Long-Term Effect of Exercise on Irisin Blood Levels—Systematic Review and Meta-Analysis
Abstract
:1. Background
Description of the Condition
2. Materials and Methods
2.1. Criteria for Considering Studies for this Review
2.2. Types of Studies
2.3. Types of Participants
2.4. Types of Interventions
2.5. Types of Outcome Measures
2.6. Primary Outcomes
2.7. Search Methods for Identification of Studies
2.8. Data Collection and Analysis
2.9. Assessment of Risk of Bias in Included Studies
2.10. Measures of Treatment Effect
2.11. Dealing with Missing Data
3. Results
3.1. Description of Studies
3.2. Risk of Bias and Quality of Reporting Data
3.3. Systematic Review
3.4. Meta-Analysis
4. Discussion
4.1. Summary of Main Results and Interpretations
4.2. Quality of the Evidence
4.3. Potential Biases in the Review Process
4.4. Agreements and Disagreements with Other Studies or Reviews
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boström, P.; Wu, J.; Jedrychowski, M.P.; Korde, A.; Ye, L.; Lo, J.C.; Rasbach, K.A.; Boström, E.A.; Choi, J.H.; Long, J.Z.; et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 2012, 481, 463–468. [Google Scholar] [CrossRef]
- Perakakis, N.; Triantafyllou, G.A.; Fernández-Real, J.M.; Huh, J.Y.; Park, K.H.; Seufert, J.; Mantzoros, C.S. Physiology and role of irisin in glucose homeostasis. Nat. Rev. Endocrinol. 2017, 13, 324–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grygiel-Gorniak, B.; Puszczewicz, M. A review on irisin, a new protagonist that mediates muscle-adipose-bone-neuron con-nectivity. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 4687–4693. [Google Scholar] [PubMed]
- Ma, C.; Ding, H.; Deng, Y.; Liu, H.; Xiong, X.; Yang, Y. Irisin: A New Code Uncover the Relationship of Skeletal Muscle and Cardiovascular Health During Exercise. Front. Physiol. 2021, 12, 620608. [Google Scholar] [CrossRef] [PubMed]
- Siteneski, A.; Cunha, M.P.; Lieberknecht, V.; Pazini, F.L.; Gruhn, K.; Brocardo, P.S.; Rodrigues, A.L.S. Central irisin admin-istration affords antidepressant-like effect and modulates neuroplasticity-related genes in the hippocampus and prefrontal cortex of mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 84, 294–303. [Google Scholar] [CrossRef]
- Mahgoub, M.; D’souza, C.; Darmaki, R.S.M.H.A.; Baniyas, M.M.; Adeghate, E.A. An update on the role of irisin in the regu-lation of endocrine and metabolic functions. Peptides 2018, 104, 15–23. [Google Scholar] [CrossRef]
- Wrann, C.D.; White, J.P.; Salogiannnis, J.; Laznik-Bogoslavski, D.; Wu, J.; Ma, D.; Lin, J.D.; Greenberg, M.E.; Spiegelman, B.M. Exercise Induces Hippocampal BDNF through a PGC-1α/FNDC5 Pathway. Cell Metab. 2013, 18, 649–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira, M.; de Sibio, M.T.; Mathias, L.S.; Rodrigues, B.M.; Sakalem, M.E.; Nogueira, C.R. Irisin modulates genes associated with severe coronavirus disease (COVID-19) outcome in human subcutaneous adipocytes cell culture. Mol. Cell. Endocrinol. 2020, 515, 110917. [Google Scholar] [CrossRef]
- Ricci, N.A.; Cunha, A.I.L. Physical Exercise for Frailty and Cardiovascular Diseases. Adv. Exp. Med. Biol. 2020, 1216, 115–129. [Google Scholar] [CrossRef]
- Whillier, S. Exercise and Insulin Resistance. Adv. Exp. Med. Biol. 2020, 1228, 137–150. [Google Scholar]
- Balducci, S.; Sacchetti, M.; Haxhi, J.; Orlando, G.; D’Errico, V.; Fallucca, S.; Menini, S.; Pugliese, G. Physical exercise as therapy for type 2 diabetes mellitus. Diabetes/Metab. Res. Rev. 2014, 30, 13–23. [Google Scholar] [CrossRef]
- Ströhle, A. Physical activity, exercise, depression and anxiety disorders. J. Neural Transm. 2009, 116, 777–784. [Google Scholar] [CrossRef]
- Montero-Fernández, N.; Serra-Rexach, J.A. Role of exercise on sarcopenia in the elderly. Eur. J. Phys. Rehabil. Med. 2013, 49, 131–143. [Google Scholar]
- De la Rosa, A.; Olaso-Gonzalez, G.; Arc-Chagnaud, C.; Millan, F.; Salvador-Pascual, A.; Garcia-Lucerga, C.; Blasco-Lafarga, C.; Garcia-Dominguez, E.; Carretero, A.; Correas, A.G.; et al. Physical exercise in the prevention and treatment of Alzheimer’s disease. J. Sport. Health. Sci. 2020, 9, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Pekkala, S.; Wiklund, P.K.; Hulmi, J.J.; Ahtiainen, J.P.; Horttanainen, M.; Pöllänen, E.; Mäkelä, K.A.; Kainulainen, H.; Häkkinen, K.; Nyman, K.; et al. Are skeletal muscle FNDC5 gene expression and irisin release regulated by exercise and related to health? J. Physiol. 2013, 591, 5393–5400. [Google Scholar] [CrossRef] [PubMed]
- Timmons, J.A.; Baar, K.; Davidsen, P.K.; Atherton, P.J. Is irisin a human exercise gene? Nat. Cell Biol. 2012, 488, E9–E10. [Google Scholar] [CrossRef] [PubMed]
- Huh, J.Y.; Panagiotou, G.; Mougios, V.; Brinkoetter, M.; Vamvini, M.T.; Schneider, B.E.; Mantzoros, C.S. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentra-tions in response to weight loss and exercise. Metab.Clin.Exp. 2012, 61, 1725–1738. [Google Scholar] [CrossRef] [Green Version]
- Dinas, P.C.; Lahart, I.M.; Timmons, J.A.; Svensson, P.A.; Koutedakis, Y.; Flouris, A.D.; Metsios, G.S. Effects of physical activity on the link between PGC-1a and FNDC5 in muscle, circulating Ιrisin and UCP1 of white adipocytes in humans: A systematic review. F1000Research 2017, 6, 286. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savovic, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomized trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [Green Version]
- Sterne, J.A.; Hernan, M.A.; Reeves, B.C.; Savovic, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomized studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [Green Version]
- Mantel, N.; Haenszel, W. Statistical Aspects of the Analysis of Data From Retrospective Studies of Disease. J. Natl. Cancer Inst. 1959, 22, 719–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. Br. Med. J. 2003, 327, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.P.T.; Li, T.; Deeks, J.J. Chapter 6: Choosing effect measures and computing estimates of effect. In Cochrane Handbook for Systematic Reviews of Interventions Version 6.1; Higgins, J., Thomas, J., Eds.; Cochrane: Cochrane, AB, Canada, 2021; Available online: www.training.cochrane.org/handbook (accessed on 22 June 2021).
- Alyami, R.M.; Alhwaikan, A.M.; Alharbi, A.R.; Al-Nafisah, G. Impact of supervised exercise training on pulmonary function parameters, exercise capacity and Irisin Biomarker in Interstitial lung disease patients. Pak. J. Med. Sci. 2020, 36, 1089–1095. [Google Scholar] [CrossRef]
- Amanat, S.; Sinaei, E.; Panji, M.; MohammadporHodki, R.; Bagheri-Hosseinabadi, Z.; Asadimehr, H.; Fararouei, M.; Dianatinasab, A. A Randomized Controlled Trial on the Effects of 12 Weeks of Aerobic, Resistance, and Combined Exercises Training on the Serum Levels of Nesfatin-1, Irisin-1 and HOMA-IR. Front. Physiol. 2020, 11, 562895. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, R.; Rashidlamir, A.; Ashtary-Larky, D.; Wong, A.; Grubbs, B.; Motevalli, M.S.; Baker, J.S.; Laher, I.; Zouhal, H. Effects of green tea extract supplementation and endurance training on irisin, pro-inflammatory cytokines, and adiponectin concentrations in overweight middle-aged men. Eur. J. Appl. Physiol. 2020, 120, 915–923. [Google Scholar] [CrossRef]
- Bang, H.S.; Seo, D.Y.; Chung, Y.M.; Oh, K.-M.; Park, J.J.; Arturo, F.; Jeong, S.-H.; Kim, N.; Han, J. Ursolic Acid-Induced Elevation of Serum Irisin Augments Muscle Strength During Resistance Training in Men. Korean J. Physiol. Pharmacol. 2014, 18, 441–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banitalebi, E.; Kazemi, A.; Faramarzi, M.; Nasiri, S.; Haghighi, M.M. Effects of sprint interval or combined aerobic and re-sistance training on myokines in overweight women with type 2 diabetes: A randomized controlled trial. Life Sci. 2019, 217, 101–109. [Google Scholar] [CrossRef]
- Besse-Patin, A.; Montastier, E.; Vinel, C.; Castan-Laurell, I.; Louche, K.; Dray, C.; Daviaud, D.; Mir, L.; Marques, M.-A.; Thalamas, C.; et al. Effect of endurance training on skeletal muscle myokine expression in obese men: Identification of apelin as a novel myokine. Int. J. Obes. 2014, 38, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Blüher, S.; Panagiotou, G.; Petroff, D.; Markert, J.; Wagner, A.; Klemm, T.; Filippaios, A.; Keller, A.; Mantzoros, C.S. Effects of a 1-year exercise and lifestyle intervention on irisin, adipokines, and inflammatory markers in obese children. Obesity 2014, 22, 1701–1708. [Google Scholar] [CrossRef] [PubMed]
- Boeselt, T.; Nell, C.; Lütteken, L.; Kehr, K.; Koepke, J.; Apelt, S.; Veith, M.; Beutel, B.; Spielmanns, M.; Greulich, T.; et al. Benefits of High-Intensity Exercise Training to Patients with Chronic Obstructive Pulmonary Disease: A Controlled Study. Respiration 2017, 93, 301–310. [Google Scholar] [CrossRef]
- Bonfante, I.L.P.; Chacon-Mikahil, M.P.T.; Brunelli, D.T.; Gáspari, A.F.; Duft, R.G.; Lopes, W.A.; Bonganha, V.; Libardi, C.A.; Cavaglieri, C.R. Combined training, FNDC5/irisin levels and metabolic markers in obese men: A randomised controlled trial. Eur. J. Sport Sci. 2017, 17, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Briken, S.; Rosenkranz, S.C.; Keminer, O.; Patra, S.; Ketels, G.; Heesen, C.; Hellweg, R.; Pless, O.; Schulz, K.-H.; Gold, S.M. Effects of exercise on Irisin, BDNF and IL-6 serum levels in patients with progressive multiple sclerosis. J. Neuroimmunol. 2016, 299, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, C.; Weh-Gray, O.; Bloch, W.; Brixius, K.; Predel, H.-G.; Kreutz, T. Effects of a Combined Endurance/Strength Training Program on Circulating Irisin Levels in Overweight/Obese Men and Women with Type 2 Diabetes Mellitus. Exp. Clin. Endocrinol. Diabetes 2020. [Google Scholar] [CrossRef]
- Damirchi, A.; Hosseini, F.; Babaei, P. Mental Training Enhances Cognitive Function and BDNF More Than Either Physical or Combined Training in Elderly Women With MCI: A Small-Scale Study. Am. J. Alzheimer’s Dis. Other Dementiasr 2017, 33, 20–29. [Google Scholar] [CrossRef]
- De la Torre-Saldaña, V.A.; Gómez-Sámano, M.Á.; Gómez-Pérez, F.J.; Rosas-Saucedo, J.; León-Suárez, A.; Grajales-Gómez, M.; Oseguera-Moguel, J.; Beyhart, A.V.; Cuevas-Ramos, D. Fasting Insulin and Alanine Amino Transferase, but not FGF21, Were Independent Parameters Related with Irisin Increment after Intensive Aerobic Exercising. Rev. Investig. Clin. 2019, 71, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Dianatinasab, A.; Koroni, R.; Bahramian, M.; Bagheri-Hosseinabadi, Z.; Vaismoradi, M.; Fararouei, M.; Amanat, S. The effects of aerobic, resistance, and combined exercises on the plasma irisin levels, HOMA-IR, and lipid profiles in women with metabolic syndrome: A randomized controlled trial. J. Exerc. Sci. Fit. 2020, 18, 168–176. [Google Scholar] [CrossRef]
- Dundar, A.; Kocahan, S.; Sahin, L. Associations of apelin, leptin, irisin, ghrelin, insulin, glucose levels, and lipid parameters with physical activity during eight weeks of regular exercise training. Arch. Physiol. Biochem. 2019, 127, 291–295. [Google Scholar] [CrossRef]
- Dunnwald, T.; Melmer, A.; Gatterer, H.; Salzmann, K.; Ebenbichler, C.; Burtscher, M.; Schobersberger, W.; Grander, W. Su-pervised Short-term High-intensity Training on Plasma Irisin Concentrations in Type 2 Diabetic Patients. J. Sport. Health. Sci. 2019, 40, 158–164. [Google Scholar]
- Eaton, M.; Granata, C.; Barry, J.; Safdar, A.; Bishop, D.; Little, J.P. Impact of a single bout of high-intensity interval exercise and short-term interval training on interleukin-6, FNDC5, and METRNL mRNA expression in human skeletal muscle. J. Sport Health Sci. 2018, 7, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Ellefsen, S.; Vikmoen, O.; Slettaløkken, G.; Whist, J.E.; Nygaard, H.; Hollan, I.; Rauk, I.; Vegge, G.; Strand, T.A.; Raastad, T.; et al. Irisin and FNDC5: Effects of 12-week strength training, and relations to muscle phenotype and body mass composition in untrained women. Graefe’s Arch. Clin. Exp. Ophthalmol. 2014, 114, 1875–1888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Del-Valle, M.; Short, M.J.; Chung, E.; McComb, J.; Kloiber, S.; Naclerio, F.; Larumbe-Zabala, E. Effects of High-Intensity Resistance Training on Circulating Levels of Irisin in Healthy Adults: A Randomized Controlled Trial. Asian J. Sports Med. 2018, 9, e13025. [Google Scholar] [CrossRef]
- Ghanbari-Niaki, A.; Saeidi, A.; Ahmadian, M.; Gharahcholo, L.; Naghavi, N.; Fazelzadeh, M.; Mahjoub, S.; Myers, S.; Williams, A. The combination of exercise training and Zataria multiflora supplementation increase serum irisin levels in postmenopausal women. Integr. Med. Res. 2018, 7, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Hecksteden, A.; Wegmann, M.; Steffen, A.; Kraushaar, J.; Morsch, A.; Ruppenthal, S.; Kaestner, L.; Meyer, T. Irisin and exercise training in humans—Results from a randomized controlled training trial. BMC Med. 2013, 11, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Wang, S.; Xu, F.; Wang, D.; Yin, H.; Lai, Q.; Liao, J.; Hou, X.; Hu, M. Exercise training with dietary restriction enhances circulating irisin level associated with increasing endothelial progenitor cell number in obese adults: An intervention study. PeerJ 2017, 5, e3669. [Google Scholar] [CrossRef] [Green Version]
- Huh, J.Y.; Mougios, V.; Skraparlis, A.; Kabasakalis, A.; Mantzoros, C.S. Irisin in response to acute and chronic whole-body vibration exercise in humans. Metabolism 2014, 63, 918–921. [Google Scholar] [CrossRef] [PubMed]
- Jawzal, K.H.; Alkass, S.Y.; Hassan, A.B.; Abdulah, D.M. The effectiveness of military physical exercise on irisin concentrations and oxidative stress among male healthy volunteers. Horm. Mol. Biol. Clin. Investig. 2020, 41, 20200007. [Google Scholar] [CrossRef]
- Kim, H.-J.; Lee, H.-J.; So, B.; Son, J.S.; Yoon, D.; Song, W. Effect of Aerobic Training and Resistance Training on Circulating Irisin Level and Their Association with Change of Body Composition in Overweight/Obese Adults: A Pilot Study. Physiol. Res. 2016, 65, 271–279. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, D.-Y. Aquarobic exercises improve the serum blood irisin and brain-derived neurotrophic factor levels in elderly women. Exp. Gerontol. 2018, 104, 60–65. [Google Scholar] [CrossRef]
- Kim, S.-J.; Yoon, E.-S.; Jung, S.-Y.; Kim, D.-Y. Effect of uphill walking on browning factor and high molecular weight-adiponectin in postmenopausal women. J. Exerc. Rehab. 2020, 16, 265–271. [Google Scholar] [CrossRef]
- Korkmaz, A.; Venojärvi, M.; Wasenius, N.; Manderoos, S.; DeRuisseau, K.C.; Gidlund, E.-K.; Heinonen, O.J.; Lindholm, H.; Aunola, S.; Eriksson, J.G.; et al. Plasma irisin is increased following 12 weeks of Nordic walking and associates with glucose homoeostasis in overweight/obese men with impaired glucose regulation. Eur. J. Sport Sci. 2019, 19, 258–266. [Google Scholar] [CrossRef]
- Küster, O.C.; Laptinskaya, D.; Fissler, P.; Schnack, C.; Zügel, M.; Nold, V.; Thurm, F.; Pleiner, S.; Karabatsiakis, A.; von Einem, B.; et al. Novel Blood-Based Biomarkers of Cognition, Stress, and Physical or Cognitive Training in Older Adults at Risk of Dementia: Preliminary Evidence for a Role of BDNF, Irisin, and the Kynurenine Pathway. J. Alzheimers Dis. 2017, 59, 1097–1111. [Google Scholar] [CrossRef]
- Micielska, K.; Gmiat, A.; Zychowska, M.; Kozlowska, M.; Walentukiewicz, A.; Lysak-Radomska, A.; Jaworska, J.; Rodziewicz, E.; Duda-Biernacka, B.; Ziemann, E. The beneficial effects of 15 units of high-intensity circuit training in women is modified by age, baseline insulin resistance and physical capacity. Diabetes Res. Clin. Pr. 2019, 152, 156–165. [Google Scholar] [CrossRef]
- Miyamoto-Mikami, E.; Sato, K.; Kurihara, T.; Hasegawa, N.; Fujie, S.; Fujita, S.; Sanada, K.; Hamaoka, T.; Tabata, I.; Iemitsu, M. Endurance training-induced increase in circulating irisin levels is associated with reduction of abdominal visceral fat in mid-dle-aged and older adults. PLoS ONE 2015, 10, e0120354. [Google Scholar] [CrossRef] [Green Version]
- Moienneia, N.; Hosseini, S.R.A. Acute and chronic responses of metabolic myokine to different intensities of exercise in sedentary young women. Obes. Med. 2016, 1, 15–20. [Google Scholar] [CrossRef]
- Moraes, C.; Leal, V.O.; Marinho, S.M.; Barroso, S.G.; Rocha, G.S.; Boaventura, G.T.; Mafra, D. Resistance Exercise Training does not Affect Plasma Irisin Levels of Hemodialysis Patients. Horm. Metab. Res. 2013, 45, 900–904. [Google Scholar] [CrossRef]
- Rad, M.M.; Bijeh, N.; Hosseini, S.R.A.; Saeb, A.R. The effect of two concurrent exercise modalities on serum concentrations of FGF21, irisin, follistatin, and myostatin in men with type 2 diabetes mellitus. Arch. Physiol. Biochem. 2020, 1–10. [Google Scholar] [CrossRef]
- Murawska-Cialowicz, E.; Wojna, J.; Zuwala-Jagiello, J. Crossfit training changes brain-derived neurotrophic factor and irisin levels at rest, after wingate and progressive tests, and improves aerobic capacity and body composition of young physically active men and women. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2015, 66, 811–821. [Google Scholar]
- Murawska-Cialowicz, E.; Wolanski, P.; Zuwala-Jagiello, J.; Feito, Y.; Petr, M.; Kokstejn, J.; Stastny, P.; Goliński, D. Effect of HIIT with Tabata Protocol on Serum Irisin, Physical Performance, and Body Composition in Men. Int. J. Environ. Res. Public Health 2020, 17, 3589. [Google Scholar] [CrossRef] [PubMed]
- Neumayr, G.; Engler, C.; Lunger, L.; Lechleitner, P. Effects of a one-week vacation with various activity programs on metab-olism and adipokines. Int. J. Sports. Med. 2021, 42, 703–707. [Google Scholar]
- Norheim, F.; Langleite, T.M.; Hjorth, M.; Holen, T.; Kielland, A.; Stadheim, H.K.; Gulseth, H.L.; Birkeland, K.I.; Jensen, J.; Drevon, C.A. The effects of acute and chronic exercise on PGC-1α, irisin and browning of subcutaneous adipose tissue in humans. FEBS J. 2014, 281, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Ozan, M.; Karakurt, S.; Aggon, E.; Agirbas, O.; Ucan, E.; Alp, H.H. The effects of strength exercises on body composition and irisin. J. Appl. Biomech. 2020, 9, 178–186. [Google Scholar]
- Ozbay, S.; Ulupınar, S.; Şebin, E.; Altınkaynak, K. Acute and chronic effects of aerobic exercise on serum irisin, adropin, and cholesterol levels in the winter season: Indoor training versus outdoor training. Chin. J. Physiol. 2020, 63, 21–26. [Google Scholar] [CrossRef]
- Palacios-González, B.; Vadillo-Ortega, F.; Polo-Oteyza, E.; Sánchez, T.; Ancira-Moreno, M.; Romero-Hidalgo, S.; Meráz, N.; Antuna-Puente, B. Irisin levels before and after physical activity among school-age children with different BMI: A direct relation with leptin. Obesity 2015, 23, 729–732. [Google Scholar] [CrossRef]
- Planella-Farrugia, C.; Comas, F.; Sabater-Masdeu, M.; Moreno, M.; Moreno-Navarrete, J.M.; Rovira, O.; Ricart, W.; Fernández-Real, J.M. Circulating Irisin and Myostatin as Markers of Muscle Strength and Physical Condition in Elderly Subjects. Front. Physiol. 2019, 10, 871. [Google Scholar] [CrossRef] [Green Version]
- Prestes, J.; da Cunha Nascimento, D.; Tibana, R.A.; Teixeira, T.G.; Vieira, D.C.L.; Tajra, V.; de Farias, D.L.; Silva, A.O.; Funghetto, S.S.; de Souza, V.C.; et al. Understanding the individual responsiveness to resistance training periodization. Age 2015, 37, 9793. [Google Scholar] [CrossRef] [PubMed]
- Rashid, F.A.; Abbas, H.J.; Naser, N.A.; Ali, H.A. Effect of Long-Term Moderate Physical Exercise on Irisin between Normal Weight and Obese Men. Sci. World J. 2020, 2020, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Rashti, B.A.; Mehrabani, J.; Damirchi, A.; Babaei, P. The influence of concurrent training intensity on serum irisin and ab-dominal fat in postmenopausal women. Prz. Menopauzalny. 2019, 18, 166–173. [Google Scholar] [PubMed]
- Roh, H.-T.; Cho, S.-Y.; So, W.-Y. Effects of Regular Taekwondo Intervention on Oxidative Stress Biomarkers and Myokines in Overweight and Obese Adolescents. Int. J. Environ. Res. Public Health 2020, 17, 2505. [Google Scholar] [CrossRef] [Green Version]
- Sezgin, G.; Kar, F.; Uslu, S. The effect of nutrition and exercise training on irisin and semaphorin-3E levels in obese patients. Arch. Physiol. Biochem. 2020, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Shabani, R.; Izaddoust, F. Effects of aerobic training, resistance training, or both on circulating irisin and myostatin in untrained women. Acta Gymnica 2018, 48, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Scharhag-Rosenberger, F.; Meyer, T.; Wegmann, M.; Ruppenthal, S.; Kaestner, L.; Morsch, A.; Hecksteden, A. Irisin Does Not Mediate Resistance Training–Induced Alterations in Resting Metabolic Rate. Med. Sci. Sports Exerc. 2014, 46, 1736–1743. [Google Scholar] [CrossRef] [PubMed]
- Śliwicka, E.; Cisoń, T.; Kasprzak, Z.; Nowak, A.; Pilaczyńska-Szcześniak, Ł. Serum irisin and myostatin levels after 2 weeks of high-altitude climbing. PLoS ONE 2017, 12, e0181259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szumilewicz, A.; Worska, A.; Piernicka, M.; Kuchta, A.; Kortas, J.; Jastrzȩbski, Z.; Radzimiński, Ł.; Jaworska, J.; Micielska, K.; Ziemann, E. The exercise-induced irisin is associated with improved levels of glucose homeostasis markers in pregnant women participating in 8-week prenatal group fitness program: A pilot study. Biomed. Res. Int. 2017, 2017, 9414525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tibana, R.A.; Nascimento, D.D.C.; de Souza, N.M.F.; de Souza, V.C.; Neto, I.V.D.S.; Voltarelli, F.A.; Pereira, G.B.; Navalta, J.W.; Prestes, J. Irisin levels are not associated to resistance training-induced alterations in body mass composition in older untrained women with and without obesity. J. Nutr. Health Aging 2017, 21, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, Y.; Ijichi, T.; Goto, K. Effect of sprint training on resting serum irisin concentration—Sprint training once daily vs. twice every other day. Metabolism 2016, 65, 492–495. [Google Scholar] [CrossRef]
- Vieira, D.C.L.; Nascimento, D.C.; Tajra, V.; Teixeira, T.G.; Farias, D.L.; Tibana, R.A.; Silva, A.O.; Rosa, T.S.; De Moraes, M.R.; Voltarelli, F.A.; et al. High supervised resistance training in elderly women: The role of supervision ratio. Int. J. Exerc. Sci. 2020, 13, 597–606. [Google Scholar]
- Walentukiewicz, A.; Lysak-Radomska, A.; Jaworska, J.; Prusik, K.; Prusik, K.; Kortas, J.A.; Lipiński, M.; Babinska, A.; Antosiewicz, J.; Ziemann, E. Vitamin D Supplementation and Nordic Walking Training Decreases Serum Homocysteine and Ferritin in Elderly Women. Int. J. Environ. Res. Public Health 2018, 15, 2064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber-Rajek, M.; Radzimińska, A.; Strączyńska, A.; Strojek, K.; Piekorz, Z.; Kozakiewicz, M.; Styczyńska, H. A random-ized-controlled trial pilot study examining the effect of pelvic floor muscle training on the irisin concentration in overweight or obese elderly women with stress urinary incontinence. Biomed. Res. Int. 2019, 2019, 7356187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witek, K.; Zurek, P.; Zmijewski, P.; Jaworska, J.; Lipinska, P.; Dzedzej-Gmiat, A.; Antosiewicz, J.; Ziemann, E. Myokines in Response to a Tournament Season among Young Tennis Players. BioMed Res. Int. 2016, 2016, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Su, Z.; Qu, C.; Dong, Y. Effects of 12 Weeks Resistance Training on Serum Irisin in Older Male Adults. Front. Physiol. 2017, 8, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohtaki, H. Chapter 37—Irisin. In Handbook of Hormones; Takei, Y., Ando, H., Tsutsui, K., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 329–330. [Google Scholar]
- Gouveia, M.C.; Vella, J.P.; Cafeo, F.R.; Fonseca, F.L.A.; Bacci, M.R. Association between irisin and major chronic diseases: A review. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 4072–4077. [Google Scholar] [PubMed]
- Leustean, L.; Preda, C.; Teodoriu, L.; Mihalache, L.; Arhire, L.; Ungureanu, M.-C. Role of Irisin in Endocrine and Metabolic Disorders—Possible New Therapeutic Agent? Appl. Sci. 2021, 11, 5579. [Google Scholar] [CrossRef]
- Cosio, P.L.; Crespo-Posadas, M.; Velarde-Sotres, A.; Pelaez, M. Effect of chronic resistance training on circulating irisin: Sys-tematic review and meta-analysis of randomized controlled trials. Int. J. Environ. Res. Public. Health 2021, 18, 2476. [Google Scholar] [CrossRef]
- Mousavi, S.N.; Hassani, F.; Namadian, M. Dietary Patterns and the Intake of Trace Elements in People with Hypertension: A Cross-Sectional Study. J. Adv. Med. Biomed. Res. 2020, 28, 1–10. [Google Scholar] [CrossRef]
- Jandova, T.; Narici, M.V.; Steffl, M.; Bondi, D.; D’Amico, M.; Pavlu, D.; Verratti, V.; Fulle, S.; Pietrangelo, T. Muscle hyper-trophy and architectural changes in response to eight-week neuromuscular electrical stimulation training in healthy older people. Life 2020, 10, 184. [Google Scholar] [CrossRef]
- Albrecht, E.; Norheim, F.; Thiede, B.; Holen, T.; Ohashi, T.; Schering, L.; Lee, S.; Brenmoehl, J.; Thomas, S.; Drevon, C.A.; et al. Irisin—A myth rather than an exercise-inducible myokine. Sci. Rep. 2015, 5, 8889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atherton, P.J.; Phillips, B.E. Greek goddess or Greek myth: The effects of exercise on irisin/FNDC5 in humans. J. Physiol. 2013, 591, 5267–5268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, R.Y.; Zheng, H.; Redfearn, D.; Yang, J. FNDC5: A novel player in metabolism and metabolic syndrome. Biochimie 2019, 158, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Fox, J.; Rioux, B.V.; Goulet, E.D.B.; Johanssen, N.M.; Swift, D.L.; Bouchard, D.R.; Loewen, H.; Sénéchal, M. Effect of an acute exercise bout on immediate post-exercise irisin concentration in adults: A meta-analysis. Scand. J. Med. Sci. Sports 2017, 28, 16–28. [Google Scholar] [CrossRef]
- Munoz, I.Y.M.; Camarillo-Romero, E.D.S.; Garcia, J.D.J.G. Irisin a Novel Metabolic Biomarker: Present Knowledge and Future Directions. Int. J. Endocrinol. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
PubMed Central | Search ((((irisin) OR FNDC5)) AND ((exercise) OR physical)) NOT (((((mice) OR rats) OR mouse) OR rodents) OR animal) | 236 |
SCOPUS | ((TITLE-ABS-KEY (irisin) OR TITLE-ABS-KEY (FNDC5))) AND ((TITLE-ABS-KEY (exercise) OR TITLE-ABS-KEY (physical))) AND NOT ((TITLE-ABS-KEY (mice) OR TITLE-ABS-KEY (rats) OR TITLE-ABS-KEY (mouse) OR TITLE-ABS-KEY (rodents) OR TITLE-ABS-KEY (animal))) | 386 |
WoS | TOPIC: (irisin) OR TOPIC: (FNDC5) AND TOPIC: (exercise) OR TOPIC: (physical) NOT TOPIC: (mice) OR TOPIC: (rats) OR TOPIC: (mouse) OR TOPIC: (rodents) OR TOPIC: (animal) | 527 |
Study | Year | Country | Design | Sample Description | Sample Size | Sex | Mean Age (SD) of the Whole Sample |
---|---|---|---|---|---|---|---|
Alyami [25] | 2020 | Saudi Arabia | NRT; N-CG | Interstitial lung disease | 10 | T | 30–40+ |
Amanat [26] | 2020 | Iran | RCT | Obese with metabolic syndrome | 60 | F | 54.5 (6.9) |
Bagheri [27] | 2020 | Iran | RCT | Obese | 30 | M | 43.8 (3.4) * |
Bang [28] | 2020 | South Korea | RT; N-CG | Healthy | 16 | M | 29.4 (5.1) |
Banitalebi [29] | 2019 | Iran | RCT | Obese with type II diabetes | 52 | F | 55.4 (5.9) * |
Besse-Patin [30] | 2014 | France | SGS | Obese | 11 | M | 35.4 (1.5) |
Blüher [31] | 2014 | Germany | SGS | Obese | 65 | T | 12.5 (1.6) |
Boeselt [32] | 2017 | Germany | NRT | Chronic obstructive pulmonary disease | 37 | T | 65.7 (8.3) |
Bonfante [33] | 2017 | Brazil | RCT | Obese | 22 | M | 49.1 (5.8) |
Briken [34] | 2016 | Germany | RCT | Progressive multiple sclerosis | 42 | T | 50.0 (7.5) |
Brinkmann [35] | 2020 | Germany | NRT; N-CG | Obese | 22 | T | 46–74 |
Damirchi [36] | 2018 | Iran | RCT | Mild cognitive impairment | 20 | F | 68.8 (3.7) * |
de la Torre-Saldaña [37] | 2019 | Mexico | SGS | Healthy | 38 | F | 23.0 (3.3) |
Dianatinasab [38] | 2020 | Iran | RCT | Obese with metabolic syndrome | 54 | F | 53.5 (6.5) |
Dündar [39] | 2019 | Turkey | RCT | Healthy | 34 | M | 14.5 (1.1) |
Dünnwald [40] | 2019 | Austria | NRT; N-CG | Type II diabetes | 14 | T | 59.6 (5.7) * |
Eaton [41] | 2017 | Canada | SGS | Healthy | 9 | M | 20.5 (1.5) |
Ellefsen [42] | 2014 | Germany | SGS | Healthy | 18 | F | 26.0 (6.0) |
Fernandez-del-Valle [43] | 2018 | US | RCT | Healthy | 26 | T | 21.2 (1.9) * |
Ghanbari-Niaki [44] | 2018 | Iran | RCT | Healthy | 24 | F | 55.7 (4.9) |
Hecksteden [45] | 2013 | Germany | RCT | Healthy | 102 | T | 49.0 (7.0) * |
Huang [46] | 2017 | China | SGS | Obese | 22 | T | 22.1 (2.8) |
Huh [47] | 2014 | US | SGS | Healthy | 14 | F | 24.3 (2.6) |
Jawzal [48] | 2020 | Kurdistan | SGS | Healthy | 39 | M | 24 (22–27) |
Kim [49] | 2016 | South Korea | RCT | Obese | 28 | T | 25.7 (4.1) * |
Kim [50] | 2018 | South Korea | NRT | Healthy | 26 | F | 71.8 (3.1) * |
Kim [51] | 2020 | South Korea | SGS | Healthy | 25 | F | 60.3 (5.3) |
Korkmaz [52] | 2019 | Finland | RCT | Obese | 144 | M | 40–65 |
Küster [53] | 2017 | Germany | NRT | Mild cognitive impairment | 46 | T | 71.2 (6.0) |
Micielska [54] | 2019 | Poland | NRT | Healthy | 33 | F | 40.0 (11.0) * |
Miyamoto-Mikami [55] | 2015 | Japan | RCT | Healthy | 53 | T | 21.0 (1.0)67.0 (8.0) |
Moienneia [56] | 2016 | Iran | RCT | Healthy | 21 | F | 24.4 (3.0) |
Moraes [57] | 2013 | Brazil | NRT; N-CG | Hemodialysis patients | 26 | T | 44.8 (14.1) |
Motahari Rad [58] | 2020 | Iran | RCT | Type II diabetes | 51 | M | 43.9 (2.5) * |
Murawska-Cialowicz [59] | 2015 | Poland | SGS | Healthy | 12 | T | 26.8 (6.8) * |
Murawska-Cialowicz [60] | 2020 | Poland | RCT | Healthy | 25 | M | 32.4 (6.6) * |
Neumayr [61] | 2020 | Austria | SGS | Healthy | 52 | T | 54.3 |
Norheim [62] | 2013 | Norway | NRT; N-CG | Prediabetes | 26 | M | 40–65 |
Ozan [63] | 2020 | Turkey | SGS | Elite boxers | 9 | M | 17.2 (3.3) |
Özbay [64] | 2020 | Turkey | NRT; N-CG | Healthy | 33 | M | 22.6 (1.6) * |
Palacios-Gonzales [65] | 2015 | Mexico | NRT; N-CG | Obese | 85 | T | 9.0 (0.9) * |
Pekkala [15] | 2013 | Finland | NRT; N-CG | Healthy | 63 | M | 24–68 |
Planella-Farrugia [66] | 2019 | Spain | RCT | Healthy | 43 | T | 71.2 (3.3) * |
Prestes [67] | 2015 | Brazil | NRT | Healthy | 59 | F | 69.2 (6.1) * |
Rashid [68] | 2020 | Iraq | NRT; N-CG | Obese | 60 | M | 20–43 |
Rashti [69] | 2019 | Iran | RCT | Healthy | 48 | F | 57.1 (4.1) * |
Roh [70] | 2020 | South Korea | RCT | Obese | 20 | T | 12.6 (0.5) |
Sezgin [71] | 2020 | Turkey | NRT; N-CG | Obese | 37 | F | 47.9 (13.2) |
Shabani [72] | 2018 | Iran | RCT | Healthy | 31 | F | 24.6 (2.5) * |
Scharhag-Rosenberger [73] | 2014 | Germany | RCT | Healthy | 74 | T | 47.0 (7,0) |
Śliwicka [74] | 2017 | Poland | SGS | Climbers | 8 | M | 27.0 (2.8) |
Szumilewicz [75] | 2017 | Poland | NRT; N-CG | Pregnant | 9 | F | 23.0 (3.0) |
Tibana [76] | 2017 | Brazil | NRT; N-CG | Obese | 49 | F | 61–68 |
Tsuchiya [77] | 2016 | Japan | RT; N-CG | Healthy | 20 | M | 20.4 (0.8) * |
Vieira [78] | 2020 | Brazil | RT; N-CG | Healthy | 20 | F | 64.1 (7.0) * |
Walentukiewicz [79] | 2018 | Poland | RCT | Healthy | 94 | F | 68.0 (5.1) |
Weber-Rajek [80] | 2019 | Poland | RCT | Obese with stress urinary incontinence | 49 | F | 62.5 (2.0) * |
Witek [81] | 2016 | Poland | SGS | Tennis players | 12 | M | 16.0 (2.0) |
Zhao [82] | 2017 | China | RCT | Healthy | 17 | M | 62.3 (3.5) * |
Study | Intervention Description | Length of the Intervention | Weekly Volume | Within-Group Effect Sig. | Between-Groups Effect Sig. | Note |
---|---|---|---|---|---|---|
Alyami [25] | Supervised exercise training (SET) | 8 weeks | 2× | - | - | |
Amanat [26] | Endurance training (ET), resistance training (RT), and combined training (CT) | 12 weeks | 2× to 3× | ↑ * | ↑ ** | * all the EG; ** ET and CT |
Bagheri [27] | Endurance training (ET) | 8 weeks | 3× | - | - | |
Bang [28] | Resistance training (RT) vs. resistance training with ursolic acid supplementation (RT + UA) | 8 weeks | 6× | - | ↓ * | * RT |
Banitalebi [29] | Sprint interval training (SIT), combined endurance and resistance training (A + R) | 10 weeks | 3× | - | - | |
Besse-Patin [30] | Endurance training | 8 weeks | 5× | - | N/A | |
Blüher [31] | Exercise and dietary lifestyle program | 1 year | 2× | ↑ | N/A | |
Boeselt [32] | High-intensity training (HIT) | 12 weeks | 2× | - | - | |
Bonfante [33] | Combined training (CT) | 24 weeks | 3× | - | ↑ | |
Briken [34] | Endurance training (ET) | 9 weeks | 2–3× | - | - | |
Brinkmann [35] | Combined training: males vs. females | 8 weeks | 3× | - | - | |
Damirchi [36] | Physical training (PT) | 8 weeks | 2× | - | - | |
de la Torre-Saldaña [37] | Treadmill—6.0–7.9 METs and >8.0 METs | 2 weeks | 5× | ↑ * | N/A | * both |
Dianatinasab [38] | Endurance training (ET), resistance training (RT), and combined training (CT) | 8 weeks | 3× | - | - | |
Dündar [39] | Basketball training | 8 weeks | 5× | ↓ | - | |
Dünnwald [40] | High-intensity interval training (HIIT) vs. continuous moderate-intensity training (CMIT) | 4 weeks | 3× | ↑ * | ↑ * | * HIIT |
Eaton [41] | High-intensity interval training (HIIT) | 20 days | 2× a day | ↑ | N/A | |
Ellefsen [42] | Progressive strength training | 12 weeks | 3× | - | N/A | |
Fernandez-del-Valle [43] | High-intensity interval training (HIIT) | 3 weeks | 3× | ↑ | ↑ | |
Ghanbari-Niaki [44] | Resistance training (RT) | 9 weeks | 3× | ↑ | - | |
Hecksteden [45] | Endurance training (ET) and strength training (ST) | 26 weeks | 3× | - | - | |
Huang [46] | Endurance exercise | 8 weeks | 7× | ↑ | N/A | |
Huh [47] | Whole-body vibration exercise | 6 weeks | 2× | - | N/A | |
Jawzal [48] | Military aerobic training | 8 weeks | 7× | ↑ | N/A | |
Kim [49] | Endurance training (ET), resistance training (RT) | 8 weeks | 5× | ↑ * | ↑ * | * RT |
Kim [50] | Aquaerobic training (AqT) | 16 weeks | 2× | ↑ | ↑ | |
Kim [51] | Treadmill walking | 6 weeks | 3× | ↑ | N/A | |
Korkmaz [52] | Nordic walking (NW), resistance exercise (RE) | 12 weeks | 3× | ↑ * | ↑ * | * Both IG |
Kuster [53] | Physical training (PT) | 10 weeks | 2× | - | - | |
Micielska [54] | High-intensity circuit training (HICT) | 5 weeks | 4× | - | - | |
Miyamoto-Mikami [55] | Endurance training (ET)—healthy young | 8 weeks | 3× | - | - | |
Endurance training (ET)—middle-aged/older | 8 weeks | 3× | ↑ | ↑ | ||
Moienneia [56] | Resistance training low (LIRT) vs. high intensity (HIRT) | 8 weeks | 3× | ↓ * | - | * HIRT |
Moraes [57] | Intradialytic resistance training (IRT) | 6 months | 3× | ↑ | N/A | |
Motahari Rad [58] | Concurrent aerobic-resistance (A-R) and concurrent resistance-aerobic (R-A) training | 12 weeks | 3× | ↑ * | ↑ * | * Both IG |
Murawska-Cialowicz [59] | CrossFit training: males vs. females | 3 months | 2× | ↓ * | - | * females |
Murawska-Cialowicz [60] | High-intensity interval training (HIIT) | 8 weeks | 2× | ↑ * | - | * HIIT |
Neumayr [61] | Golf vs. Nordic walking or e-biking | 1 week | 7× | ↑ * | N/A | * only golf group |
Norheim [62] | Combined endurance and strength training: normoglycaemic and normal weight | 12 weeks | 4× | - | - | |
Ozan [63] | Strength training with thera-band | 8 weeks | 3× | - | N/A | |
Özbay [64] | Outdoor running (OR) vs. indoor running (IR) | 18 weeks | 4× | ↓ * | - | * IR |
Palacios-Gonzales [65] | School-based physical activity program: normal weight | 8 months | 5× | - | - | |
Pekkala [15] | Endurance training (ET) vs. combined endurance and resistance training (ET + RT) | 21 weeks | 2× (ET) or 2× (ET) + 2× (RT) | - | - | |
Planella-Farrugia [66] | Low-intensity resistance training (LIRT) | 16 weeks | 2× | ↑ * | - | * LIRT |
Prestes [67] | Resistance training linear periodization (LP) and undulating periodization (UP) | 16 weeks | 2× | - | - | |
Rashid [68] | Long-term moderate physical exercise: normal weight | 6 months | 7 times | ↑ * | ↑ | * both |
Rashti [69] | High-intensity interval (HIIT) and moderate-intensity training (MIIT) | 10 weeks | 3× | ↑* | - | * HIIT |
Roh [70] | Taekwondo in obese children | 16 weeks | 5× | ↓ | ↓ | |
Sezgin [71] | Endurance training (ET) and personalized nutrition programs: normal weight | 8 weeks | 7× | - | - | |
Shabani [72] | Resistance training (RT), Endurance training (ET), and concurrent (endurance + resistance) training (CT) | 8 weeks | 3× | ↓ * | - | * RT and CT |
Scharhag-Rosenberger [73] | High-repetition resistance training (HRRT) | 6 months | 3× | - | ↓ | |
Śliwicka [74] | Climb 4000 m peaks in the Mont Blanc massif | 14 days | 7× | ↓ | N/A | |
Szumilewicz [75] | Structured group fitness program—very active (VA) vs. less active (LA) groups | 8 weeks | ≥3× (VA) <3× (LA) | ↓ * | - | * LA |
Tibana [76] | Resistance training (RT): obese vs. normal weight | 16 weeks | 3× | ↓ * | ↑ ** | * normal weight; ** obese |
Tsuchiya [77] | Cycle ergometer—sprint training (ST) vs. two consecutive training (TCT) | 4 weeks | 5× (ST) 2–3× (TCT) | ↓ * | - | * both |
Vieira [78] | Resistance training very high supervision (VHS) vs. high supervision (HS) | 16 weeks | 2× | - | - | |
Walentukiewicz [79] | Nordic walking (NW) | 12 weeks | 3× | - | - | |
Weber-Rajek [80] | Pelvic floor muscle training (PMT) | 4 weeks | 3× | ↑ * | - | * PMT |
Witek [81] | Workload during the competitive season | 8 months | - | - | N/A | |
Zhao [82] | Resistance training (RT) | 12 weeks | 2× | ↑ * | ↑ | * RT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jandova, T.; Buendía-Romero, A.; Polanska, H.; Hola, V.; Rihova, M.; Vetrovsky, T.; Courel-Ibáñez, J.; Steffl, M. Long-Term Effect of Exercise on Irisin Blood Levels—Systematic Review and Meta-Analysis. Healthcare 2021, 9, 1438. https://doi.org/10.3390/healthcare9111438
Jandova T, Buendía-Romero A, Polanska H, Hola V, Rihova M, Vetrovsky T, Courel-Ibáñez J, Steffl M. Long-Term Effect of Exercise on Irisin Blood Levels—Systematic Review and Meta-Analysis. Healthcare. 2021; 9(11):1438. https://doi.org/10.3390/healthcare9111438
Chicago/Turabian StyleJandova, Tereza, Angel Buendía-Romero, Hana Polanska, Veronika Hola, Marcela Rihova, Tomas Vetrovsky, Javier Courel-Ibáñez, and Michal Steffl. 2021. "Long-Term Effect of Exercise on Irisin Blood Levels—Systematic Review and Meta-Analysis" Healthcare 9, no. 11: 1438. https://doi.org/10.3390/healthcare9111438
APA StyleJandova, T., Buendía-Romero, A., Polanska, H., Hola, V., Rihova, M., Vetrovsky, T., Courel-Ibáñez, J., & Steffl, M. (2021). Long-Term Effect of Exercise on Irisin Blood Levels—Systematic Review and Meta-Analysis. Healthcare, 9(11), 1438. https://doi.org/10.3390/healthcare9111438