Does Osteopathic Heart-Focused Palpation Modify Heart Rate Variability in Stressed Participants with Musculoskeletal Pain? A Randomised Controlled Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Interventions
2.3.1. HFP
2.3.2. SHAM
2.4. Outcomes
2.4.1. Feasibility
2.4.2. HRV
Parameter | Definition | Autonomic Activity |
---|---|---|
HR (bpm) | Number of heart beats per minute | HR ↑ = SNS ↑ |
RMSSD (ms) | Root mean square of successive RR interval differences | RMSSD ↑ = PNS ↑ |
SDNN (ms) | Standard deviation of the NN intervals | SDNN ↑ = PNS ↑ |
SI (pts) | Stress index according to Baevsky | SI ↑ = SNS ↑ |
LF/HF (ratio) | Ratio of the low-frequency (LF) to high-frequency (HF) power band | LF/HF ↑ = SNS ↑ |
SD2/SD1 (ratio) | Ratio of the Poincaré plot standard deviation along (SD2) and perpendicular (SD1) to the line of identity | SD2/SD1 ↑ = SNS ↑ |
2.4.3. Power Analysis
2.5. Sample Size
2.6. Randomisation
2.7. Blinding
2.8. Procedure
2.9. Statistics
3. Results
3.1. Participant Flow
3.2. Recruitment
3.3. Baseline Data
3.4. Feasibility
3.5. Heart Rate Variability
3.6. Power Analysis
4. Discussion
4.1. Overview of Findings
4.2. Comparable Literature
4.3. Methodological Limitations
4.4. Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Perceived Stress Scale—10 Items
Appendix B. Heart-Focused Palpation
Appendix C. Highlights
- The study was feasible regarding the recruitment, retention, adherence, and safety.
- A power analysis revealed that 72 participants are needed for a future RCT.
- HFP improved HRV in stressed subjects with musculoskeletal pain.
- LF/HF, SDNN, and RMSSD increased, SI and SD2/SD1 did not change, and HR decreased.
- The results suggest a parasympathetic effect of HFP.
References
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 354 Diseases and Injuries for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [PubMed]
- Safiri, S.; Kolahi, A.A.; Cross, M.; Hill, C.; Smith, E.; Carson-Chahhoud, K.; Mansournia, M.A.; Almasi-Hashiani, A.; Ashrafi-Asgarabad, A.; Kaufman, J.; et al. Prevalence, Deaths, and Disability-Adjusted Life Years Due to Musculoskeletal Disorders for 195 Countries and Territories 1990–2017. Arthritis Rheumatol. 2021, 73, 702–714. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Nah, S.; Jang, H.D.; Moon, J.E.; Han, S. Association between Chronic Low Back Pain and Degree of Stress: A Nationwide Cross-Sectional Study. Sci. Rep. 2021, 11, 14549. [Google Scholar] [CrossRef] [PubMed]
- Buscemi, V.; Chang, W.J.; Liston, M.B.; McAuley, J.H.; Schabrun, S.M. The Role of Perceived Stress and Life Stressors in the Development of Chronic Musculoskeletal Pain Disorders: A Systematic Review. J. Pain 2019, 20, 1127–1139. [Google Scholar] [CrossRef] [PubMed]
- Fink, G. Stress, Definitions, Mechanisms, and Effects Outlined: Lessons from Anxiety. In Stress: Concepts, Cognition, Emotion, and Behavior: Handbook of Stress; Fink, G., Ed.; Elsevier Inc.: London, UK, 2016; pp. 3–11. [Google Scholar]
- Godoy, L.D.; Rossignoli, M.T.; Delfino-Pereira, P.; Garcia-Cairasco, N.; Umeoka, E.H.d.L. A Comprehensive Overview on Stress Neurobiology: Basic Concepts and Clinical Implications. Front. Behav. Neurosci. 2018, 12, 127. [Google Scholar] [CrossRef]
- Seipäjärvi, S.M.; Tuomola, A.; Juurakko, J.; Rottensteiner, M.; Rissanen, A.P.E.; Kurkela, J.L.O.; Kujala, U.M.; Laukkanen, J.A.; Wikgren, J. Measuring Psychosocial Stress with Heart Rate Variability-Based Methods in Different Health and Age Groups. Physiol. Meas. 2022, 43, 055002. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-G.; Cheon, E.-J.; Bai, D.-S.; Lee, Y.H.; Koo, B.-H. Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature. Psychiatry Investig. 2018, 15, 235–245. [Google Scholar] [CrossRef]
- Russell, G.; Lightman, S. The Human Stress Response. Nat. Rev. Endocrinol. 2019, 15, 525–534. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef]
- Sanabria-Mazo, J.P.; Colomer-Carbonell, A.; Carmona-Cervello, M.; Sanz, A.; Maes, M.; Luciano, J.V. Immune-Inflammatory and Hypothalamic-Pituitary-Adrenal Axis Biomarkers Are Altered in Patients with Non-Specific Low Back Pain: A Systematic Review. Front. Immunol. 2022, 13, 945513. [Google Scholar] [CrossRef]
- Bandeira, P.M.; Reis, F.J.J.; Sequeira, V.C.C.; Chaves, A.C.S.; Fernandes, O.; Arruda-Sanchez, T. Heart Rate Variability in Patients with Low Back Pain: A Systematic Review. Scand. J. Pain 2021, 21, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Ernst, G. Heart-Rate Variability—More than Heart Beats? Front. Public Health 2017, 5, 240. [Google Scholar] [CrossRef] [PubMed]
- Immanuel, S.; Teferra, M.N.; Baumert, M.; Bidargaddi, N. Heart Rate Variability for Evaluating Psychological Stress Changes in Healthy Adults: A Scoping Review. Neuropsychobiology 2023, 82, 187–202. [Google Scholar] [CrossRef] [PubMed]
- Pulopulos, M.M.; Vanderhasselt, M.-A.; De Raedt, R. Association between Changes in Heart Rate Variability during the Anticipation of a Stressful Situation and the Stress-Induced Cortisol Response. Psychoneuroendocrinology 2018, 94, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Knezevic, N.N.; Candido, K.D.; Vlaeyen, J.W.S.; Van Zundert, J.; Cohen, S.P. Low Back Pain. Lancet 2021, 398, 78–92. [Google Scholar] [CrossRef] [PubMed]
- Krenn, C.; Horvath, K.; Jeitler, K.; Zipp, C.; Siebenhofer-Kroitzsch, A.; Semlitsch, T. Management of Non-Specific Low Back Pain in Primary Care—A Systematic Overview of Recommendations from International Evidence-Based Guidelines. Prim. Health Care Res. Dev. 2020, 21, e64. [Google Scholar] [CrossRef]
- Traeger, A.C.; Qaseem, A.; McAuley, J.H. Low Back Pain. JAMA 2021, 326, 286. [Google Scholar] [CrossRef]
- Gianola, S.; Bargeri, S.; Del Castillo, G.; Corbetta, D.; Turolla, A.; Andreano, A.; Moja, L.; Castellini, G. Effectiveness of Treatments for Acute and Subacute Mechanical Non-Specific Low Back Pain: A Systematic Review with Network Meta-Analysis. Br. J. Sports Med. 2021, 13, 41–50. [Google Scholar] [CrossRef]
- Bohlen, L.; Schwarze, J.; Gietl, B.D.; Lazarov, C.; Richter, J.; Kopyakova, A.; Brandl, A.; Schmidt, T. Effect of Osteopathic Techniques on Human Resting Muscle Tone in Healthy Subjects Using Myotonometry: A Factorial Randomized Trial. Sci. Rep. 2022, 12, 16953. [Google Scholar] [CrossRef]
- NIH. Mind-Body Practice. Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/mind-body-practice (accessed on 21 July 2023).
- Cozzolino, M.; Girelli, L.; Vivo, D.R.; Limone, P.; Celia, G. A Mind–Body Intervention for Stress Reduction as an Adjunct to an Information Session on Stress Management in University Students. Brain Behav. 2020, 10, e01651. [Google Scholar] [CrossRef]
- Bagagiolo, D.; Rosa, D.; Borrelli, F. Efficacy and Safety of Osteopathic Manipulative Treatment: An Overview of Systematic Reviews. BMJ Open 2022, 12, e053468. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Crawford, C.; Hickey, A.; Therapies, A.S. Mind–Body Therapies for the Self-Management of Chronic Pain Symptoms. Pain Med. 2014, 15, 21–39. [Google Scholar] [CrossRef] [PubMed]
- Dal Farra, F.; Risio, R.G.; Vismara, L.; Bergna, A. Effectiveness of Osteopathic Interventions in Chronic Non-Specific Low Back Pain: A Systematic Review and Meta-Analysis. Complement. Ther. Med. 2021, 56, 102616. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, X.; Wang, X.; Yang, J.; Zhang, W.; Ding, Y.; Sang, T.; Chen, W.; Wang, W. Effect of Mindfulness-Based Mind-Body Therapies in Patients with Non-Specific Low Back Pain—A Network Meta-Analysis of Randomized Controlled Trials. Front. Aging Neurosci. 2023, 15, 1148048. [Google Scholar] [CrossRef] [PubMed]
- Alaiti, R.K.; Castro, J.; Hopin, L.; Caneiro, J.P.; Vlaeyen, J.W.S.; Kamper, S.J.; da Costa, M.F. What Are the Mechanisms of Action of Cognitive–Behavioral, Mind–Body, and Exercise-Based Interventions for Pain and Disability in People with Chronic Primary Musculoskeletal Pain? A Systematic Review of Mediation Studies From Randomized Controlled Trials. Clin. J. Pain 2022, 38, 502–509. [Google Scholar] [CrossRef]
- Cerritelli, F.; Cardone, D.; Pirino, A.; Merla, A.; Scoppa, F. Does Osteopathic Manipulative Treatment Induce Autonomic Changes in Healthy Participants? A Thermal Imaging Study. Front. Neurosci. 2020, 14, 887. [Google Scholar] [CrossRef] [PubMed]
- Grasser, L.R.; Marusak, H. Strong Mind, Strong Body: The Promise of Mind–Body Interventions to Address Growing Mental Health Needs among Youth. Ment. Health Sci. 2023, 1, 58–66. [Google Scholar] [CrossRef]
- Nuño, V.; Siu, A.; Deol, N.; Juster, R.P. Osteopathic Manipulative Treatment for Allostatic Load Lowering. J. Am. Osteopath. Assoc. 2019, 119, 646–654. [Google Scholar] [CrossRef]
- Fornari, M.; Carnevali, L.; Sgoifo, A. Single Osteopathic Manipulative Therapy Session Dampens Acute Autonomic and Neuroendocrine Responses to Mental Stress in Healthy Male Participants. J. Am. Osteopath. Assoc. 2017, 117, 559–567. [Google Scholar] [CrossRef]
- Abraham, C.; Sloan, S.N.B.; Coker, C.; Freed, B.; McAuliffe, M.; Nielsen, H.; Riscoe, T.; Steele, R.; Dettwiler, A.; Oberley, G.; et al. Osteopathic Manipulative Treatment as an Intervention to Reduce Stress, Anxiety, and Depression in First Responders: A Pilot Study. Mo. Med. 2021, 118, 435–441. [Google Scholar] [CrossRef]
- Wiegand, S.; Bianchi, W.; Quinn, T.A.; Best, M.; Fotopoulos, T. Osteopathic Manipulative Treatment for Self-Reported Fatigue, Stress, and Depression in First-Year Osteopathic Medical Students. J. Am. Osteopath. Assoc. 2015, 115, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Henderson, A.T.; Disher, J.F.; Blair, J.; Shea, C.; Li, T.S.; Bridges, K.G. Effects of Rib Raising on the Autonomic Nervous System: A Pilot Study Using Noninvasive Biomarkers. J. Am. Osteopath. Assoc. 2010, 110, 608. [Google Scholar]
- Thibaut, D.; Santarlas, V.; Hoppes, J.; Vásquez-Castillo, A.; Morrow, A.; Oviedo, E.; Toldi, J. Osteopathic Manipulation as a Method of Cortisol Modification: A Systematic Review. Cureus 2023, 15, 36854. [Google Scholar] [CrossRef] [PubMed]
- Roura, S.; Álvarez, G.; Solà, I.; Cerritelli, F. Do Manual Therapies Have a Specific Autonomic Effect? An Overview of Systematic Reviews. PLoS ONE 2021, 16, e0260642. [Google Scholar] [CrossRef] [PubMed]
- Rechberger, V.; Biberschick, M.; Porthun, J. Effectiveness of an Osteopathic Treatment on the Autonomic Nervous System: A Systematic Review of the Literature. Eur. J. Med. Res. 2019, 24, 36. [Google Scholar] [CrossRef] [PubMed]
- Amoroso Borges, B.L.; Bortolazzo, G.L.; Neto, H.P. Effects of Spinal Manipulation and Myofascial Techniques on Heart Rate Variability: A Systematic Review. J. Bodyw. Mov. Ther. 2018, 22, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Carnevali, L.; Lombardi, L.; Fornari, M.; Sgoifo, A. Exploring the Effects of Osteopathic Manipulative Treatment on Autonomic Function through the Lens of Heart Rate Variability. Front. Neurosci. 2020, 14, 579365. [Google Scholar] [CrossRef]
- Arienti, C.; Farinola, F.; Ratti, S.; Daccò, S.; Fasulo, L. Variations of HRV and Skin Conductance Reveal the Influence of CV4 and Rib Raising Techniques on Autonomic Balance: A Randomized Controlled Clinical Trial. J. Bodyw. Mov. Ther. 2020, 24, 395–401. [Google Scholar] [CrossRef]
- Carnevali, L.; Cerritelli, F.; Guolo, F.; Sgoifo, A. Osteopathic Manipulative Treatment and Cardiovascular Autonomic Parameters in Rugby Players: A Randomized, Sham-Controlled Trial. J. Manip. Physiol. Ther. 2021, 44, 319–329. [Google Scholar] [CrossRef]
- Cerritelli, F.; Chiacchiaretta, P.; Gambi, F.; Saggini, R.; Perrucci, M.G.; Ferretti, A. Osteopathy Modulates Brain–Heart Interaction in Chronic Pain Patients: An ASL Study. Sci. Rep. 2021, 11, 4556. [Google Scholar] [CrossRef]
- Giles, P.D.; Hensel, K.L.; Pacchia, C.F.; Smith, M.L. Suboccipital Decompression Enhances Heart Rate Variability Indices of Cardiac Control in Healthy Subjects. J. Altern. Complement. Med. 2013, 19, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Ruffini, N.; D’Alessandro, G.; Mariani, N.; Pollastrelli, A.; Cardinali, L.; Cerritelli, F. Variations of High Frequency Parameter of Heart Rate Variability Following Osteopathic Manipulative Treatment in Healthy Subjects Compared to Control Group and Sham Therapy: Randomized Controlled Trial. Front. Neurosci. 2015, 9, 272. [Google Scholar] [CrossRef] [PubMed]
- Curi, A.C.C.; Maior Alves, A.S.; Silva, J.G. Cardiac Autonomic Response after Cranial Technique of the Fourth Ventricle (Cv4) Compression in Systemic Hypertensive Subjects. J. Bodyw. Mov. Ther. 2018, 22, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Henley, C.E.; Ivins, D.; Mills, M.; Wen, F.K.; Benjamin, B.A. Osteopathic Manipulative Treatment and Its Relationship to Autonomic Nervous System Activity as Demonstrated by Heart Rate Variability: A Repeated Measures Study. Osteopath. Med. Prim. Care 2008, 2, 7. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.J.; Young, H.; Johnston, R. The Immediate Effect of Therapeutic Touch and Deep Touch Pressure on Range of Motion, Interoceptive Accuracy and Heart Rate Variability: A Randomized Controlled Trial with Moderation Analysis. Front. Integr. Neurosci. 2018, 12, 41. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.E.; Hendryx, J.; Menezes, C.; Bouwer, S.; Menezes, H.; Patel, V.; Smith, C.A.B.; Speelman, D.L. Weekly Osteopathic Manipulative Treatment to Improve Measures of Sympathetic Tone in Women with Polycystic Ovary Syndrome: A Randomized, Controlled Pilot Study. J. Am. Osteopath. Assoc. 2020, 120, 310–321. [Google Scholar] [CrossRef] [PubMed]
- Manzotti, A.; Cerritelli, F.; Lombardi, E.; Monzani, E.; Savioli, L.; Esteves, J.E.; Galli, M.; La Rocca, S.; Biasi, P.; Chiera, M.; et al. Osteopathic Manipulative Treatment Regulates Autonomic Markers in Preterm Infants: A Randomized Clinical Trial. Healthcare 2022, 10, 813. [Google Scholar] [CrossRef]
- Milnes, K.; Moran, R.W. Physiological Effects of a CV4 Cranial Osteopathic Technique on Autonomic Nervous System Function: A Preliminary Investigation. Int. J. Osteopath. Med. 2007, 10, 8–17. [Google Scholar] [CrossRef]
- Abenavoli, A.; Badi, F.; Barbieri, M.; Bianchi, M.; Biglione, G.; Dealessi, C.; Grandini, M.; Lavazza, C.; Mapelli, L.; Milano, V.; et al. Cranial Osteopathic Treatment and Stress-Related Effects on Autonomic Nervous System Measured by Salivary Markers: A Pilot Study. J. Bodyw. Mov. Ther. 2020, 24, 215–221. [Google Scholar] [CrossRef]
- Pascoe, M.C.; Thompson, D.R.; Ski, C.F. Yoga, Mindfulness-Based Stress Reduction and Stress-Related Physiological Measures: A Meta-Analysis. Psychoneuroendocrinology 2017, 86, 152–168. [Google Scholar] [CrossRef]
- Goyal, M.; Singh, S.; Sibinga, E.M.S.; Gould, N.F.; Rowland-Seymour, A.; Sharma, R.; Berger, Z.; Sleicher, D.; Maron, D.D.; Shihab, H.M.; et al. Meditation Programs for Psychological Stress and Well-Being: A Systematic Review and Meta-Analysis. JAMA Intern. Med. 2014, 174, 357–368. [Google Scholar] [CrossRef]
- Zou, L.; Sasaki, J.E.; Wei, G.X.; Huang, T.; Yeung, A.S.; Neto, O.B.; Chen, K.W.; Hui, S.S.C. Effects of Mind–Body Exercises (Tai Chi/Yoga) on Heart Rate Variability Parameters and Perceived Stress: A Systematic Review with Meta-Analysis of Randomized Controlled Trials. J. Clin. Med. 2018, 7, 404. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, K.; O’Neill, S.; Dockray, S. A Systematic Review of the Effects of Mindfulness Interventions on Cortisol. J. Health Psychol. 2016, 21, 2108–2121. [Google Scholar] [CrossRef] [PubMed]
- Tung, Y.-H.; Hsieh, J.-C. The Impacts of Mindfulness on Heart Rate Variability: A Brief Review. Int. J. Pharma Med. Biol. Sci. 2019, 8, 132–137. [Google Scholar] [CrossRef]
- Rådmark, L.; Sidorchuk, A.; Osika, W.; Niemi, M. A Systematic Review and Meta-Analysis of the Impact of Mindfulness Based Interventions on Heart Rate Variability and Inflammatory Markers. J. Clin. Med. 2019, 8, 1638. [Google Scholar] [CrossRef]
- Koncz, A.; Demetrovics, Z.; Takacs, Z.K. Meditation Interventions Efficiently Reduce Cortisol Levels of At-Risk Samples: A Meta-Analysis. Health Psychol. Rev. 2021, 15, 56–84. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R.; Abbey, H.; Casals-Gutiérrez, S.; Maretic, S. Reconceptualizing the Therapeutic Alliance in Osteopathic Practice: Integrating Insights from Phenomenology, Psychology and Enactive Inference. Int. J. Osteopath. Med. 2022, 46, 36–44. [Google Scholar] [CrossRef]
- Carnes, D.; Mars, T.; Plunkett, A.; Nanke, L.; Abbey, H. A Mixed Methods Evaluation of a Third Wave Cognitive Behavioural Therapy and Osteopathic Treatment Programme for Chronic Pain in Primary Care (OsteoMAP). Int. J. Osteopath. Med. 2017, 24, 12–17. [Google Scholar] [CrossRef]
- Abbey, H.; Nanke, L.; Brownhill, K. Developing a Psychologically-Informed Pain Management Course for Use in Osteopathic Practice: The OsteoMAP Cohort Study. Int. J. Osteopath. Med. 2021, 39, 32–40. [Google Scholar] [CrossRef]
- Liem, T.; Neuhuber, W. Osteopathic Treatment Approach to Psychoemotional Trauma by Means of Bifocal Integration. J. Am. Osteopath. Assoc. 2020, 120, 180–189. [Google Scholar] [CrossRef]
- Liem, T. Osteopathische Herzfokussierte Palpation. In Kraniosakrale Osteopathie: Ein Praktisches Lehrbuch; Thieme Verlag: Stuttgart, Germany, 2018; p. 338. [Google Scholar]
- Liem, T. Psychosomatische Osteopathie, 1st ed.; Elsevier: München, Germany, 2024. [Google Scholar]
- Taylor, A.G.; Goehler, L.E.; Galper, D.I.; Innes, K.E.; Bourguignon, C. Top-Down and Bottom-Up Mechanisms in Mind-Body Medicine: Development of an Integrative Framework for Psychophysiological Research. Explor. J. Sci. Health 2010, 6, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Eldridge, S.M.; Chan, C.L.; Campbell, M.J.; Bond, C.M.; Hopewell, S.; Thabane, L.; Lancaster, G.A.; Altman, D.; Bretz, F.; Campbell, M.; et al. CONSORT 2010 Statement: Extension to Randomised Pilot and Feasibility Trials. BMJ 2016, 355, i5239. [Google Scholar] [CrossRef] [PubMed]
- Das, M.K. Multicenter Studies: Relevance, Design and Implementation. Indian Pediatr. 2022, 59, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A Global Measure of Perceived Stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.M.; Brähler, E.; Dreier, M.; Reinecke, L.; Müller, K.W.; Schmutzer, G.; Wölfling, K.; Beutel, M.E. The German Version of the Perceived Stress Scale—Psychometric Characteristics in a Representative German Community Sample. BMC Psychiatry 2016, 16, 159. [Google Scholar] [CrossRef]
- BioSign. Documentation for HRV-Scanner. Available online: https://www.biosign.de/download_HRVScanner/HRV-Scanner Dokumentation Part 1 EN.pdf (accessed on 3 August 2023).
- Santiago, R.J.; Esteves, J.E.; Baptista, J.S.; Magalhães, A.; Costa, J.T. Results of a Feasibility Randomised Controlled Trial of Osteopathy on Neck-Shoulder Pain in Computer Users. Complement. Ther. Clin. Pract. 2022, 46, 101507. [Google Scholar] [CrossRef] [PubMed]
- Licciardone, J.C.; Minotti, D.E.; Gatchel, R.J.; Kearns, C.M.; Singh, K.P. Osteopathic Manual Treatment and Ultrasound Therapy for Chronic Low Back Pain: A Randomized Controlled Trial. Ann. Fam. Med. 2013, 11, 122–129. [Google Scholar] [CrossRef]
- Walters, S.J.; Dos Anjos Henriques-Cadby, I.B.; Bortolami, O.; Flight, L.; Hind, D.; Jacques, R.M.; Knox, C.; Nadin, B.; Rothwell, J.; Surtees, M.; et al. Recruitment and Retention of Participants in Randomised Controlled Trials: A Review of Trials Funded and Published by the United Kingdom Health Technology Assessment Programme. BMJ Open 2017, 7, e015276. [Google Scholar] [CrossRef]
- Jacques, R.M.; Ahmed, R.; Harper, J.; Ranjan, A.; Saeed, I.; Simpson, R.M.; Walters, S.J. Recruitment, Consent and Retention of Participants in Randomised Controlled Trials: A Review of Trials Published in the National Institute for Health Research (NIHR) Journals Library (1997–2020). BMJ Open 2022, 12, e059230. [Google Scholar] [CrossRef]
- Harris, L.K.; Skou, S.T.; Juhl, C.B.; Jäger, M.; Bricca, A. Recruitment and Retention Rates in Randomised Controlled Trials of Exercise Therapy in People with Multimorbidity: A Systematic Review and Meta-Analysis. Trials 2021, 22, 396. [Google Scholar] [CrossRef]
- Phillips, R.; Hazell, L.; Sauzet, O.; Cornelius, V. Analysis and Reporting of Adverse Events in Randomised Controlled Trials: A Review. BMJ Open 2019, 9, e024537. [Google Scholar] [CrossRef] [PubMed]
- Orsmond, G.I.; Cohn, E.S. The Distinctive Features of a Feasibility Study: Objectives and Guiding Questions. OTJR Occup. Particip. Health 2015, 35, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Thabane, L.; Ma, J.; Chu, R.; Cheng, J.; Ismaila, A.; Rios, L.P.; Robson, R.; Thabane, M.; Giangregorio, L.; Goldsmith, C.H. A Tutorial on Pilot Studies: The What, Why and How. BMC Med. Res. Methodol. 2010, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Laborde, S.; Mosley, E.; Thayer, J.F. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research—Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Front. Psychol. 2017, 8, 213. [Google Scholar] [CrossRef] [PubMed]
- Kleiger, R.E.; Stein, P.K.; Bigger, J.T. Heart Rate Variability: Measurement and Clinical Utility. Ann. Noninvasive Electrocardiol. 2005, 10, 88–101. [Google Scholar] [CrossRef]
- Keller, T. Statistics Excel Tools for Download. Available online: https://www.acomed-statistik.de/en-gb/statistical-tools-download.html (accessed on 6 July 2023).
- Lachin, J.M. Introduction to Sample Size Determination and Power Analysis for Clinical Trials. Control. Clin. Trials 1981, 2, 93–113. [Google Scholar] [CrossRef]
- Whitehead, A.L.; Julious, S.A.; Cooper, C.L.; Campbell, M.J. Estimating the Sample Size for a Pilot Randomised Trial to Minimise the Overall Trial Sample Size for the External Pilot and Main Trial for a Continuous Outcome Variable. Stat. Methods Med. Res. 2016, 25, 1057–1073. [Google Scholar] [CrossRef]
- D’Alessandro, G.; Ruffini, N.; Iacopini, A.; Annoni, M.; Kossowsky, J.; Cerritelli, F. Five Challenges for Manual Therapies Trials with Placebo Controls: A Proposal. Int. J. Osteopath. Med. 2022, 46, 55–59. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: New York, NY, USA, 1988; ISBN 0805802835. [Google Scholar]
- Billman, G.E. The LF/HF Ratio Does Not Accurately Measure Cardiac Sympatho-Vagal Balance. Front. Physiol. 2013, 4, 26. [Google Scholar] [CrossRef]
- Goldstein, D.S.; Bentho, O.; Park, M.Y.; Sharabi, Y. Low-Frequency Power of Heart Rate Variability Is Not a Measure of Cardiac Sympathetic Tone but May Be a Measure of Modulation of Cardiac Autonomic Outflows by Baroreflexes. Exp. Physiol. 2011, 96, 1255–1261. [Google Scholar] [CrossRef]
- Younes, M.; Nowakowski, K.; Didier-Laurent, B.; Gombert, M.; Cottin, F. Effect of Spinal Manipulative Treatment on Cardiovascular Autonomic Control in Patients with Acute Low Back Pain. Chiropr. Man. Ther. 2017, 25, 33. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Wang, H.; Wang, Z.; Zhang, J.; Du, W.; Su, C.; Jia, X.; Ouyang, Y.; Wang, Y.; Li, L.; et al. Psychometric Properties of the Perceived Stress Scale in a Community Sample of Chinese. BMC Psychiatry 2020, 20, 130. [Google Scholar] [CrossRef]
- Nordin, M.; Nordin, S. Psychometric Evaluation and Normative Data of the Swedish Version of the 10-Item Perceived Stress Scale. Scand. J. Psychol. 2013, 54, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.; Janicki-Deverts, D. Who’s Stressed? Distributions of Psychological Stress in the United States in Probability Samples from 1983, 2006, and 2009. J. Appl. Soc. Psychol. 2012, 42, 1320–1334. [Google Scholar] [CrossRef]
- González-Ramírez, M.T.; Rodríguez-Ayán, M.N.; Hernández, R.L. The Perceived Stress Scale (PSS): Normative Data and Factor Structure for a Large-Scale Sample in Mexico. Span. J. Psychol. 2013, 16, E47. [Google Scholar] [CrossRef] [PubMed]
- Hohenschurz-Schmidt, D.; Draper-rodi, J.; Vase, L.; Scott, W.; Mcgregor, A.; Freigang, S.; Chan, J.; Phalip, J.; Nørgaard, L.; Delafin, M.; et al. Blinding and Sham Control Methods in Trials of Physical, Psychological, and Self-Management Interventions for Pain (Article II): A Meta-Analysis Relating Methods to Trial Results. Pain 2022, 164, 509–533. [Google Scholar] [CrossRef] [PubMed]
- Hohenschurz-Schmidt, D.; Draper-rodi, J.; Vase, L.; Scott, W.; Mcgregor, A.; Freigang, S.; Chan, J.; Phalip, J.; Nørgaard, L.; Delafin, M.; et al. Blinding and Sham Control Methods in Trials of Physical, Psychological, and Self-Management Interventions for Pain (Article I): A Systematic Review and Description of Methods. Pain 2022, 164, 469–484. [Google Scholar] [CrossRef]
- D’Alessandro, G.; Ruffini, N.; Aquino, A.; Galli, M.; Innocenti, M.; Tramontano, M.; Cerritelli, F. Differences between Experimental and Placebo Arms in Manual Therapy Trials: A Methodological Review. BMC Med. Res. Methodol. 2022, 22, 219. [Google Scholar] [CrossRef]
- D’Alessandro, G.; Ruffini, N.; Iacopini, A.; Annoni, M.; Kossowsky, J.; Cerritelli, F. Overcoming Placebo-Related Challenges in Manual Therapy Trials: The ‘Whats and Hows’ and the ‘Touch Equality Assumption’ Proposals. Int. J. Osteopath. Med. 2021, 42, 5–10. [Google Scholar] [CrossRef]
- Pinto, R.Z.; Ferreira, M.L.; Oliveira, V.C.; Franco, M.R.; Adams, R.; Maher, C.G.; Ferreira, P.H. Patient-Centred Communication Is Associated with Positive Therapeutic Alliance: A Systematic Review. J. Physiother. 2012, 58, 77–87. [Google Scholar] [CrossRef]
- Blanck, P.; Stoffel, M.; Bents, H.; Ditzen, B.; Mander, J. Heart Rate Variability in Individual Psychotherapy: Associations with Alliance and Outcome. J. Nerv. Ment. Dis. 2019, 207, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Vogel, S.; Draper-Rodi, J. The Importance of Pilot Studies, How to Write Them and What They Mean. Int. J. Osteopath. Med. 2017, 23, 2–3. [Google Scholar] [CrossRef]
- Beets, M.W.; Weaver, R.G.; Ioannidis, J.P.A.; Geraci, M.; Brazendale, K.; Decker, L.; Okely, A.D.; Lubans, D.; Van Sluijs, E.; Jago, R.; et al. Identification and Evaluation of Risk of Generalizability Biases in Pilot versus Efficacy/Effectiveness Trials: A Systematic Review and Meta-Analysis. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 19. [Google Scholar] [CrossRef] [PubMed]
- Vaucher, P.; Macdonald, R.J.D.; Carnes, D. The Role of Osteopathy in the Swiss Primary Health Care System: A Practice Review. BMJ Open 2018, 8, e023770. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, G.; Cerritelli, F.; Cortelli, P. Sensitization and Interoception as Key Neurological Concepts in Osteopathy and Other Manual Medicines. Front. Neurosci. 2016, 10, 100. [Google Scholar] [CrossRef]
- Cerritelli, F.; Chiacchiaretta, P.; Gambi, F.; Perrucci, M.G.; Barassi, G.; Visciano, C.; Bellomo, R.G.; Saggini, R.; Ferretti, A. Effect of Manual Approaches with Osteopathic Modality on Brain Correlates of Interoception: An FMRI Study. Sci. Rep. 2020, 10, 3214. [Google Scholar] [CrossRef]
- Chin, M.S.; Kales, S.N. Understanding Mind–Body Disciplines: A Pilot Study of Paced Breathing and Dynamic Muscle Contraction on Autonomic Nervous System Reactivity. Stress. Health 2019, 35, 542–548. [Google Scholar] [CrossRef]
- Bialosky, J.E.; Bishop, M.D.; Price, D.D.; Robinson, M.E.; George, S.Z. The Mechanisms of Manual Therapy in the Treatment of Musculoskeletal Pain: A Comprehensive Model. Man. Ther. 2009, 14, 531–538. [Google Scholar] [CrossRef]
- Tracy, L.M.; Ioannou, L.; Baker, K.S.; Gibson, S.J.; Georgiou-Karistianis, N.; Giummarra, M.J. Meta-Analytic Evidence for Decreased Heart Rate Variability in Chronic Pain Implicating Parasympathetic Nervous System Dysregulation. Pain 2016, 157, 7–29. [Google Scholar] [CrossRef]
- Koenig, J.; Williams, D.P.; Kemp, A.H.; Thayer, J.F. Vagally Mediated Heart Rate Variability in Headache Patients—A Systematic Review and Meta-Analysis. Cephalalgia 2016, 36, 265–278. [Google Scholar] [CrossRef]
- Sadowski, A.; Dunlap, C.; Lacombe, A.; Hanes, D. Alterations in Heart Rate Variability Associated with Irritable Bowel Syndrome or Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Clin. Transl. Gastroenterol. 2021, 12, e00275. [Google Scholar] [CrossRef]
- Meeus, M.; Goubert, D.; De Backer, F.; Struyf, F.; Hermans, L.; Coppieters, I.; De Wandele, I.; Da Silva, H.; Calders, P. Heart Rate Variability in Patients with Fibromyalgia and Patients with Chronic Fatigue Syndrome: A Systematic Review. Semin. Arthritis Rheum. 2013, 43, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Dal Farra, F.; Buffone, F.; Risio, R.G.; Tarantino, A.G.; Vismara, L.; Bergna, A. Effectiveness of Osteopathic Interventions in Patients with Non-Specific Neck Pain: A Systematic Review and Meta-Analysis. Complement. Ther. Clin. Pract. 2022, 49, 101655. [Google Scholar] [CrossRef]
- Coste, J.; Medkour, T.; Maigne, J.Y.; Pérez, M.; Laroche, F.; Perrot, S. Osteopathic Medicine for Fibromyalgia: A Sham-Controlled Randomized Clinical Trial. Ther. Adv. Musculoskelet. Dis. 2021, 13, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Albers, J.; Jäkel, A.; Wellmann, K.; Von Hehn, U.; Schmidt, T. Effectiveness of 2 Osteopathic Treatment Approaches on Pain, Pressure-Pain Threshold, and Disease Severity in Patients with Fibromyalgia: A Randomized Controlled Trial. Complement. Med. Res. 2018, 25, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Gamber, R.G.; Shores, J.H.; Russo, D.P.; Jimenez, C.; Rubin, B.R. Osteopathic Manipulative Treatment in Conjunction with Medication Relieves Pain Associated with Fibromyalgia Syndrome: Results of a Randomized Clinical Pilot Project. J. Am. Osteopath. Assoc. 2002, 102, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Marske, C.; Bernard, N.; Palacios, A.; Wheeler, C.; Preiss, B.; Brown, M.; Bhattacharya, S.; Klapstein, G. Fibromyalgia with Gabapentin and Osteopathic Manipulative Medicine: A Pilot Study. J. Altern. Complement. Med. 2018, 24, 395–402. [Google Scholar] [CrossRef]
- Farra, F.D.; Chiesa, A.; Risio, R.G.; Vismara, L.; Bergna, A. Fast Improvements in Functional Status after Osteopathic Manipulative Treatment Based on Myofascial Release in Patients with Moderate or Severe Fibromyalgia: A Retrospective Study. J. Complement. Integr. Med. 2021, 20, 779–787. [Google Scholar] [CrossRef]
- Müller, A.; Franke, H.; Resch, K.L.; Fryer, G. Effectiveness of Osteopathic Manipulative Therapy for Managing Symptoms of Irritable Bowel Syndrome: A Systematic Review. J. Am. Osteopath. Assoc. 2014, 114, 470–479. [Google Scholar] [CrossRef]
- Bragg, J.D. Osteopathic Primary Care of Patients with Inflammatory Bowel Disease: A Review. J. Am. Osteopath. Assoc. 2014, 114, 695–701. [Google Scholar] [CrossRef]
- Cerritelli, F.; Lacorte, E.; Ruffini, N.; Vanacore, N. Osteopathy for Primary Headache Patients: Asystematic Review. J. Pain Res. 2017, 2017, 601–611. [Google Scholar] [CrossRef] [PubMed]
- Jara Silva, C.E.; Joseph, A.M.; Khatib, M.; Knafo, J.; Karas, M.; Krupa, K.; Rivera, B.; Macia, A.; Madhu, B.; McMillan, M.; et al. Osteopathic Manipulative Treatment and the Management of Headaches: A Scoping Review. Cureus 2022, 14, e27830. [Google Scholar] [CrossRef] [PubMed]
- Chiarotto, A.; Maxwell, L.J.; Ostelo, R.W.; Boers, M.; Tugwell, P.; Terwee, C.B. Measurement Properties of Visual Analogue Scale, Numeric Rating Scale, and Pain Severity Subscale of the Brief Pain Inventory in Patients with Low Back Pain: A Systematic Review. J. Pain 2019, 20, 245–263. [Google Scholar] [CrossRef]
- Chiarotto, A.; Maxwell, L.J.; Terwee, C.B.; Wells, G.A.; Tugwell, P.; Ostelo, R.W. Roland-Morris Disability Questionnaire and Oswestry Disability Index: Which Has Better Measurement Properties for Measuring Physical Functioning in Nonspecific Low Back Pain? Systematic Review and Meta-Analysis. Phys. Ther. 2016, 96, 1620–1637. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Rush, S.E. Mindfulness-Based Stress Reduction as a Stress Management Intervention for Healthy Individuals: A Systematic Review. J. Evid.-Based Complement. Altern. Med. 2014, 19, 271–286. [Google Scholar] [CrossRef] [PubMed]
- Cerritelli, F.; Verzella, M.; Barlafante, G. Quality of Life in Patients Referring to Private Osteopathic Clinical Practice: A Prospective Observational Study. Complement. Ther. Med. 2014, 22, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Tran, B.X.; Harijanto, C.; Vu, G.T.; Ho, R.C.M. Global Mapping of Interventions to Improve Quality of Life Using Mind-Body Therapies during 1990–2018. Complement. Ther. Med. 2020, 49, 102350. [Google Scholar] [CrossRef]
- Garfinkel, S.N.; Seth, A.K.; Barrett, A.B.; Suzuki, K.; Critchley, H.D. Knowing Your Own Heart: Distinguishing Interoceptive Accuracy from Interoceptive Awareness. Biol. Psychol. 2015, 104, 65–74. [Google Scholar] [CrossRef]
- Mehling, W.E.; Acree, M.; Stewart, A.; Silas, J.; Jones, A. The Multidimensional Assessment of Interoceptive Awareness, Version 2 (MAIA-2). PLoS ONE 2018, 13, e0208034. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Bastianon, C.D.; Klein, E.M.; Tibubos, A.N.; Brähler, E.; Beutel, M.E.; Petrowski, K. Perceived Stress Scale (PSS-10) Psychometric Properties in Migrants and Native Germans. BMC Psychiatry 2020, 20, 450. [Google Scholar] [CrossRef] [PubMed]
- Bordoni, B.; Escher, A.R. Osteopathic Palpation of the Heart. Cureus 2021, 13, e14187. [Google Scholar] [CrossRef]
- Thomson, O. External Palpation of the Heart. Available online: https://twitter.com/Dr_OliverT_PhD/status/1551664838484672512 (accessed on 18 November 2022).
Parameter | HFP (n = 18) a | SHAM (n = 15) a | Significance b |
---|---|---|---|
Age (years) | 49.7 ± 12.6 | 45.3 ± 14.5 | 0.673 |
Sex (m/f ratio) | 6:12 | 7:8 | 0.493 † |
Height (cm) | 172.5 ± 8.2 | 175.0 ± 8.5 | 0.929 |
Weight (kg) | 67.9 ± 14.2 | 74.2 ± 11.6 | 0.578 |
Stress (PSS-10 score) | 19.3 ± 4.1 | 18.4 ± 4.7 | 0.796 |
HR (bpm) | 64.7 ± 10.3 | 66.4 ± 11.1 | 0.598 |
RMSSD (ms) | 43.0 ± 19.9 | 58.1 ± 38.9 | 0.007 ** |
SDNN (ms) | 48.4 ± 17.7 | 57.4 ± 28.7 | 0.036 * |
SI (pts) | 185.5 ± 119.4 | 183.9 ± 120.6 | 0.933 |
LF/HF (ratio) | 2.6 ± 3.5 | 1.6 ± 1.2 | 0.795 |
SD2/SD1 (ratio) | −1.1 ± 1.0 | −1.3 ± 1.1 | 0.173 |
Outcome | Calculation | Rate |
---|---|---|
Recruitment rate | 33 [subjects] ÷ 2 [sites] ÷ 2 [months] | 8.25 a |
Retention rate | 33 [subjects analysed] ÷ 33 [subjects recruited] × 100 | 100 b |
Adherence rate | 33 [sessions attended] ÷ 33 [sessions available] × 100 | 100 b |
Adverse events rate | 0 [adverse events] ÷ 33 [subjects] × 100 | 0 b |
Parameter | Group | Pre-Intervention a | Post-Intervention a | Difference a | Difference b | Significance c | Effect Size d |
---|---|---|---|---|---|---|---|
HR (bpm) | HFP | 64.7 ± 10.3 | 61.9 ± 10.0 | −2.8 ± 2.2 | 4.3 | <0.001 ** | 0.303 |
SHAM | 66.4 ± 11.1 | 63.5 ± 9.0 | −2.5 ± 3.2 | 4.4 | 0.009 * | 0.191 | |
RMSSD (ms) | HFP | 43.0 ± 19.9 | 66.8 ± 53.6 | 23.8 ± 44.4 | 55.4 | 0.036 *,† | −0.519 |
SHAM | 58.1 ± 38.9 | 61.6 ± 33.9 | 3.5 ± 20.6 | 6.0 | 0.521 † | −0.094 | |
SDNN (ms) | HFP | 48.4 ± 17.7 | 66.2 ± 29.0 | 17.8 ± 25.4 | 36.8 | 0.009 * | −0.772 |
SHAM | 57.4 ± 28.7 | 63.7 ± 25.7 | 6.3 ± 18.2 | 11.0 | 0.200 | −0.229 | |
SI (pts) | HFP | 185.5 ± 119.4 | 141.1 ± 132.4 | −44.4 ± 104.4 | 23.9 | 0.089 | 0.384 |
SHAM | 183.9 ± 120.6 | 148.5 ± 79.9 | −35.4 ± 69.6 | 19.3 | 0.069 | 0.292 | |
LF/HF (ratio) | HFP | 2.6 ± 3.5 | 5.8 ± 6.5 | 3.3 ± 5.7 | 123.1 | 0.026 *,† | −0.635 |
SHAM | 1.6 ± 1.2 | 2.0 ± 1.3 | 0.4 ± 1.6 | 25.0 | 0.359 † | −0.306 | |
SD2/SD1 (ratio) | HFP | −1.1 ± 1.0 | −1.2 ± 1.6 | −0.1 ± 1.0 | 9.1 | 0.527 | 0.103 |
SHAM | −1.3 ± 1.1 | −1.2 ± 1.1 | 0.0 ± 0.74 | 7.7 | 0.875 | −0.160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liem, T.; Bohlen, L.; Jung, A.-M.; Hitsch, S.; Schmidt, T. Does Osteopathic Heart-Focused Palpation Modify Heart Rate Variability in Stressed Participants with Musculoskeletal Pain? A Randomised Controlled Pilot Study. Healthcare 2024, 12, 138. https://doi.org/10.3390/healthcare12020138
Liem T, Bohlen L, Jung A-M, Hitsch S, Schmidt T. Does Osteopathic Heart-Focused Palpation Modify Heart Rate Variability in Stressed Participants with Musculoskeletal Pain? A Randomised Controlled Pilot Study. Healthcare. 2024; 12(2):138. https://doi.org/10.3390/healthcare12020138
Chicago/Turabian StyleLiem, Torsten, Lucas Bohlen, Anna-Moyra Jung, Samira Hitsch, and Tobias Schmidt. 2024. "Does Osteopathic Heart-Focused Palpation Modify Heart Rate Variability in Stressed Participants with Musculoskeletal Pain? A Randomised Controlled Pilot Study" Healthcare 12, no. 2: 138. https://doi.org/10.3390/healthcare12020138
APA StyleLiem, T., Bohlen, L., Jung, A. -M., Hitsch, S., & Schmidt, T. (2024). Does Osteopathic Heart-Focused Palpation Modify Heart Rate Variability in Stressed Participants with Musculoskeletal Pain? A Randomised Controlled Pilot Study. Healthcare, 12(2), 138. https://doi.org/10.3390/healthcare12020138