Long-Term Impact of COVID-19 on Heart Rate Variability: A Systematic Review of Observational Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria and Study Selection
2.3. Data Collection and Data Items
2.4. Study Risk of Bias Assessment
2.5. Data Analysis
3. Results
3.1. This Study Selection
3.2. Characteristics of the Included Studies
3.3. Methodological Quality Assessment
3.4. Long-Term Impact of COVID-19 on Heart Rate Variability
3.4.1. HRV Parameters in Individuals with Long COVID (n = 3)
3.4.2. HRV Parameters in Post-COVID-19 Individuals without Long COVID (n = 2)
3.4.3. HRV Parameters in Individuals in Whom the Presence of Long COVID Is Uncertain (n = 7)
4. Discussion
4.1. Principal Findings
4.2. Clinical Implications
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mizrahi, B.; Shilo, S.; Rossman, H.; Kalkstein, N.; Marcus, K.; Barer, Y.; Keshet, A.; Shamir-Stein, N.; Shalev, V.; Zohar, A.E. Longitudinal symptom dynamics of COVID-19 infection. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Carvalho-Schneider, C.; Laurent, E.; Lemaignen, A.; Beaufils, E.; Bourbao-Tournois, C.; Laribi, S.; Flament, T.; Ferreira-Maldent, N.; Bruyère, F.; Stefic, K. Follow-up of adults with noncritical COVID-19 two months after symptom onset. Clin. Microbiol. Infect. 2021, 27, 258–263. [Google Scholar] [CrossRef]
- Taquet, M.; Dercon, Q.; Luciano, S.; Geddes, J.R.; Husain, M.; Harrison, P.J. Incidence, co-occurrence, and evolution of long-COVID features: A 6-month retrospective cohort study of 273,618 survivors of COVID-19. PLoS Med. 2021, 18, e1003773. [Google Scholar] [CrossRef]
- Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’em, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine 2021, 38, 101019. [Google Scholar] [CrossRef]
- Soriano, J.B.; Murthy, S.; Marshall, J.C.; Relan, P.; Diaz, J.V.; Group, W.C.C.D.W. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 2021, 22, e102–e107. [Google Scholar] [CrossRef]
- Chen, C.; Haupert, S.R.; Zimmermann, L.; Shi, X.; Fritsche, L.G.; Mukherjee, B. Global Prevalence of Post-Coronavirus Disease 2019 (COVID-19) Condition or Long COVID: A Meta-Analysis and Systematic Review. J. Infect. Dis. 2022, 226, 1593–1607. [Google Scholar] [CrossRef]
- Fried, J.A.; Ramasubbu, K.; Bhatt, R.; Topkara, V.K.; Clerkin, K.J.; Horn, E.; Rabbani, L.; Brodie, D.; Jain, S.S.; Kirtane, A.J. The variety of cardiovascular presentations of COVID-19. Circulation 2020, 141, 1930–1936. [Google Scholar] [CrossRef] [Green Version]
- Inciardi, R.M.; Lupi, L.; Zaccone, G.; Italia, L.; Raffo, M.; Tomasoni, D.; Cani, D.S.; Cerini, M.; Farina, D.; Gavazzi, E. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 819–824. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Fan, Y.; Chen, M.; Wu, X.; Zhang, L.; He, T.; Wang, H.; Wan, J.; Wang, X.; Lu, Z. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 811–818. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.-Y.; Ma, Y.-T.; Zhang, J.-Y.; Xie, X. COVID-19 and the cardiovascular system. Nat. Rev. Cardiol. 2020, 17, 259–260. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Xu, E.; Bowe, B.; Al-Aly, Z. Long-term cardiovascular outcomes of COVID-19. Nat. Med. 2022, 28, 583–590. [Google Scholar] [CrossRef]
- Coromilas, E.J.; Kochav, S.; Goldenthal, I.; Biviano, A.; Garan, H.; Goldbarg, S.; Kim, J.-H.; Yeo, I.; Tracy, C.; Ayanian, S. Worldwide survey of COVID-19–associated arrhythmias. Circ. Arrhythmia Electrophysiol. 2021, 14, e009458. [Google Scholar] [CrossRef]
- Oronsky, B.; Larson, C.; Hammond, T.C.; Oronsky, A.; Kesari, S.; Lybeck, M.; Reid, T.R. A review of persistent post-COVID syndrome (PPCS). Clin. Rev. Allergy Immunol. 2021, 64, 66–74. [Google Scholar] [CrossRef]
- Ormiston, C.K.; Świątkiewicz, I.; Taub, P.R. Postural orthostatic tachycardia syndrome as a sequela of COVID-19. Heart Rhythm. 2022, 19, 1880–1889. [Google Scholar] [CrossRef]
- Blitshteyn, S.; Whitelaw, S. Postural orthostatic tachycardia syndrome (POTS) and other autonomic disorders after COVID-19 infection: A case series of 20 patients. Immunol. Res. 2021, 69, 205–211. [Google Scholar] [CrossRef]
- Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [Google Scholar]
- Swai, J.; Hu, Z.; Zhao, X.; Rugambwa, T.; Ming, G. Heart rate and heart rate variability comparison between postural orthostatic tachycardia syndrome versus healthy participants; a systematic review and meta-analysis. BMC Cardiovasc. Disord. 2019, 19, 320. [Google Scholar] [CrossRef] [Green Version]
- Schneider, M.; Schwerdtfeger, A. Autonomic dysfunction in posttraumatic stress disorder indexed by heart rate variability: A meta-analysis. Psychol. Med. 2020, 50, 1937–1948. [Google Scholar] [CrossRef]
- Ying-Chih, C.; Yu-Chen, H.; Wei-Lieh, H. Heart rate variability in patients with somatic symptom disorders and functional somatic syndromes: A systematic review and meta-analysis. Neurosci. Biobehav. Rev. 2020, 112, 336–344. [Google Scholar] [CrossRef]
- Mol, M.B.; Strous, M.T.; van Osch, F.H.; Vogelaar, F.J.; Barten, D.G.; Farchi, M.; Foudraine, N.A.; Gidron, Y. Heart-rate-variability (HRV), predicts outcomes in COVID-19. PLoS ONE 2021, 16, e0258841. [Google Scholar] [CrossRef]
- Hasty, F.; García, G.; Dávila, H.; Wittels, S.H.; Hendricks, S.; Chong, S. Heart rate variability as a possible predictive marker for acute inflammatory response in COVID-19 patients. Mil. Med. 2021, 186, e34–e38. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Yu, Z.; Yuan, Y.; Han, J.; Wang, Z.; Chen, H.; Wang, S.; Wang, Z.; Hu, H.; Zhou, L. Alteration of autonomic nervous system is associated with severity and outcomes in patients with COVID-19. Front. Physiol. 2021, 12, 630038. [Google Scholar] [CrossRef] [PubMed]
- Ponomarev, A.; Tyapochkin, K.; Surkova, E.; Smorodnikova, E.; Pravdin, P. Heart rate variability as a prospective predictor of early COVID-19 symptoms. medRxiv 2021. [Google Scholar] [CrossRef]
- Kaliyaperumal, D.; Karthikeyan, R.; Alagesan, M.; Ramalingam, S. Characterization of cardiac autonomic function in COVID-19 using heart rate variability: A hospital based preliminary observational study. J. Basic Clin. Physiol. Pharmacol. 2021, 32, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Khalpey, Z.I.; Khalpey, A.H.; Modi, B.; Deckwa, J. Autonomic dysfunction in COVID-19: Early detection and prediction using heart rate variability. J. Am. Coll. Surg. 2021, 233, e20–e21. [Google Scholar] [CrossRef]
- Dani, M.; Dirksen, A.; Taraborrelli, P.; Torocastro, M.; Panagopoulos, D.; Sutton, R.; Lim, P.B. Autonomic dysfunction in ‘long COVID’: Rationale, physiology and management strategies. Clin. Med. (Lond.) 2021, 21, e63–e67. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef]
- Kwon, C.Y. The Impact of SARS-CoV-2 Infection on Heart Rate Variability: A Systematic Review of Observational Studies with Control Groups. Int. J. Environ. Res. Public Health 2023, 20, 909. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- National Heart Lung, and Blood Institute (NHLBI), Study Quality Assessment Tools. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 10 April 2023).
- Arano Llach, J.; Victor Bazan, V.B.G.; Gemma Llados, G.L.L.; Raquel Adelino, R.A.; Maria Jesus Dominguez, M.J.; Marta Massanella, M.M.; Felipe Bisbal, F.B.; Axel Sarrias, A.S.; Antoni Bayes-Genis, A.B.G.; Lourdes Mateu, L.M.; et al. Inappropriate sinus tachycardia in post-covid-19 Syndrome. Europace 2021, 23, iii126. [Google Scholar] [CrossRef]
- Aranyo, J.; Md, V.B.; Bisba, F.; Sarrias, A.; Adelino, R.; Lladós, G.; Mateu, L.; Bayés-Genís, A.; Villuendas, R. B-PO02-167 inappropriate sinus tachycardia in post-covid-19 syndrome. Heart Rhythm 2021, 18, S166. [Google Scholar] [CrossRef]
- Lewek, J.; Jatczak-Pawlik, I.; Maciejewski, M.; Jankowski, P.; Banach, M. COVID-19 and cardiovascular complications—preliminary results of the LATE-COVID study. Arch. Med. Sci. AMS 2021, 17, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Bai, T.; Zhou, D.; Yushanjiang, F.; Wang, D.; Zhang, D.; Liu, X.; Song, J.; Zhang, J.; Hou, X.; Ma, Y. Alternation of the Autonomic Nervous System Is Associated With Pulmonary Sequelae in Patients With COVID-19 After Six Months of Discharge. Front. Physiol. 2021, 12, 805925. [Google Scholar] [CrossRef]
- Barizien, N.; Le Guen, M.; Russel, S.; Touche, P.; Huang, F.; Vallée, A. Clinical characterization of dysautonomia in long COVID-19 patients. Sci. Rep. 2021, 11, 14042. [Google Scholar] [CrossRef]
- Adler, T.E.; Norcliffe-Kaufmann, L.; Condos, R.; Fishman, G.; Kwak, D.; Talmor, N.; Reynolds, H. Heart rate variability is reduced 3-and 6-months after hospitalization for COVID-19 infection. J. Am. Coll. Cardiol. 2021, 77, 3062. [Google Scholar] [CrossRef]
- Acanfora, D.; Nolano, M.; Acanfora, C.; Colella, C.; Provitera, V.; Caporaso, G.; Rodolico, G.R.; Bortone, A.S.; Galasso, G.; Casucci, G. Impaired vagal activity in long-COVID-19 patients. Viruses 2022, 14, 1035. [Google Scholar] [CrossRef]
- Aranyó, J.; Bazan, V.; Lladós, G.; Dominguez, M.J.; Bisbal, F.; Massanella, M.; Sarrias, A.; Adeliño, R.; Riverola, A.; Paredes, R. Inappropriate sinus tachycardia in post-COVID-19 syndrome. Sci. Rep. 2022, 12, 1–9. [Google Scholar] [CrossRef]
- Asarcikli, L.D.; Hayiroglu, M.İ.; Osken, A.; Keskin, K.; Kolak, Z.; Aksu, T. Heart rate variability and cardiac autonomic functions in post-COVID period. J. Interv. Card. Electrophysiol. 2022, 63, 715–721. [Google Scholar] [CrossRef]
- Freire, A.P.C.F.; Lira, F.S.; Morano, A.E.v.A.; Pereira, T.; Coelho-E-Silva, M.-J.; Caseiro, A.; Christofaro, D.G.D.; Marchioto Júnior, O.; Dorneles, G.P.; Minuzzi, L.G. Role of body mass and physical activity in autonomic function modulation on post-COVID-19 condition: An observational subanalysis of Fit-COVID study. Int. J. Environ. Res. Public Health 2022, 19, 2457. [Google Scholar] [CrossRef]
- Kurtoğlu, E.; Afsin, A.; Aktaş, İ.; Aktürk, E.; Kutlusoy, E.; Çağaşar, Ö. Altered cardiac autonomic function after recovery from COVID-19. Ann. Noninvasive Electrocardiol. 2022, 27, e12916. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Miao, F.; Yin, L.; Pang, Z.; Li, Y. A noncontact ballistocardiography-based IoMT system for cardiopulmonary health monitoring of discharged COVID-19 patients. IEEE Internet Things J. 2021, 8, 15807–15817. [Google Scholar] [CrossRef] [PubMed]
- Marques, K.C.; Silva, C.C.; da Silva Trindade, S.; de Souza Santos, M.C.; Rocha, R.S.B.; da Costa Vasconcelos, P.F.; Quaresma, J.A.S.; Falcão, L.F.M. Reduction of cardiac autonomic modulation and increased sympathetic activity by heart rate variability in patients with long COVID. Front. Cardiovasc. Med. 2022, 9, 862001. [Google Scholar] [CrossRef] [PubMed]
- Mekhael, M.; Lim, C.H.; El Hajjar, A.H.; Noujaim, C.; Pottle, C.; Makan, N.; Dagher, L.; Zhang, Y.; Chouman, N.; Li, D.L. Studying the effect of long COVID-19 infection on sleep quality using wearable health devices: Observational study. J. Med. Internet Res. 2022, 24, e38000. [Google Scholar] [CrossRef]
- Shah, B.; Kunal, S.; Bansal, A.; Jain, J.; Poundrik, S.; Shetty, M.K.; Batra, V.; Chaturvedi, V.; Yusuf, J.; Mukhopadhyay, S. Heart rate variability as a marker of cardiovascular dysautonomia in post-COVID-19 syndrome using artificial intelligence. Indian Pacing Electrophysiol. J. 2022, 22, 70–76. [Google Scholar] [CrossRef]
- Zanoli, L.; Gaudio, A.; Mikhailidis, D.P.; Katsiki, N.; Castellino, N.; Lo Cicero, L.; Geraci, G.; Sessa, C.; Fiorito, L.; Marino, F. Vascular dysfunction of COVID-19 is partially reverted in the long-term. Circ. Res. 2022, 130, 1276–1285. [Google Scholar] [CrossRef]
- Dagher, L.; El Hajjar, A.H.; Mekhael, M.; Noujaim, C.; Lim, C.H.; Marrouche, N.F. Digital health device demonstrates the long-term impact of COVID-19 on the cardiovascular and autonomic system. Heart Rhythm 2022, 19, S446. [Google Scholar] [CrossRef]
- Lira, F.S.; Pereira, T.; Guerra Minuzzi, L.; Figueiredo, C.; Olean-Oliveira, T.; Figueira Freire, A.P.C.; Coelho-e-Silva, M.J.; Caseiro, A.; Thomatieli-Santos, R.V.; Dos Santos, V.R. Modulatory effects of physical activity levels on immune responses and general clinical functions in adult patients with mild to moderate SARS-CoV-2 Infections—A protocol for an observational prospective follow-up investigation: Fit-COVID-19 study. Int. J. Environ. Res. Public Health 2021, 18, 13249. [Google Scholar] [CrossRef]
- Goldstein, D.S. The extended autonomic system, dyshomeostasis, and COVID-19. Clin. Auton. Res. 2020, 30, 299–315. [Google Scholar] [CrossRef]
- Scala, I.; Rizzo, P.A.; Bellavia, S.; Brunetti, V.; Colò, F.; Broccolini, A.; Della Marca, G.; Calabresi, P.; Luigetti, M.; Frisullo, G. Autonomic dysfunction during acute SARS-CoV-2 infection: A systematic review. J. Clin. Med. 2022, 11, 3883. [Google Scholar] [CrossRef]
- Sabatino, J.; De Rosa, S.; Di Salvo, G.; Indolfi, C. Impact of cardiovascular risk profile on COVID-19 outcome. A meta-analysis. PLoS ONE 2020, 15, e0237131. [Google Scholar] [CrossRef]
- Jammoul, M.; Naddour, J.; Madi, A.; Reslan, M.A.; Hatoum, F.; Zeineddine, J.; Abou-Kheir, W.; Lawand, N. Investigating the possible mechanisms of autonomic dysfunction post-COVID-19. Auton. Neurosci. 2022, 245, 103071. [Google Scholar] [CrossRef] [PubMed]
- Mobbs, R.J.; Ho, D.; Choy, W.J.; Betteridge, C.; Lin, H. COVID-19 is shifting the adoption of wearable monitoring and telemedicine (WearTel) in the delivery of healthcare: Opinion piece. Ann. Transl. Med. 2020, 8, 1285. [Google Scholar] [CrossRef] [PubMed]
- Seshadri, D.R.; Davies, E.V.; Harlow, E.R.; Hsu, J.J.; Knighton, S.C.; Walker, T.A.; Voos, J.E.; Drummond, C.K. Wearable Sensors for COVID-19: A Call to Action to Harness Our Digital Infrastructure for Remote Patient Monitoring and Virtual Assessments. Front. Digit. Health 2020, 2, 8. [Google Scholar] [CrossRef]
- Smuck, M.; Odonkor, C.A.; Wilt, J.K.; Schmidt, N.; Swiernik, M.A. The emerging clinical role of wearables: Factors for successful implementation in healthcare. NPJ Digit. Med. 2021, 4, 45. [Google Scholar] [CrossRef]
- Johansson, M.; Ståhlberg, M.; Runold, M.; Nygren-Bonnier, M.; Nilsson, J.; Olshansky, B.; Bruchfeld, J.; Fedorowski, A. Long-haul post–COVID-19 symptoms presenting as a variant of postural orthostatic tachycardia syndrome: The Swedish experience. Case Rep. 2021, 3, 573–580. [Google Scholar] [CrossRef]
- Kanjwal, K.; Jamal, S.; Kichloo, A.; Grubb, B.P. New-onset postural orthostatic tachycardia syndrome following coronavirus disease 2019 infection. J. Innov. Card. Rhythm Manag. 2020, 11, 4302. [Google Scholar] [CrossRef]
- Miglis, M.G.; Prieto, T.; Shaik, R.; Muppidi, S.; Sinn, D.-I.; Jaradeh, S. A case report of postural tachycardia syndrome after COVID-19. Clin. Auton. Res. 2020, 30, 449–451. [Google Scholar] [CrossRef]
- Umapathi, T.; Poh, M.Q.; Fan, B.E.; Li, K.F.C.; George, J.; Tan, J.Y. Acute hyperhidrosis and postural tachycardia in a COVID-19 patient. Clin. Auton. Res. 2020, 30, 571–573. [Google Scholar] [CrossRef]
- Sumiyoshi, M.; Nakata, Y.; Mineda, Y.; Yasuda, M.; Nakazato, Y.; Yamaguchi, H. Analysis of heart rate variability during head-up tilt testing in a patient with idiopathic postural orthostatic tachycardia syndrome (POTS). Jpn. Circ. J. 1999, 63, 496–498. [Google Scholar] [CrossRef] [Green Version]
- Inbaraj, G.; Udupa, K.; Vasuki, P.P.; Nalini, A.; Sathyaprabha, T.N. Resting heart rate variability as a diagnostic marker of cardiovascular dysautonomia in postural tachycardia syndrome. J. Basic Clin. Physiol. Pharmacol. 2022, 34, 103–109. [Google Scholar] [CrossRef]
- Brady, P.A.; Low, P.A.; Shen, W.K. Inappropriate sinus tachycardia, postural orthostatic tachycardia syndrome, and overlapping syndromes. Pacing Clin. Electrophysiol. 2005, 28, 1112–1121. [Google Scholar] [CrossRef] [PubMed]
- Eldokla, A.M.; Mohamed-Hussein, A.A.; Fouad, A.M.; Abdelnaser, M.G.; Ali, S.T.; Makhlouf, N.A.; Sayed, I.G.; Makhlouf, H.A.; Shah, J.; Aiash, H. Prevalence and patterns of symptoms of dysautonomia in patients with long-COVID syndrome: A cross-sectional study. Ann. Clin. Transl. Neurol. 2022, 9, 778–785. [Google Scholar] [CrossRef]
- Stewart, J.M.; Warsy, I.A.; Visintainer, P.; Terilli, C.; Medow, M.S. Supine Parasympathetic Withdrawal and Upright Sympathetic Activation Underly Abnormalities of the Baroreflex in Postural Tachycardia Syndrome: Effects of Pyridostigmine and Digoxin. Hypertension 2021, 77, 1234–1244. [Google Scholar] [CrossRef]
- Kwon, C.-Y.; Lee, B. Impact of COVID-19 Vaccination on Heart Rate Variability: A Systematic Review. Vaccines 2022, 10, 2095. [Google Scholar] [CrossRef] [PubMed]
- Parashar, R.; Amir, M.; Pakhare, A.; Rathi, P.; Chaudhary, L. Age Related Changes in Autonomic Functions. J. Clin. Diagn. Res. 2016, 10, CC11–CC15. [Google Scholar] [CrossRef] [PubMed]
- Geovanini, G.R.; Vasques, E.R.; de Oliveira Alvim, R.; Mill, J.G.; Andreão, R.V.; Vasques, B.K.; Pereira, A.C.; Krieger, J.E. Age and Sex Differences in Heart Rate Variability and Vagal Specific Patterns - Baependi Heart Study. Glob. Heart 2020, 15, 71. [Google Scholar] [CrossRef]
- Ladlow, P.; O’Sullivan, O.; Houston, A.; Barker-Davies, R.; May, S.; Mills, D.; Dewson, D.; Chamley, R.; Naylor, J.; Mulae, J.; et al. Dysautonomia following COVID-19 is not associated with subjective limitations or symptoms but is associated with objective functional limitations. Heart Rhythm 2022, 19, 613–620. [Google Scholar] [CrossRef]
- Lopez-Leon, S.; Wegman-Ostrosky, T.; Ayuzo Del Valle, N.C.; Perelman, C.; Sepulveda, R.; Rebolledo, P.A.; Cuapio, A.; Villapol, S. Long-COVID in children and adolescents: A systematic review and meta-analyses. Sci. Rep. 2022, 12, 9950. [Google Scholar] [CrossRef]
Author | Country | Comparison | Population (Mean Age) | Assessment Time Point | Assessment Duration (Device) | HRV Parameters |
---|---|---|---|---|---|---|
Adler 2021 [37] | USA | G1: Previous COVID-19 infection (at 3- and 6-months post-discharge) (n = 18) G2: Matched controls (n = 7) | G1: 50 ± 16 G2: 50 ± 14 | 3 months (12 weeks) or more | 1-min HRV (unclear) responses to orthostatic stress (3-min active standing) | 1. SDNN (ms); 2. RMSSD (ms); 3. pNN50 (%) |
Acanfora 2022 [38] | Italy | G1: Long COVID patients (n = 30) G2: No-COVID-19 patients (n = 20) | G1: 58.6 ± 17.6 G2: 56.3 ± 14.7 | unclear | 24-h ECG monitoring (portable twelve-channel tape recorder) | 1. SDNN (ms); 2. SDANN (ms); 3. RMSSD (ms); 4. SDNN Index (ms); 5. pNN50 (%); 6. total power (ms2); 7. VLF (ms2); 8. LF (ms2); 9. HF (ms2); 10. LF/HF ratio |
Aranyó 2022 [39] | Spain | G1: Long COVID patients with IST) (n = 40) G2: Fully recovered COVID-19 patients (n = 19) G3: Uninfected controls (n = 17) | G1: 40.1 ± 10 G2: 42.2 ± 11 G3: 39.5 ± 13 | 3 months (12 weeks) or more | 24-h ECG monitoring (AFT 1000 + B recorder) | 1. Daytime SD (ms); 2. Daytime pNN50 (%); 3. Nighttime SD (ms); 4. Nighttime pNN50 (%); 5. VLF (Hz); 6. LF (Hz); 7. HF (Hz); 8. LF/HF ratio |
Asarcikli 2022 [40] | Turkiye | G1: Previous COVID-19 infection (>12 weeks) and no current clinical symptoms (n = 60) G2: Matched healthy controls (n = 33) | G1: 39 (range 31–49) G2: 30 (range 26–42) | 3 months (12 weeks) or more | 24-h ECG monitoring (DMS300-4A Holter ECG recorder) | 1. SDNN (ms); 2. SDANN (ms); 3. RMSSD (ms); 4. SDNN Index (ms); 5. pNN50 (%); 6. total power (ms2); 7. LF (ms2); 8. HF (ms2); 9. LF/HF ratio; 10. SDNN > 60 ms; 11. RMSSD > 40 ms |
Freire 2022 [41] | Brazil | G1: Previous COVID-19 infection (at 15–180 days) (n = 20) G2: Matched healthy controls (n = 18) | G1: 29.17 ± 6.32 G2: 26.22 ± 5.22 | 15–180 days | 5-min HRV (Polar RS800CX) | 1. SDNN (ms); 2. RMSSD (ms); 3. pNN50 (%); 4. LF (nu); 5. HF (nu); 6. LF/HF ratio; 7. Triangular index; 8. TINN (ms) |
Kurtoğlu 2022 [42] | Turkiye | G1: Patients with a confirmed history of COVID-19 (at 20.0 ± 11.4 weeks) (n = 50) G2: Healthy controls without a history of COVID-19 and vaccination (n = 50) | G1: 40.82 ± 10.31 G2: 38.24 ± 12.02 | 3 months (12 weeks) or more | 24-h ECG monitoring (iH-12Plus Holter System) | 1. SDNN (ms); 2. SDANN (ms); 3. RMSSD (ms); 4. SDNN Index (ms); 5. pNN50 (%); 6. total power (ms2); 7. VLF (ms2); 8. LF (ms2); 9. HF (ms2); 10. LF (nu); 11. HF (nu); 12. Triangular index (HRVI) |
Liu 2021 [43] | China | G1: Discharged COVID-19 patients (n = 186 → 164 analyzed) G2: Matched healthy controls (n = 186 → 166 analyzed) | Not reported | unclear | more than 10-h recording (ballistocardiography-based internet-of-medical-things system) | 1. SDNN (ms); 2. SDANN (ms); 3. LF (ms2); 4. HF (ms2) |
Marques 2022 [44] | Brazil | G1: Long COVID clinical group (n = 155 → 81 analyzed) G2: Uninfected controls (n = 94) | G1: 43.88 ± 10.03 G2: 40.69 ± 6.35 | 3 months (12 weeks) or more | 5-min HRV (Polar RS800CX) | 1. SDNN (ms); 2. RMSSD (ms); 3. LF (nu); 4. HF (nu); 5. LF/HF ratio; 6. SD1 (ms); 7. SD2 (ms) |
Mekhael 2022 [45]; Dagher 2022 [48] | USA | G1: Previous COVID-19 infection (at 171 ± 114 days) (n = 122) G2: Controls who were not diagnosed with COVID-19 (n = 588) | G1: 41.32 ± 15.7 G2: 45.99 ± 14.0 | 171 ± 114 days | 5-min HRV (PPG-based smartband) | 1. Mean HRV day/person (ms) |
Shah 2022 [46] | India | G1: Previous COVID-19 infection (recovered within 30–45 days) (n = 92) G2: Healthy volunteer controls (n = 120) | G1: 50.6 ± 12.1 G2: 51.8 ± 4.2 | unclear (recovered within 30–45 days) | 1-min HRV (VESTA 301i) responses to orthostatic stress (3-min active standing) | 1. RMSSD (ms) |
Zanoli 2022 [47] | Italy | G1: Previous COVID-19 infection (>12 weeks) (n = 92) G2: Matched controls (n = 180) | G1: 55 ± 12 G2: 55 ± 13 | 3 months (12 weeks) or more | 5-min HRV (Finometer Midi device) | 1. LF/HF ratio; 2. Triangular index |
Author | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | Q11 | Q12 | Q13 | Q14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Adler 2021 [37] | Y | N | NR | CD | N | N | N | NA | NR | NA | Y | NR | NA | NR |
Acanfora 2022 [38] | Y | Y | Y | Y | N | N | N | NA | NR | NA | Y | NR | NA | N |
Aranyó 2022 [39] | Y | Y | Y | N | N | N | N | NA | NR | NA | Y | NR | NA | Y |
Asarcikli 2022 [40] | Y | Y | NA | N | N | N | N | NA | NR | NA | Y | NR | NA | Y |
Freire 2022 [41] | Y | Y | N | CD | N | N | N | NA | Y | NA | Y | NR | NA | Y |
Kurtoğlu 2022 [42] | Y | Y | Y | CD | N | N | N | NA | NR | NA | Y | NR | NA | NR |
Liu 2021 [43] | Y | Y | NR | N | N | N | N | NA | NR | NA | Y | NR | NA | Y |
Marques 2022 [44] | Y | Y | Y | CD | N | N | N | NA | NR | NA | Y | NR | NA | NR |
Mekhael 2022 [45]; Dagher 2022 [48] | Y | Y | Y | N | N | N | N | NA | NR | NA | Y | NR | NA | Y |
Shah 2022 [46] | Y | Y | Y | CD | N | N | N | NA | NR | NA | Y | NR | NA | Y |
Zanoli 2022 [47] | Y | Y | NA | CD | N | N | N | NA | NR | NA | Y | NR | NA | Y |
Study | Time Domain | Frequency Domain | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SDNN (ms) | RMSSD (ms) | pNN50 (%) | SDANN (ms) | SDNN Index (ms) | Triangular Index | Mean HRV (ms) | VLF (ms2) | LF (ms2) | LF (nu) | HF (ms2) | HF (nu) | LF/HF Ratio | Total Power (ms2) | |
Individuals with long COVID vs. healthy controls (vs. post-COVID-19 individuals without long COVID) | ||||||||||||||
Acanfora 2022 [38] * | − | NS | NS | − | − | − | NS | − | + | − | ||||
Aranyó 2022 [39] * | D: −, N: − (D: −, N: NS) | − (−) | − (NS) | − (NS) | + (NS) | |||||||||
Marques 2022 [44] | − | + | NS | NS | NS | |||||||||
Post-COVID-19 individuals without long COVID vs. healthy controls | ||||||||||||||
Asarcikli 2022 [40] * | + | + | + | + | + | NS | + | − | NS | |||||
Aranyó 2022 [39] * | D: −, N: NS | − | − | − | NS | |||||||||
Individuals whose presence of long COVID is uncertain vs. healthy controls | ||||||||||||||
Adler 2021 [37] | − | − | − | |||||||||||
Freire 2022 [41] | − | − | NS | NS | NS | NS | NS | |||||||
Kurtoğlu 2022 [42] * | − | − | − | − | − | − | − | − | NS | − | − | |||
Liu 2021 [43] | − | − | − | − | ||||||||||
Mekhael 2022 [45]; Dagher 2022 [48] | − | |||||||||||||
Shah 2022 [46] | − | |||||||||||||
Zanoli 2022 [47] | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suh, H.-W.; Kwon, C.-Y.; Lee, B. Long-Term Impact of COVID-19 on Heart Rate Variability: A Systematic Review of Observational Studies. Healthcare 2023, 11, 1095. https://doi.org/10.3390/healthcare11081095
Suh H-W, Kwon C-Y, Lee B. Long-Term Impact of COVID-19 on Heart Rate Variability: A Systematic Review of Observational Studies. Healthcare. 2023; 11(8):1095. https://doi.org/10.3390/healthcare11081095
Chicago/Turabian StyleSuh, Hyo-Weon, Chan-Young Kwon, and Boram Lee. 2023. "Long-Term Impact of COVID-19 on Heart Rate Variability: A Systematic Review of Observational Studies" Healthcare 11, no. 8: 1095. https://doi.org/10.3390/healthcare11081095
APA StyleSuh, H. -W., Kwon, C. -Y., & Lee, B. (2023). Long-Term Impact of COVID-19 on Heart Rate Variability: A Systematic Review of Observational Studies. Healthcare, 11(8), 1095. https://doi.org/10.3390/healthcare11081095