.775 | 0.000 | 0.659 | 0.890 |
Multivariable Cox Regression | p-Value | HR | 95.0% CI for HR | |
---|---|---|---|---|
Variables | Lower | Upper | ||
Gestational age | 0.920 | 1.012 | 0.800 | 1.280 |
Birth weight | 0.904 | 1.000 | 0.999 | 1.001 |
Apgar 1 min | 0.563 | 1.113 | 0.774 | 1.600 |
Apgar < 3 | 0.966 | 1.054 | 0.093 | 11.918 |
Early sepsis | 0.871 | 0.917 | 0.322 | 2.610 |
Time-to-admission | 0.575 | 1.001 | 0.997 | 1.006 |
MSNS-AT ≥ 16 | <0.001 | |||
MSNS-AT 8–15 | 0.048 | 3.607 | 1.023 | 14.653 |
MSNS-AT ≤ 7 | <0.001 | 47.120 | 9.593 | 231.459 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ognean, M.L.; Coțovanu, B.; Teacoe, D.A.; Radu, I.A.; Todor, S.B.; Ichim, C.; Mureșan, I.C.; Boicean, A.-G.; Galiș, R.; Cucerea, M. Identification of the Best Predictive Model for Mortality in Outborn Neonates—Retrospective Cohort Study. Healthcare 2023, 11, 3131. https://doi.org/10.3390/healthcare11243131
Ognean ML, Coțovanu B, Teacoe DA, Radu IA, Todor SB, Ichim C, Mureșan IC, Boicean A-G, Galiș R, Cucerea M. Identification of the Best Predictive Model for Mortality in Outborn Neonates—Retrospective Cohort Study. Healthcare. 2023; 11(24):3131. https://doi.org/10.3390/healthcare11243131
Chicago/Turabian StyleOgnean, Maria Livia, Bianca Coțovanu, Dumitru Alin Teacoe, Ioana Andrada Radu, Samuel Bogdan Todor, Cristian Ichim, Iris Codruța Mureșan, Adrian-Gheorghe Boicean, Radu Galiș, and Manuela Cucerea. 2023. "Identification of the Best Predictive Model for Mortality in Outborn Neonates—Retrospective Cohort Study" Healthcare 11, no. 24: 3131. https://doi.org/10.3390/healthcare11243131
APA StyleOgnean, M. L., Coțovanu, B., Teacoe, D. A., Radu, I. A., Todor, S. B., Ichim, C., Mureșan, I. C., Boicean, A. -G., Galiș, R., & Cucerea, M. (2023). Identification of the Best Predictive Model for Mortality in Outborn Neonates—Retrospective Cohort Study. Healthcare, 11(24), 3131. https://doi.org/10.3390/healthcare11243131