The Immediate Effect of Hanging Exercise and Muscle Cylinder Exercise on the Angle of Trunk Rotation in Adolescent Idiopathic Scoliosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Outcomes
2.3. Interventions
2.4. Statistical Methods
3. Results
4. Discussion
Limitations and Further Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lehnert-Schroth, C. The Schroth Scoliosis Three Dimensional Treatment; Books on Demand GmbH: Norderstedt, Germany, 2007. [Google Scholar]
- Weiss, H.R. “Best Practise” in Conservative Scoliosis Care; Druck und Bindung: Bad Sobernheim, Germany, 2007. [Google Scholar]
- Weiss, H.R.; Lenhert-Schroth, C.; Moramarco, M.; Moramarco, K. Schorth Therapy, Advancements in Conservative Scoliosis Treatment, 3rd ed.; BP International: London, UK, 2022. [Google Scholar]
- Weiss, H.R.; Heckel, I.; Stephan, C. Application of passive transverse forces in the rehabilitation of spinal deformities: A randomized controlled study. Stud. Health Technol. Inform. 2002, 88, 304–308. [Google Scholar] [PubMed]
- Kuru, T.; Yeldan, İ.; Dereli, E.E.; Özdinçler, A.R.; Dikici, F.; Çolak, İ. The efficacy of three-dimensional Schroth exercises in adolescent idiopathic scoliosis: A randomised controlled clinical trial. Clin. Rehabil. 2016, 30, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Laita, L.C.; Cubillo, C.T.; Gómez, T.M.; Del Barrio, S.J. Effects of corrective, therapeutic exercise techniques on adolescent idiopathic scoliosis. A systematic review. Arch. Argent. De Pediatr. 2018, 116, e582–e589. [Google Scholar] [CrossRef]
- Seleviciene, V.; Cesnaviciute, A.; Strukcinskiene, B.; Marcinowicz, L.; Strazdiene, N.; Genowska, A. Physiotherapeutic Scoliosis-Specific Exercise Methodologies Used for Conservative Treatment of Adolescent Idiopathic Scoliosis, and Their Effectiveness: An Extended Literature Review of Current Research and Practice. Int. J. Environ. Res. Public Health 2022, 19, 9240. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Jeon, H.S.; Park, H.W. Effects of the Schroth exercise on idiopathic scoliosis: A meta-analysis. Eur. J. Phys. Rehabil. Med. 2018, 54, 440–449. [Google Scholar] [CrossRef] [PubMed]
- Moramarco, K.; Borysov, M. A Modern Historical Perspective of Schroth Scoliosis Rehabilitation and Corrective Bracing Techniques for Idiopathic Scoliosis. Open Orthop. J. 2017, 11, 1452–1465. [Google Scholar] [CrossRef] [PubMed]
- Weiss, H.R. Eine funktionsanalytische Betrachtung der dreidimensionalen Skoliosebehandlung nach Schroth. Krankengymnastik 1988, 40, 354–363. [Google Scholar]
- Weiss, H.R. Elektromyographische Untersuchungen zur skoliosespezifischen Haltungsschulung. Krankengymnastik 1991, 43, 361–369. [Google Scholar]
- Weiss, H.R. Elektromyographische Befundkontrolle von Patienten mit idiopathischer Skoliose nach einer stationären Intensivbehandlung (nach Schroth). In Erwachsenenskoliose—Konservative Behandlung der idiopathischen Skoliose; Springer: Berlin, Heidelberg, 1991; pp. 65–72. [Google Scholar]
- Weiss, H.R. Imbalance of electromyographic activity and physical rehabilitation of patients with idiopathic scoliosis. Eur. Spine J. 1993, 1, 240–243. [Google Scholar] [CrossRef]
- Rrecaj-Malaj, S.; Beqaj, S.; Krasniqi, V.; Qorolli, M.; Tufekcievski, A. Outcome of 24 Weeks of Combined Schroth and Pilates Exercises on Cobb Angle, Angle of Trunk Rotation, Chest Expansion, Flexibility and Quality of Life in Adolescents with Idiopathic Scoliosis. Med. Sci. Monit. Basic Res. 2020, 26, e920449. [Google Scholar] [CrossRef]
- Zapata, K.A.; Dieckmann, R.J.; Hresko, M.T.; Sponseller, P.D.; Vitale, M.G.; Glassman, S.D.; Smith, B.G.; Jo, C.H.; Sucato, D.J. A United States multi-site randomized control trial of Schroth-based therapy in adolescents with mild idiopathic scoliosis. Spine Deform. 2023, 11, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Akçay, B.; Çolak, T.K.; Apti, A.; Çolak, İ.; Kızıltaş, Ö. The reliability of the augmented Lehnert-Schroth and Rigo classification in scoliosis management. South Afr. J. Physiother. 2021, 77, 1568. [Google Scholar] [CrossRef] [PubMed]
- Cobb, J.R. Outline for the study of scoliosis. Am. Acad. Orthop. Surg. Instr. Course Lect. 1948, 5, 261–275. [Google Scholar]
- Korovessis, P.G.; Stamatakis, M.V. Prediction of scoliotic cobb angle with the use of the scoliometer. Spine 1996, 21, 1661–1666. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.H.; Tai, C.L.; Chen, L.H.; Niu, C.C.; Chen, W.J.; Lai, P.L. Application of two-parameter scoliometer values for predicting scoliotic Cobb angle. Biomed. Eng. Online 2017, 16, 136. [Google Scholar] [CrossRef] [PubMed]
- Amendt, L.E.; Ause-Ellias, K.L.; Eybers, J.L.; Wadsworth, C.T.; Nielsen, D.H.; Weinstein, S.L. Validity and reliability testing of the Scoliometer. Phys. Ther. 1990, 70, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Bunnell, W.P. An objective criterion for scoliosis screening. J. Bone Jt. Surg. Am. 1984, 66, 1381–1387. [Google Scholar] [CrossRef]
- Berdishevsky, H.; Lebel, V.A.; Bettany-Saltikov, J.; Rigo, M.; Lebel, A.; Hennes, A.; Romano, M.; Białek, M.; M’hango, A.; Betts, T.; et al. Physiotherapy scoliosis-specific exercises—A comprehensive review of seven major schools. Scoliosis Spinal Disord. 2016, 11, 20. [Google Scholar] [CrossRef]
- Abelin-Genevois, K.; Sassi, D.; Verdun, S.; Roussouly, P. Sagittal classification in adolescent idiopathic scoliosis: Original description and therapeutic implications. Eur. Spine J. 2018, 27, 2192–2202. [Google Scholar] [CrossRef]
- Schlösser, T.P.; Shah, S.A.; Reichard, S.J.; Rogers, K.; Vincken, K.L.; Castelein, R.M. Differences in early sagittal plane alignment between thoracic and lumbar adolescent idiopathic scoliosis. Spine J. 2014, 14, 282–290. [Google Scholar] [CrossRef]
- Mac-Thiong, J.M.; Labelle, H.; Charlebois, M.; Huot, M.P.; de Guise, J.A. Sagittal plane analysis of the spine and pelvis in adolescent idiopathic scoliosis according to the coronal curve type. Spine 2003, 28, 1404–1409. [Google Scholar] [CrossRef] [PubMed]
- Farkas, A. Über Bedingungen und Auslösende Momente bei der Skoliosenentstehung: (Versuch einer Funktionellen Skoliosenlehre); Akademia Wychowania Fizycznego im. Bronisława Czecha (Kraków), Biblioteka: Kraków, Poland, 1925. [Google Scholar]
- Weiss, H.R.; Dallmayer, R.; Gallo, D. Sagittal counter forces (SCF) in the treatment of idiopathic scoliosis: A preliminary report. Pediatr. Rehabil. 2006, 9, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Çolak, T.K.; Yeldan, İ.; Dikici, F. Effect of symmetric mobilization exercises applied sagittale plane on spine flexibility and angle of trunk rotation in scoliosis. Turk. J. Physiother. Rehabil. 2015, 2, 1–8. [Google Scholar] [CrossRef]
- Weiss, H.R.; Grita, W. Physio-Logic® Balance Einfach und Entspannt Zum Gesunden Rücken; Richard Pflaum Verlag GmbH Co. KG: München, Germany, 2013. [Google Scholar]
- Weiss, H.R.; Klein, R. Improving excellence in scoliosis rehabilitation: A controlled study of matched pairs. Pediatr. Rehabil. 2006, 9, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Crawford, H.J.; Jull, G.A. The influence of thoracic posture and movement on range of arm elevation. Physiother. Theory Pract. 1993, 9, 143–148. [Google Scholar] [CrossRef]
- Crosbie, J.; Kilbreath, S.L.; Hollmann, L.; York, S. Scapulohumeral rhythm and associated spinal motion. Clin. Biomech. 2008, 23, 184–192. [Google Scholar] [CrossRef]
- Stewart, S.G.; Jull, G.A.; Ng, J.K.; Willems, J.M. An initial analysis of thoracic spine movement during unilateral arm elevation. J. Man. Manip. Ther. 1995, 3, 15–20. [Google Scholar] [CrossRef]
- Theodoridis, D.; Ruston, S. The effect of shoulder movements on thoracic spine 3D motion. Clin. Biomech. 2002, 17, 418–421. [Google Scholar] [CrossRef]
- Edmondston, S.J.; Ferguson, A.; Ippersiel, P.; Ronningen, L.; Sodeland, S.; Barclay, L. Clinical and radiological investigation of thoracic spine extension motion during bilateral arm elevation. J. Orthop. Sports Phys. Ther. 2012, 42, 861–869. [Google Scholar] [CrossRef]
- Keegan, J.J. Alterations of the lumbar curve related to posture and seating. J. Bone Jt. Surg. Am. Vol. 1953, 35, 589–603. [Google Scholar] [CrossRef]
- Harrison, D.D.; Harrison, S.O.; Croft, A.C.; Harrison, D.E.; Troyanovich, S.J. Sitting biomechanics part I: Review of the literature. J. Manip. Physiol. Ther. 1999, 22, 594–609. [Google Scholar] [CrossRef] [PubMed]
- Neumann, D.A. Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation; Mosby Elsevier: London, UK, 2010; Volume 1, pp. 7–11. [Google Scholar]
- Lovett, R.W. A contribution to the study of the mechanics of the spine. Am. J. Anat. 1903, 2, 457–462. [Google Scholar] [CrossRef]
- Lovett, R.W. The mechanism of the normal spine and its relation to scoliosis. Boston Med. Surg. J. 1905, 153, 349–358. [Google Scholar] [CrossRef]
- Liebsch, C.; Graf, N.; Appelt, K.; Wilke, H.J. The rib cage stabilizes the human thoracic spine: An in vitro study using stepwise reduction of rib cage structures. PLoS ONE 2017, 12, e0178733. [Google Scholar] [CrossRef]
- Anderson, D.E.; Mannen, E.M.; Tromp, R.; Wong, B.M.; Sis, H.L.; Cadel, E.S.; Friis, E.A.; Bouxsein, M.L. The rib cage reduces intervertebral disc pressures in cadaveric thoracic spines by sharing loading under applied dynamic moments. J. Biomech. 2018, 70, 262–266. [Google Scholar] [CrossRef]
- Monticone, M.; Ambrosini, E.; Cazzaniga, D.; Rocca, B.; Ferrante, S. Active self-correction and task-oriented exercises reduce spinal deformity and improve quality of life in subjects with mild adolescent idiopathic scoliosis. Results of a randomised controlled trial. Eur. Spine J. 2014, 23, 1204–1214. [Google Scholar] [CrossRef]
Mean ± SD Median (Min–Max) | |
---|---|
Age (years) | 18.6 ± 4.31 18 (13–25) |
Height (cm) | 164.7 ± 11.37 164 (144–188) |
Weight (kg) | 56.22 ± 15.2 52 (40–100) |
BMI (kg/m2) | 20.55 ± 2.9 20 (15.7–28.2) |
Maximum Cobb angle (°) | 33.9 ± 7.3 30 (18–50) |
Maximum ATR angle (°) | 8.8 ±5.3 8 (1–23) |
ATR Values | Before Mean ± SD | After Semi-Hanging Exercise Mean ± SD | After Muscle Cylinder Exercise Mean ± SD | p Value |
---|---|---|---|---|
Thoracic | 5.37 ± 6.19 | 6.44 ±6.29 | 4.31 ± 6.07 | <0.001 |
Thoracolumbar | 4.83 ± 3.68 | 6.31 ± 4.05 | 3.22 ± 2.80 | <0.001 |
Lumbar | 5.01 ± 3.55 | 6.62 ± 4.55 | 3.70 ± 3.33 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akçay, B.; Çolak, T.K.; Apti, A.; Çolak, İ. The Immediate Effect of Hanging Exercise and Muscle Cylinder Exercise on the Angle of Trunk Rotation in Adolescent Idiopathic Scoliosis. Healthcare 2024, 12, 305. https://doi.org/10.3390/healthcare12030305
Akçay B, Çolak TK, Apti A, Çolak İ. The Immediate Effect of Hanging Exercise and Muscle Cylinder Exercise on the Angle of Trunk Rotation in Adolescent Idiopathic Scoliosis. Healthcare. 2024; 12(3):305. https://doi.org/10.3390/healthcare12030305
Chicago/Turabian StyleAkçay, Burçin, Tuğba Kuru Çolak, Adnan Apti, and İlker Çolak. 2024. "The Immediate Effect of Hanging Exercise and Muscle Cylinder Exercise on the Angle of Trunk Rotation in Adolescent Idiopathic Scoliosis" Healthcare 12, no. 3: 305. https://doi.org/10.3390/healthcare12030305
APA StyleAkçay, B., Çolak, T. K., Apti, A., & Çolak, İ. (2024). The Immediate Effect of Hanging Exercise and Muscle Cylinder Exercise on the Angle of Trunk Rotation in Adolescent Idiopathic Scoliosis. Healthcare, 12(3), 305. https://doi.org/10.3390/healthcare12030305