Prediction Model for Cognitive Impairment among Disabled Older Adults: A Development and Validation Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Participants
2.2. Assessment of Cognitive Impairment
2.3. Candidate Predictors
2.4. Statistical Analyzing
3. Results
3.1. Participant Characteristics
3.2. Predictors Selection
3.3. Model Development and Comparison
3.4. Development and Validation of the Nomogram
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schrag, A.; Siddiqui, U.F.; Anastasiou, Z.; Weintraub, D.; Schott, J.M. Clinical Variables and Biomarkers in Prediction of Cognitive Impairment in Patients with Newly Diagnosed Parkinson’s Disease: A Cohort Study. Lancet Neurol. 2017, 16, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Espeland, M.A.; Carmichael, O.; Yasar, S.; Hugenschmidt, C.; Hazzard, W.; Hayden, K.M.; Rapp, S.R.; Neiberg, R.; Johnson, K.C.; Hoscheidt, S.; et al. Sex-related Differences in the Prevalence of Cognitive Impairment among Overweight and Obese Adults with Type 2 Diabetes. Alzheimer’s Dement. 2018, 14, 1184–1192. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zhang, X.; Liu, H.; Chong, S.T. Using Machine Learning to Predict Cognitive Impairment among Middle-Aged and Older Chinese: A Longitudinal Study. Int. J. Public Health 2023, 68, 1605322. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Wang, G.; Wang, Y.; Chen, X.; Chen, Y.; Meng, Q.; Yang, P.; Yao, Y.; Zhao, Y. Nowcasting and Forecasting the Care Needs of the Older Population in China: Analysis of Data from the China Health and Retirement Longitudinal Study (CHARLS). Lancet Public Health 2022, 7, e1005–e1013. [Google Scholar] [CrossRef]
- Bai, W.; Chen, P.; Cai, H.; Zhang, Q.; Su, Z.; Cheung, T.; Jackson, T.; Sha, S.; Xiang, Y.-T. Worldwide Prevalence of Mild Cognitive Impairment among Community Dwellers Aged 50 Years and Older: A Meta-Analysis and Systematic Review of Epidemiology Studies. Age Ageing 2022, 51, afac173. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Dementia Forecasting Collaborators. Estimation of the Global Prevalence of Dementia in 2019 and Forecasted Prevalence in 2050: An Analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, e105–e125. [Google Scholar] [CrossRef] [PubMed]
- Yong, K.; Zimmermann, N.; Crutch, S.; Rossor, M.; Harding, E. Posterior Cortical Atrophy. In World Alzheimer Report 2022 Life after Diagnosis: Navigating Treatment, Care and Support; Alzheimer’s Disease International: London, UK, 2022; pp. 310–312. [Google Scholar]
- Lisko, I.; Kulmala, J.; Annetorp, M.; Ngandu, T.; Mangialasche, F.; Kivipelto, M. How Can Dementia and Disability Be Prevented in Older Adults: Where Are We Today and Where Are We Going? J. Intern. Med. 2021, 289, 807–830. [Google Scholar] [CrossRef] [PubMed]
- Su, P.; Ding, H.; Zhang, W.; Duan, G.; Yang, Y.; Chen, R.; Duan, Z.; Du, L.; Xie, C.; Jin, C.; et al. The Association of Multimorbidity and Disability in a Community-Based Sample of Elderly Aged 80 or Older in Shanghai, China. BMC Geriatr. 2016, 16, 178. [Google Scholar] [CrossRef]
- Rajati, F.; Ashtarian, H.; Salari, N.; Ghanbari, M.; Naghibifar, Z.; Hosseini, S.Y. Quality of Life Predictors in Physically Disabled People. J. Educ. Health Promot. 2018, 7, 61. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, Y.; Hou, L.; Shen, Y.; Li, J.; Dong, B. Analysis of Risk Factors for Cognitive Dysfunction in Disabled Elderly Patients in Chengdu, China. Med. Sci. Monit. 2020, 26, e923590. [Google Scholar] [CrossRef]
- Zheng, P.-P.; Guo, Z.-L.; Du, X.-J.; Yang, H.-M.; Wang, Z.-J. Prevalence of Disability among the Chinese Older Population: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 1656. [Google Scholar] [CrossRef] [PubMed]
- Alzheimer’s Disease International/World Alzheimer Report 2015-The Global Impact of Dementia. 2015. Available online: https://www.alzint.org/u/WorldAlzheimerReport2015.pdf. (accessed on 20 May 2023).
- Liu, L.-K.; Chen, C.-H.; Lee, W.-J.; Wu, Y.-H.; Hwang, A.-C.; Lin, M.-H.; Shimada, H.; Peng, L.-N.; Loh, C.-H.; Arai, H.; et al. Cognitive Frailty and Its Association with All-Cause Mortality among Community-Dwelling Older Adults in Taiwan: Results from I-Lan Longitudinal Aging Study. Rejuvenation Res. 2018, 21, 510–517. [Google Scholar] [CrossRef] [PubMed]
- John, P.D.S.; Tyas, S.L.; Griffith, L.E.; Menec, V. The cumulative effect of frailty and cognition on mortality—Results of a prospective cohort study. Int. Psychogeriatr. 2017, 29, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Ziukelis, E.T.; Mak, E.; Dounavi, M.-E.; Su, L.; T O’Brien, J. Fractal Dimension of the Brain in Neurodegenerative Disease and Dementia: A Systematic Review. Ageing Res. Rev. 2022, 79, 101651. [Google Scholar] [CrossRef]
- Gao, N.; Tao, L.-X.; Huang, J.; Zhang, F.; Li, X.; O’Sullivan, F.; Chen, S.-P.; Tian, S.-J.; Mahara, G.; Luo, Y.-X.; et al. Contourlet-Based Hippocampal Magnetic Resonance Imaging Texture Features for Multivariant Classification and Prediction of Alzheimer’s Disease. Metab. Brain Dis. 2018, 33, 1899–1909. [Google Scholar] [CrossRef]
- Zhou, J.; Lv, Y.; Mao, C.; Duan, J.; Gao, X.; Wang, J.; Yin, Z.; Shi, W.; Luo, J.; Kang, Q.; et al. Development and Validation of a Nomogram for Predicting the 6-Year Risk of Cognitive Impairment among Chinese Older Adults. J. Am. Med. Dir. Assoc. 2020, 21, 864–871.e6. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, T.; Ge, T.; Jiang, Q. Prevalence of Self-Care Disability among Older Adults in China. BMC Geriatr. 2022, 22, 775. [Google Scholar] [CrossRef] [PubMed]
- Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G.M. Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD): The TRIPOD Statement. BMJ 2015, 350, g7594. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zeng, L.; Yuan, S.; Shang, Y.; Zhuang, W.; Chen, Z.; Lyu, J. Machine Learning for the Prediction of Cognitive Impairment in Older Adults. Front. Neurosci. 2023, 17, 1158141. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.J.; Kim, S.Y.; Na, D.L.; Kim, B.C.; Yang, D.W.; Kim, E.-J.; Na, H.R.; Han, H.J.; Lee, J.-H.; Kim, J.H.; et al. Prediction of Cognitive Impairment via Deep Learning Trained with Multi-Center Neuropsychological Test Data. BMC Med. Inform. Decis. Mak. 2019, 19, 231. [Google Scholar] [CrossRef]
- Wang, B.; Shen, T.; Mao, L.; Xie, L.; Fang, Q.-L.; Wang, X. Establishment of a Risk Prediction Model for Mild Cognitive Impairment among Elderly Chinese. J. Nutr. Health Aging 2020, 24, 255–261. [Google Scholar] [CrossRef]
- Hou, Q.; Guan, Y.; Liu, X.; Xiao, M.; Lü, Y. Development and Validation of a Risk Model for Cognitive Impairment in the Older Chinese Inpatients: An Analysis Based on a 5-Year Database. J. Clin. Neurosci. 2022, 104, 29–33. [Google Scholar] [CrossRef]
- Huang, M.; Gao, X.; Zhao, R.; Dong, C.; Gu, Z.; Gao, J. Development and Validation of a Nomogram for Predicting Mild Cognitive Impairment in Middle-Aged and Elderly People. Asian J. Psychiatry 2022, 75, 103224. [Google Scholar] [CrossRef]
- Pu, L.; Pan, D.; Wang, H.; He, X.; Zhang, X.; Yu, Z.; Hu, N.; Du, Y.; He, S.; Liu, X.; et al. A Predictive Model for the Risk of Cognitive Impairment in Community Middle-Aged and Older Adults. Asian J. Psychiatry 2023, 79, 103380. [Google Scholar] [CrossRef]
- Jingyu, L.; Wen, D.; Liping, Z.; Xiaoling, L. A Nomogram for Predicting Mild Cognitive Impairment in Older Adults with Hypertension. BMC Neurol. 2023, 23, 363. [Google Scholar] [CrossRef]
- Mao, X.-Y.; Huang, Y.-L.; Cai, Q.-Y.; Wan, Q.-R.; Tang, P. Cognitive function and its influencing factors in the disabled elderly in China. Chin. J. Mult. Organ. Dis. Elder. 2022, 21, 91–94. [Google Scholar] [CrossRef]
- Chen, Z.-H.; Wang, Y.; Yang, T.-T.; Liu, X.-F.; Yao, H.-W.; Xuan, G.; Jiang, Y.-H. Analysis of Influencing Factors of Neurocognitive Disorders in Disabled Community-dwelling Elderly. Chin. Prim. Health Care 2021, 35, 35–42. [Google Scholar] [CrossRef]
- Hou, X.-H.; Feng, L.; Zhang, C.; Cao, X.-P.; Tan, L.; Yu, J.-T. Models for Predicting Risk of Dementia: A Systematic Review. J. Neurol. Neurosurg. Psychiatry 2019, 90, 373–379. [Google Scholar] [CrossRef]
- Bratić, B.; Kurbalija, V.; Ivanović, M.; Oder, I.; Bosnić, Z. Machine Learning for Predicting Cognitive Diseases: Methods, Data Sources and Risk Factors. J. Med. Syst. 2018, 42, 243. [Google Scholar] [CrossRef]
- Tunvirachaisakul, C.; Supasitthumrong, T.; Tangwongchai, S.; Hemrunroj, S.; Chuchuen, P.; Tawankanjanachot, I.; Likitchareon, Y.; Phanthumchinda, K.; Sriswasdi, S.; Maes, M. Characteristics of Mild Cognitive Impairment Using the Thai Version of the Consortium to Establish a Registry for Alzheimer’s Disease Tests: A Multivariate and Machine Learning Study. Dement. Geriatr. Cogn. Disord. 2018, 45, 38–48. [Google Scholar] [CrossRef]
- Grueso, S.; Viejo-Sobera, R. Machine Learning Methods for Predicting Progression from Mild Cognitive Impairment to Alzheimer’s Disease Dementia: A Systematic Review. Alzheimer’s Res. Ther. 2021, 13, 162. [Google Scholar] [CrossRef]
- Hu, M.; Yu, Y.; He, F.; Su, Y.; Zhang, K.; Liu, X.; Liu, P.; Liu, Y.; Peng, G.; Luo, B. Classification and Interpretability of Mild Cognitive Impairment Based on Resting-State Functional Magnetic Resonance and Ensemble Learning. Comput. Intell. Neurosci. 2022, 2022, 2535954. [Google Scholar] [CrossRef]
- Zeng, Y.; Feng, Q.; Hesketh, T.; Christensen, K.; Vaupel, J.W. Survival, Disabilities in Activities of Daily Living, and Physical and Cognitive Functioning among the Oldest-Old in China: A Cohort Study. Lancet 2017, 389, 1619–1629. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Wu, B.; Liu, X.; Chen, H.; Jin, H.-Y.; Wu, C. Association between Primary Caregiver Type and Mortality among Chinese Older Adults with Disability: A Prospective Cohort Study. BMC Geriatr. 2021, 21, 268. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Y.; Han, T.; Liu, E. Changes in Cognitive Function and Risk Factors for Cognitive Impairment of the Elderly in China: 2005–2014. Int. J. Environ. Res. Public Health 2019, 16, 2847. [Google Scholar] [CrossRef]
- Ma, Y.; Li, X.; Pan, Y.; Zhao, R.; Wang, X.; Jiang, X.; Li, S. Cognitive Frailty Predicting Death and Disability in Chinese Elderly. Neurol. Res. 2021, 43, 815–822. [Google Scholar] [CrossRef]
- Tu, L.; Lv, X.; Yuan, C.; Chen, H.; Yu, X.; Wang, H.; Zhang, Q. Sex Differences in Cognitive Function Trajectories and Their Determinants in Older Adults: Evidence from the Chinese Longitudinal Healthy Longevity Survey. Int. J. Geriat Psychiatry 2024, 39, e6072. [Google Scholar] [CrossRef]
- Cui, G.-H.; Yao, Y.-H.; Xu, R.-F.; Tang, H.-D.; Jiang, G.-X.; Wang, Y.; Wang, G.; Chen, S.-D.; Cheng, Q. Cognitive Impairment Using Education-Based Cutoff Points for CMMSE Scores in Elderly Chinese People of Agricultural and Rural Shanghai China: Education-Based Cutoff Points for CMMSE Scores. Acta Neurol. Scand. 2011, 124, 361–367. [Google Scholar] [CrossRef]
- Mose, A.; Chen, Y.; Tan, X.; Ren, Q.; Ren, X. Association of Social Integration with Cognitive Function Trajectories among Chinese Older Adults: Evidence from the China Health and Retirement Longitudinal Study (CHARLS). Front. Aging Neurosci. 2024, 15, 1322974. [Google Scholar] [CrossRef]
- Lv, Y.-B.; Gao, X.; Yin, Z.-X.; Chen, H.-S.; Luo, J.-S.; Brasher, M.S.; Kraus, V.B.; Li, T.-T.; Zeng, Y.; Shi, X.-M. Revisiting the Association of Blood Pressure with Mortality in Oldest Old People in China: Community Based, Longitudinal Prospective Study. BMJ 2018, 361, k2158. [Google Scholar] [CrossRef]
- Huang, X.; Aihemaitijiang, S.; Ye, C.; Halimulati, M.; Wang, R.; Zhang, Z. Development of the cMIND Diet and Its Association with Cognitive Impairment in Older Chinese People. J. Nutr. Health Aging 2022, 26, 760–770. [Google Scholar] [CrossRef]
- Zhang, Y.; Ge, M.; Zhao, W.; Liu, Y.; Xia, X.; Hou, L.; Dong, B. Sensory Impairment and All-Cause Mortality among the Oldest-Old: Findings from the Chinese Longitudinal Healthy Longevity Survey (CLHLS). J. Nutr. Health Aging 2020, 24, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Phung, D.; Tran, T.; Gupta, S.; Rana, S.; Karmakar, C.; Shilton, A.; Yearwood, J.; Dimitrova, N.; Ho, T.B.; et al. Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedical Research: A Multidisciplinary View. J. Med. Internet Res. 2016, 18, e323. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Shu, X.; Yu, G.; Wu, X.; Välimäki, M.; Feng, H. A Risk Prediction Model Based on Machine Learning for Cognitive Impairment among Chinese Community-Dwelling Elderly People with Normal Cognition: Development and Validation Study. J. Med. Internet Res. 2021, 23, e20298. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.B.; Gui, X.; Manquen, M.; Hamilton, E.R. Use of Training, Validation, and Test Sets for Developing Automated Classifiers in Quantitative Ethnography. In Proceedings of the International Conference on Quantitative Ethnography (ICQE), Madison, WI, USA, 20–22 October 2019. [Google Scholar]
- Bradley, A.P. The Use of the Area under the ROC Curve in the Evaluation of Machine Learning Algorithms. Pattern Recognit. 1997, 30, 1145–1159. [Google Scholar] [CrossRef]
- Šimundić, A.-M. Measures of Diagnostic Accuracy: Basic Definitions. EJIFCC 2009, 19, 203–211. [Google Scholar]
- Turrini, S.; Wong, B.; Eldaief, M.; Press, D.Z.; Sinclair, D.A.; Koch, G.; Avenanti, A.; Santarnecchi, E. The Multifactorial Nature of Healthy Brain Ageing: Brain Changes, Functional Decline and Protective Factors. Ageing Res. Rev. 2023, 88, 101939. [Google Scholar] [CrossRef] [PubMed]
- Karimi, L.; Mahboub-Ahari, A.; Jahangiry, L.; Sadeghi-Bazargani, H.; Farahbakhsh, M. A Systematic Review and Meta-Analysis of Studies on Screening for Mild Cognitive Impairment in Primary Healthcare. BMC Psychiatry 2022, 22, 97. [Google Scholar] [CrossRef] [PubMed]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia Prevention, Intervention, and Care: 2020 Report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef]
- Katz, S.; Ford, A.B.; Moskowitz, R.W.; Jackson, B.A.; Jaffe, M.W. Studies of Illness in the Aged: The Index of ADL: A Standardized Measure of Biological and Psychosocial Function. JAMA 1963, 185, 914–919. [Google Scholar] [CrossRef]
- Lawton, M.P.; Brody, E.M. Assessment of Older People: Self-Maintaining and Instrumental Activities of Daily Living. Gerontologist 1969, 9, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.-K.; Leveille, S.G.; Yu, Y.-H.; Milberg, W.P. Cognitive Function, Habitual Gait Speed, and Late-Life Disability in the National Health and Nutrition Examination Survey (NHANES) 1999–2002. Gerontology 2007, 53, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Hartle, L.; Mograbi, D.C.; Fichman, H.C.; Faria, C.A.; Sanchez, M.A.; Ribeiro, P.C.C.; Lourenço, R.A. Predictors of Functional Impairment and Awareness in People with Dementia, Mild Cognitive Impairment and Healthy Older Adults from a Middle-Income Country. Front. Psychiatry 2022, 13, 941808. [Google Scholar] [CrossRef] [PubMed]
- Baillieux, H.; De Smet, H.J.; Paquier, P.F.; De Deyn, P.P.; Mariën, P. Cerebellar Neurocognition: Insights into the Bottom of the Brain. Clin. Neurol. Neurosurg. 2008, 110, 763–773. [Google Scholar] [CrossRef]
- Penke, L.; Muñoz Maniega, S.; Murray, C.; Gow, A.J.; Hernández, M.C.V.; Clayden, J.D.; Starr, J.M.; Wardlaw, J.M.; Bastin, M.E.; Deary, I.J. A General Factor of Brain White Matter Integrity Predicts Information Processing Speed in Healthy Older People. J. Neurosci. 2010, 30, 7569–7574. [Google Scholar] [CrossRef] [PubMed]
- Tolea, M.I.; Morris, J.C.; Galvin, J.E. Longitudinal Associations between Physical and Cognitive Performance among Community-Dwelling Older Adults. PLoS ONE 2015, 10, e0122878. [Google Scholar] [CrossRef]
- Givan, A.; Downer, B.; Chou, L.-N.; Al Snih, S. Cognitive Impairment and Low Physical Function among Older Mexican Americans: Findings from a 20-Year Follow-Up. Ann. Epidemiol. 2022, 70, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Tian, Q.; An, Y.; Resnick, S.M.; Studenski, S. The Relative Temporal Sequence of Decline in Mobility and Cognition among Initially Unimpaired Older Adults: Results from the Baltimore Longitudinal Study of Aging. Age Ageing 2017, 46, 445–451. [Google Scholar] [CrossRef]
- Njegovan, V.; Man-Son-Hing, M.; Mitchell, S.L.; Molnar, F.J. The Hierarchy of Functional Loss Associated with Cognitive Decline in Older Persons. J. Gerontol. Ser. A 2001, 56, M638–M643. [Google Scholar] [CrossRef]
- Desai, P.; Halloway, S.; Krueger, K.R.; Rajan, K.B.; Evans, D.A. Temporal Patterns of Change in Physical and Cognitive Performance. J. Gerontol. Ser. A 2024, 79, glad274. [Google Scholar] [CrossRef]
- Pashmdarfard, M.; Azad, A. Assessment Tools to Evaluate Activities of Daily Living (ADL) and Instrumental Activities of Daily Living (IADL) in Older Adults: A Systematic Review. Med. J. Islam. Repub. Iran. 2020, 34, 33. [Google Scholar]
- Lee, M.-T.; Jang, Y.; Chang, W.-Y. How Do Impairments in Cognitive Functions Affect Activities of Daily Living Functions in Older Adults? PLoS ONE 2019, 14, e0218112. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, E.; Gorus, E.; Van Schelvergem, N.; De Vriendt, P. The Relationship between Basic, Instrumental, and Advanced Activities of Daily Living and Executive Functioning in Geriatric Patients with Neurocognitive Disorders. Int. J. Geriatr. Psychiatry 2019, 34, 889–899. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Cartagena-Farias, J.; Brimblecombe, N. Functional Disability and Utilisation of Long-Term Care in the Older Population in England: A Dual Trajectory Analysis. Eur. J. Ageing 2022, 19, 1363–1373. [Google Scholar] [CrossRef] [PubMed]
- Khalili, G.; Zargoush, M.; Huang, K.; Ghazalbash, S. Exploring Trajectories of Functional Decline and Recovery among Older Adults: A Data-Driven Approach. Sci. Rep. 2024, 14, 6340. [Google Scholar] [CrossRef] [PubMed]
- Stolz, E.; Gill, T.M.; Mayerl, H.; Freidl, W. Short-Term Disability Fluctuations in Late Life. J. Gerontol. B Psychol. Sci. Soc. Sci. 2019, 74, e135–e140. [Google Scholar] [CrossRef] [PubMed]
- Kwan, R.Y.C.; Kwan, C.W.; Kor, P.P.K.; Chi, I. Cognitive Decline, Sensory Impairment, and the Use of Audio-Visual Aids by Long-Term Care Facility Residents. BMC Geriatr. 2022, 22, 216. [Google Scholar] [CrossRef]
- Byeon, G.; Oh, G.H.; Jhoo, J.H.; Jang, J.-W.; Bae, J.B.; Han, J.W.; Kim, T.H.; Kwak, K.P.; Kim, B.J.; Kim, S.G.; et al. Dual Sensory Impairment and Cognitive Impairment in the Korean Longitudinal Elderly Cohort. Neurology 2021, 96, e2284–e2295. [Google Scholar] [CrossRef] [PubMed]
- Peters, C.A.; Potter, J.F.; Scholer, S.G. Hearing impairment as a Predictor of Cognitive Decline in Dementia. J. Am. Geriatr. Soc. 1988, 36, 981–986. [Google Scholar] [CrossRef]
- Nixon, G.K.; Sarant, J.Z.; Tomlin, D. Peripheral and Central Hearing impairment and Their Relationship with Cognition: A Review. Int. J. Audiol. 2019, 58, 541–552. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, H. The Impact of Sensory Impairments and Eye Diseases on Cognitive Function in Elderly Chinese: The Mediating Effects of Social Participation. J. Glob. Health 2023, 13, 04068. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, Y.; Yang, X.; Miao, G.; Wu, Y.; Yang, S. Sensory Impairment and Cognitive Function among Older Adults in China: The Mediating Roles of Anxiety and Depressive Symptoms. Int. J. Geriatr. Psychiatry 2023, 38, e5866. [Google Scholar] [CrossRef] [PubMed]
- Ge, S.; Pan, W.; Wu, B.; Plassman, B.L.; Dong, X.; McConnell, E.S. Sensory Impairment and Cognitive Decline among Older Adults: An Analysis of Mediation and Moderation Effects of Loneliness. Front. Neurosci. 2022, 16, 1092297. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, N.; Assi, L.; Varadaraj, V.; Motaghi, M.; Sun, Y.; Couser, E.; Ehrlich, J.R.; Whitson, H.; Swenor, B.K. Vision Impairment and Cognitive Decline among Older Adults: A Systematic Review. BMJ Open 2022, 12, e047929. [Google Scholar] [CrossRef] [PubMed]
- Whitson, H.E.; Cronin-Golomb, A.; Cruickshanks, K.J.; Gilmore, G.C.; Owsley, C.; Peelle, J.E.; Recanzone, G.; Sharma, A.; Swenor, B.; Yaffe, K.; et al. American Geriatrics Society and National Institute on Aging Bench-to-Bedside Conference: Sensory Impairment and Cognitive Decline in Older Adults. J. Am. Geriatr. Soc. 2018, 66, 2052–2058. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, N.M.; Vieira Ligo Teixeira, C.; Gendron, C.; Brenowitz, W.D.; Lin, F.R.; Swenor, B.; Deal, J.A.; Simonsick, E.M.; Jones, R.N. Associations of Dual Sensory Impairment with Incident Mobility and ADL Difficulty. J. Am. Geriatr. Soc. 2022, 70, 1997–2007. [Google Scholar] [CrossRef]
- Yeo, B.S.Y.; Song, H.J.J.M.D.; Toh, E.M.S.; Ng, L.S.; Ho, C.S.H.; Ho, R.; Merchant, R.A.; Tan, B.K.J.; Loh, W.S. Association of Hearing Aids and Cochlear Implants with Cognitive Decline and Dementia: A Systematic Review and Meta-Analysis. JAMA Neurol. 2023, 80, 134–141. [Google Scholar] [CrossRef]
- Lin, F.R.; Pike, J.R.; Albert, M.S.; Arnold, M.; Burgard, S.; Chisolm, T.; Couper, D.; Deal, J.A.; Goman, A.M.; Glynn, N.W.; et al. Hearing Intervention versus Health Education Control to Reduce Cognitive Decline in Older Adults with Hearing Loss in the USA (ACHIEVE): A Multicentre, Randomised Controlled Trial. Lancet 2023, 402, 786–797. [Google Scholar] [CrossRef]
- Zhu, Z.; Shi, D.; Liao, H.; Ha, J.; Shang, X.; Huang, Y.; Zhang, X.; Jiang, Y.; Li, L.; Yu, H.; et al. VI and Risk of Dementia: The UK Biobank Study. Am. J. Ophthalmol. 2022, 235, 7–14. [Google Scholar] [CrossRef]
- Nicholson, J.S.; Hudak, E.M.; Phillips, C.B.; Chanti-Ketterl, M.; O’Brien, J.L.; Ross, L.A.; Lister, J.J.; Burke, J.R.; Potter, G.; Plassman, B.L.; et al. The Preventing Alzheimer’s with Cognitive Training (PACT) Randomized Clinical Trial. Contemp. Clin. Trials 2022, 123, 106978. [Google Scholar] [CrossRef]
- Edwards, J.D.; Fausto, B.A.; Tetlow, A.M.; Corona, R.T.; Valdés, E.G. Systematic Review and Meta-Analyses of Useful Field of View Cognitive Training. Neurosci. Biobehav. Rev. 2018, 84, 72–91. [Google Scholar] [CrossRef] [PubMed]
- Peelle, J.E. Listening Effort: How the Cognitive Consequences of Acoustic Challenge Are Reflected in Brain and Behavior. Ear Hear. 2018, 39, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Rigters, S.C.; Bos, D.; Metselaar, M.; Roshchupkin, G.V.; Baatenburg de Jong, R.J.; Ikram, M.A.; Vernooij, M.W.; Goedegebure, A. Hearing Impairment Is Associated with Smaller Brain Volume in Aging. Front. Aging Neurosci. 2017, 9, 2. [Google Scholar] [CrossRef] [PubMed]
- Powell, D.S.; Oh, E.S.; Reed, N.S.; Lin, F.R.; Deal, J.A. Hearing Loss and Cognition: What We Know and Where We Need to Go. Front. Aging Neurosci. 2021, 13, 769405. [Google Scholar] [CrossRef] [PubMed]
- Wright, T.; O’Connor, S. Reviewing Challenges and Gaps in European and Global Dementia Policy. J. Public Ment. Health 2018, 17, 157–167. [Google Scholar] [CrossRef]
- Sun, T.; Liu, X.; Jiang, W.; Dong, X.; Jiang, M.; Li, L. Utilization and Performance of Long-Term Care System for Older People with Disabilities and Dementia in Zhejiang Province, China. Front. Psychiatry 2023, 14, 1148682. [Google Scholar] [CrossRef]
Variable | Categories | CI (N = 1130) | Non-CI (N = 1008) | Total (N = 2138) | Statistical Test | p-Value |
---|---|---|---|---|---|---|
Gender, n (%) | Male | 327 (29%) | 411 (41%) | 738 (35%) | χ2 test | <0.001 |
Female | 803 (71%) | 597 (59%) | 1400 (65%) | |||
Age, mean (SD) | 97.5 (7.0) | 91.9 (9.5) | 94.8 (8.7) | t-test | <0.001 | |
Place of residence, n (%) | Urban | 663 (59%) | 661 (66%) | 1324 (62%) | χ2 test | 0.001 |
Rural | 467 (41%) | 347 (34%) | 814 (38%) | |||
Marital status, n (%) | Married | 114 (10%) | 255 (25%) | 369 (17%) | χ2 test | <0.001 |
Others | 1016 (90%) | 753 (75%) | 1769 (83%) | |||
Education level, n (%) | Absence of formal education (<1 year) | 825 (73%) | 612 (61%) | 1437 (67%) | χ2 test | <0.001 |
Primary education (1~6 years) | 202 (18%) | 250 (25%) | 452 (21%) | |||
Higher education (over 6 years) | 103 (9%) | 146 (14%) | 249 (12%) | |||
ADL score, mean (SD) | 11.4 (3.3) | 9.1 (2.4) | 10.4 (3.1) | t-test | <0.001 | |
IADL score, mean (SD) | 22.8 (2.5) | 19.3 (5.0) | 21.2 (4.2) | t-test | <0.001 | |
Smoking, n (%) | No | 1056 (93%) | 901 (89%) | 1957 (92%) | χ2 test | <0.001 |
Yes | 74 (7%) | 107 (11%) | 181 (8%) | |||
Drinking, n (%) | No | 1050 (93%) | 916 (91%) | 1966 (92%) | χ2 test | 0.097 |
Yes | 80 (7%) | 92 (9%) | 172 (8%) | |||
Daily exercise, n (%) | No | 1037 (92%) | 796 (79%) | 1833 (86%) | χ2 test | <0.001 |
Yes | 93 (8%) | 212 (21%) | 305 (14%) | |||
Routine medical checkup, n (%) | No | 637 (56%) | 429 (43%) | 1066 (50%) | χ2 test | <0.001 |
Yes | 493 (44%) | 579 (57%) | 1072 (50%) | |||
Kyphosis, n (%) | No | 438 (39%) | 531 (53%) | 969 (45%) | χ2 test | <0.001 |
Yes | 692 (61%) | 477 (47%) | 1169 (55%) | |||
VI, n (%) | No | 509 (45%) | 757 (75%) | 1266 (59%) | χ2 test | <0.001 |
Yes | 621 (55%) | 251 (25%) | 872 (41%) | |||
HI, n (%) | No | 338 (30%) | 775 (77%) | 1113 (52%) | χ2 test | <0.001 |
Yes | 792 (70%) | 233 (23%) | 1025 (48%) | |||
Wearing hearing aids, n (%) | No | 656 (58%) | 724 (72%) | 1380 (65%) | χ2 test | <0.001 |
Yes | 474 (42%) | 284 (28%) | 758 (35%) | |||
Chronic diseases, n (%) | 0 | 582 (52%) | 355 (35%) | 937 (44%) | χ2 test | <0.001 |
1 | 313 (28%) | 333 (33%) | 646 (30%) | |||
2 | 136 (12%) | 200 (20%) | 336 (16%) | |||
≥3 | 99 (8%) | 120 (12%) | 219 (10%) | |||
History of falls, n (%) | No | 754 (67%) | 698 (69%) | 1452 (68%) | χ2 test | 0.230 |
Yes | 376 (33%) | 310 (31%) | 686 (32%) | |||
Wearing dentures, n (%) | No | 805 (71%) | 566 (56%) | 1371 (64%) | χ2 test | <0.001 |
Yes | 325 (29%) | 442 (44%) | 767 (36%) | |||
Number of natural teeth, median (Q1, Q3) | 0 (0, 3) | 1 (0, 7) | 0 (0, 4) | Mann–Whitney U-test | <0.001 | |
Tooth cleaning behavior, n (%) | Rarely brush teeth | 694 (61%) | 398 (39%) | 1092 (51%) | χ2 test | <0.001 |
Regular toothbrushing | 436 (39%) | 610 (61%) | 1046 (49%) | |||
Childhood famine experiences, n (%) | No | 228 (20%) | 283 (28%) | 511 (24%) | χ2 test | <0.001 |
Yes | 902 (80%) | 725 (72%) | 1627 (76%) | |||
CC (cm), mean (SD) | 28.0 (6.7) | 30 (6.0) | 28.9 (6.5) | t-test | <0.001 | |
WC (cm), mean (SD) | 80.5 (12.5) | 84.3 (12.1) | 82.3 (12.4) | t-test | <0.001 | |
HC (cm), mean (SD) | 87.5 (12.6) | 91.1 (11.7) | 89.2 (12.3) | t-test | <0.001 | |
BMI (kg/m2), mean (SD) | 18.8 (7.1) | 21.1 (5.9) | 19.9 (6.7) | t-test | <0.001 | |
WHR (%), mean (SD) | 0.9 (0.1) | 0.9 (0.1) | 0.9 (0.1) | t-test | 0.165 | |
WHtR (%), mean (SD) | 0.5 (0.2) | 0.5 (0.1) | 0.5 (0.1) | t-test | <0.001 | |
WCR (%), mean (SD) | 3.0 (1.1) | 2.9 (0.6) | 3.0 (1.0) | t-test | 0.003 | |
Daily housework, n (%) | Always | 34 (3%) | 129 (13%) | 163 (8%) | χ2 test | <0.001 |
Sometimes | 21 (2%) | 91 (9%) | 112 (5%) | |||
Never | 1075 (95%) | 788 (78%) | 1863 (87%) | |||
Garden work, n (%) | Always | 22 (2%) | 71 (7%) | 93 (4%) | χ2 test | <0.001 |
Sometimes | 14 (1%) | 39 (4%) | 53 (3%) | |||
Never | 1094 (97%) | 898 (89%) | 1992 (93%) | |||
Reading newspapers or books, n (%) | Always | 27 (2%) | 102 (10%) | 129 (6%) | χ2 test | <0.001 |
Sometimes | 27 (2%) | 62 (6%) | 89 (4%) | |||
Never | 1076 (96%) | 844 (84%) | 1920 (90%) | |||
Raising domestic animals or pets, n (%) | Always | 11 (1%) | 48 (5%) | 59 (3%) | χ2 test | <0.001 |
Sometimes | 13 (1%) | 29 (3%) | 42 (2%) | |||
Never | 1106 (98%) | 931 (92%) | 2037 (95%) | |||
Playing cards or mah-jongg, n (%) | Always | 10 (1%) | 42 (4%) | 52 (2%) | χ2 test | <0.001 |
Sometimes | 20 (2%) | 57 (6%) | 77 (4%) | |||
Never | 1100 (97%) | 909 (90%) | 2009 (94%) | |||
Watching TV or listening to the radio, n (%) | Always | 223 (20%) | 481 (48%) | 704 (33%) | χ2 test | <0.001 |
Sometimes | 123 (11%) | 190 (19%) | 313 (15%) | |||
Never | 784 (69%) | 337 (33%) | 1121 (52%) |
Algorithms | Parameters | Default Parameters | Optimal Parameters | Area Under the Curve | Accuracy | ||
---|---|---|---|---|---|---|---|
Default Parameters | Optimal Parameters | Default Parameters | Optimal Parameters | ||||
RF | ntree | 500 | 800 | 0.819 | 0.822 | 0.747 | 0.750 |
mtry | 2 | 1 | |||||
maxnodes | Default | Default | |||||
nodesize | 1 | 6 | |||||
SVM | cost | 1 | 5 | 0.772 | 0.835 | 0.706 | 0.753 |
gamma | 0.5 | 0.01 | |||||
kernel | RBF | POLY | |||||
degree | 3 | 4 | |||||
coef0 | 0 | 1 | |||||
XGBoost | eta | 0.3 | 0.2 | 0.781 | 0.824 | 0.708 | 0.747 |
gamma | 0 | 0.8 | |||||
max_depth | 6 | 9 | |||||
min_child weight | 1 | 1 | |||||
subsample | 1 | 0.85 | |||||
colsample_bytree | 1 | 1 | |||||
nrounds | 50 | 7 |
Algorithms | AUC | Accuracy | Precision | Specification | Sensitivity | F1-Score |
---|---|---|---|---|---|---|
LR | 0.875 | 0.778 | 0.808 | 0.788 | 0.770 | 0.788 |
RF | 0.829 | 0.762 | 0.773 | 0.735 | 0.785 | 0.779 |
SVM | 0.833 | 0.745 | 0.768 | 0.743 | 0.747 | 0.757 |
XGBoost | 0.836 | 0.762 | 0.826 | 0.789 | 0.741 | 0.781 |
Variables | β | OR | 95% CI | p-Value |
---|---|---|---|---|
Age | 0.033 | 1.034 | (1.016, 1.051) | <0.001 |
ADL score | 0.129 | 1.138 | (1.084, 1.195) | <0.001 |
IADL score | 0.135 | 1.145 | (1.095, 1.197) | <0.001 |
HI | ||||
No | Reference | 1 | ||
Yes | 1.489 | 4.434 | (3.411, 5.760) | <0.001 |
VI | ||||
No | Reference | 1 | ||
Yes | 0.580 | 1.785 | (1.370, 2.326) | <0.001 |
Intercept | −8.265 | 0.001 | (0.001, 0.001) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, X.; Zheng, X.; Lu, Y. Prediction Model for Cognitive Impairment among Disabled Older Adults: A Development and Validation Study. Healthcare 2024, 12, 1028. https://doi.org/10.3390/healthcare12101028
Cui X, Zheng X, Lu Y. Prediction Model for Cognitive Impairment among Disabled Older Adults: A Development and Validation Study. Healthcare. 2024; 12(10):1028. https://doi.org/10.3390/healthcare12101028
Chicago/Turabian StyleCui, Xiangyu, Xiaoyu Zheng, and Yun Lu. 2024. "Prediction Model for Cognitive Impairment among Disabled Older Adults: A Development and Validation Study" Healthcare 12, no. 10: 1028. https://doi.org/10.3390/healthcare12101028
APA StyleCui, X., Zheng, X., & Lu, Y. (2024). Prediction Model for Cognitive Impairment among Disabled Older Adults: A Development and Validation Study. Healthcare, 12(10), 1028. https://doi.org/10.3390/healthcare12101028