Effect of Cycle-Based High-Intensity Interval Training and Moderate to Moderate-Intensity Continuous Training in Adolescent Soccer Players
Abstract
:1. Introduction
2. Method
2.1. Participants
2.2. Body Composition
2.3. Cardiorespiratory Fitness
2.4. Anaerobic Power and Fatigue
2.5. Isokinetic Knee Strength
2.6. Training Program
2.6.1. High-Intensity Interval Training
2.6.2. Moderate-Intensity Continuous Training
2.6.3. Resistance Training
2.7. Data Statistics
3. Results
3.1. General Characteristics
3.2. Cardiorespiratory Fitness
3.3. Wingate Test; Anaerobic Power and Fatigue Index
3.4. Isokinetic Knee Muscle Strength, Power, and Endurance
3.5. Body Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Villarreal, E.S.; Suarez-Arrones, L.; Requena, B.; Haff, G.G.; Ferrete, C. Effects of plyometric and sprint training on physical and technical skill performance in adolescent soccer players. J. Strength Cond. Res. 2015, 29, 1894–1903. [Google Scholar] [CrossRef]
- Dolci, F.; Hart, N.H.; Kilding, A.E.; Chivers, P.; Piggott, B.; Spiteri, T. Physical and energetic demand of soccer: A brief review. Strength Cond. J. 2020, 42, 70–77. [Google Scholar] [CrossRef]
- Hoff, J.; Helgerud, J. Endurance and strength training for soccer players. Sports Med. 2004, 34, 165–180. [Google Scholar] [CrossRef]
- Milanović, Z.; Pantelić, S.; Sporiš, G.; Mohr, M.; Krustrup, P. Health-related physical fitness in healthy untrained men: Effects on VO2max, jump performance and flexibility of soccer and moderate-intensity continuous running. PLoS ONE 2015, 10, e0135319–e0135332. [Google Scholar] [CrossRef]
- Wen, D.; Utesch, T.; Wu, J.; Robertson, S.; Liu, J.; Hu, G.; Chen, H. Effects of different protocols of high intensity interval training for VO2max improvements in adults: A meta-analysis of randomised controlled trials. J. Sci. Med. Sport 2019, 22, 941–947. [Google Scholar] [CrossRef]
- Meckel, Y.; Machnai, O.; Eliakim, A. Relationship among repeated sprint tests, aerobic fitness, and anaerobic fitness in elite adolescent soccer players. J. Strength Cond. Res. 2009, 23, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Cometti, G.; Maffiuletti, N.; Pousson, M.; Chatard, J.-C.; Maffulli, N. Isokinetic strength and anaerobic power of elite, subelite and amateur French soccer players. Int. J. Sports Med. 2001, 22, 45–51. [Google Scholar] [CrossRef]
- Castagna, C.; D’Ottavio, S.; Abt, G. Activity profile of young soccer players during actual match play. J. Strength Cond. Res. 2003, 17, 775–780. [Google Scholar]
- Wisløff, U.; Castagna, C.; Helgerud, J.; Jones, R.; Hoff, J. Strong correlation of maximal squat strength with sprint performance and vertical jump height in elite soccer players. Br. J. Sports Med. 2004, 38, 285–288. [Google Scholar] [CrossRef] [Green Version]
- Coratella, G.; Beato, M.; Schena, F. Correlation between quadriceps and hamstrings inter-limb strength asymmetry with change of direction and sprint in U21 elite soccer-players. Hum. Mov. Sci. 2018, 59, 81–87. [Google Scholar] [CrossRef]
- Buchheit, M.; Laursen, P.B. High-intensity interval training, solutions to the programming puzzle. Sports Med. 2013, 43, 313–338. [Google Scholar] [CrossRef] [PubMed]
- Laursen, P.B.; Jenkins, D.G. The scientific basis for high-intensity interval training. Sports Med. 2002, 32, 53–73. [Google Scholar] [CrossRef] [PubMed]
- Astorino, T.A.; Allen, R.P.; Roberson, D.W.; Jurancich, M. Effect of high-intensity interval training on cardiovascular function, VO2max, and muscular force. J. Strength Cond. Res. 2012, 26, 138–145. [Google Scholar] [CrossRef]
- Sarkar, S.; Chatterjee, S.; Dey, S.K. Effect of 8 weeks high intensity interval training on maximum oxygen uptake capacity and related cardio-respiratory parameters at anaerobic threshold level of indian male field hockey players. Eur. J. Phys. Educ. Sport Sci. 2019, 5, 106–116. [Google Scholar]
- Mosey, T. High intensity interval training in youth soccer players-using fitness testing results practically. J. Aust. Strength Cond. 2009, 17, 49–51. [Google Scholar]
- Costigan, S.A.; Eather, N.; Plotnikoff, R.; Taaffe, D.R.; Lubans, D.R. High-intensity interval training for improving health-related fitness in adolescents: A systematic review and meta-analysis. Br. J. Sports Med. 2015, 49, 1253–1261. [Google Scholar] [CrossRef]
- Reljic, D.; Lampe, D.; Wolf, F.; Zopf, Y.; Herrmann, H.J.; Fischer, J. Prevalence and predictors of dropout from high-intensity interval training in sedentary individuals: A meta-analysis. Scand. J. Med. Sci. Sports 2019, 29, 1288–1304. [Google Scholar] [CrossRef]
- Ko, D.-H.; Choi, Y.-C.; Lee, D.-S. The effect of short-term wingate-based high intensity interval training on anaerobic power and isokinetic muscle function in adolescent badminton players. Children 2021, 8, 458. [Google Scholar] [CrossRef] [PubMed]
- Kozinc, Ž.; Sarabon, N. Common running overuse injuries and prevention. Montenegrin J. Sports Sci. Med. 2017, 6, 67. [Google Scholar] [CrossRef] [Green Version]
- ACSM. ACSM’s Health-Related Physical Fitness Assessment Manual; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013. [Google Scholar]
- Lim, J.S.; Hwang, J.S.; Lee, J.A.; Kim, D.H.; Park, K.D.; Jeong, J.S.; Cheon, G.J. Cross-calibration of multi-frequency bioelectrical impedance analysis with eight-point tactile electrodes and dual-energy X-ray absorptiometry for assessment of body composition in healthy children aged 6–18 years. Pediatrics Int. 2009, 51, 263–268. [Google Scholar] [CrossRef]
- Nickerson, B.S.; Snarr, R.L.; Ryan, G.A. Validity of foot-to-foot bioelectrical impedance for estimating body composition in NCAA Division I male athletes: A 3-compartment model comparison. J. Strength Cond. Res. 2019, 33, 3361–3366. [Google Scholar] [CrossRef] [PubMed]
- McLester, C.N.; Nickerson, B.S.; Kliszczewicz, B.M.; McLester, J.R. Reliability and agreement of various InBody body composition analyzers as compared to dual-energy X-ray absorptiometry in healthy men and women. J. Clin. Densitom. 2020, 23, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Van der Cammen-van, M.H.; IJsselstijn, H.; Takken, T.; Willemsen, S.P.; Tibboel, D.; Stam, H.J.; van den Berg-Emons, R.J. Exercise testing of pre-school children using the Bruce treadmill protocol: New reference values. Eur. J. Appl. Physiol. 2010, 108, 393–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewith, H.; Pandit, J.J. Lung ventilation and the physiology of breathing. Surgery 2020, 38, 233–239. [Google Scholar] [CrossRef]
- Bar-Or, O. The Wingate anaerobic test an update on methodology, reliability and validity. Sports Med. 1987, 4, 381–394. [Google Scholar] [CrossRef]
- Muñoz-Bermejo, L.; Pérez-Gómez, J.; Manzano, F.; Collado-Mateo, D.; Villafaina, S.; Adsuar, J.C. Reliability of isokinetic knee strength measurements in children: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0226274–e0226288. [Google Scholar] [CrossRef]
- Breenfeldt Andersen, A.; Bejder, J.; Bonne, T.; Olsen, N.V.; Nordsborg, N. Repeated Wingate sprints is a feasible high-quality training strategy in moderate hypoxia. PLoS ONE 2020, 15, e0242439–e0242451. [Google Scholar] [CrossRef] [PubMed]
- ACSM. ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2017. [Google Scholar]
- MacInnis, M.J.; Zacharewicz, E.; Martin, B.J.; Haikalis, M.E.; Skelly, L.E.; Tarnopolsky, M.A.; Murphy, R.M.; Gibala, M.J. Superior mitochondrial adaptations in human skeletal muscle after interval compared to continuous single-leg cycling matched for total work. J. Physiol. 2017, 595, 2955–2968. [Google Scholar] [CrossRef]
- Cao, M.; Quan, M.; Zhuang, J. Effect of high-intensity interval training versus moderate-intensity continuous training on cardiorespiratory fitness in children and adolescents: A meta-analysis. Int. J. Environ. Res. Public Health 2019, 16, 1533. [Google Scholar] [CrossRef] [Green Version]
- Helgerud, J.; Høydal, K.; Wang, E.; Karlsen, T.; Berg, P.; Bjerkaas, M.; Simonsen, T.; Helgesen, C.; Hjorth, N.; Bach, R. Aerobic high-intensity intervals improve V˙ O2max more than moderate training. Med. Sci. Sports Exerc. 2007, 39, 665–671. [Google Scholar] [CrossRef] [Green Version]
- Daussin, F.N.; Zoll, J.; Dufour, S.P.; Ponsot, E.; Lonsdorfer-Wolf, E.; Doutreleau, S.; Mettauer, B.; Piquard, F.; Geny, B.; Richard, R. Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: Relationship to aerobic performance improvements in sedentary subjects. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 295, R264–R272. [Google Scholar] [CrossRef] [Green Version]
- Stöggl, T.L.; Müller, E. Kinematic determinants and physiological response of cross-country skiing at maximal speed. Med. Sci. Sports Exerc. 2009, 41, 1476–1487. [Google Scholar] [CrossRef]
- Stöggl, T.L.; Björklund, G. High intensity interval training leads to greater improvements in acute heart rate recovery and anaerobic power as high volume low intensity training. Front. Physiol. 2017, 8, 562–569. [Google Scholar] [CrossRef] [Green Version]
- Naharudin, M.N.; Yusof, A. Fatigue index and fatigue rate during an anaerobic performance under hypohydrations. PLoS ONE 2013, 8, e77290–e77296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baroni, B.M.; Ruas, C.V.; Ribeiro-Alvares, J.B.; Pinto, R.S. Hamstring-to-quadriceps torque ratios of professional male soccer players: A systematic review. J. Strength Cond. Res. 2020, 34, 281–293. [Google Scholar] [CrossRef]
- Tabata, I.; Atomi, Y.; Kanehisa, H.; Miyashita, M. Effect of high-intensity endurance training on isokinetic muscle power. Eur. J. Appl. Physiol. Occup. Physiol. 1990, 60, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Ardestani, M.M.; Kinnaird, C.R.; Henderson, C.E.; Hornby, T.G. Compensation or recovery? Altered kinetics and neuromuscular synergies following high-intensity stepping training poststroke. Neurorehabilit. Neural Repair 2019, 33, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.A.; Dawson, J.A.; Matias, C.N.; Rocha, P.M.; Minderico, C.S.; Allison, D.B.; Sardinha, L.B.; Silva, A.M. Reference values for body composition and anthropometric measurements in athletes. PLoS ONE 2014, 9, e97846–e97856. [Google Scholar] [CrossRef] [Green Version]
- Campa, F.; Toselli, S.; Mazzilli, M.; Gobbo, L.A.; Coratella, G. Assessment of body composition in athletes: A narrative review of available methods with special reference to quantitative and qualitative bioimpedance analysis. Nutrients 2021, 13, 1620. [Google Scholar] [CrossRef]
- Campa, F.; Matias, C.N.; Marini, E.; Heymsfield, S.B.; Toselli, S.; Sardinha, L.B.; Silva, A.M. Identifying athlete body fluid changes during a competitive season with bioelectrical impedance vector analysis. Int. J. Sports Physiol. Perform. 2020, 15, 361–367. [Google Scholar] [CrossRef]
- Smith-Ryan, A.E.; Melvin, M.N.; Wingfield, H.L. High-intensity interval training: Modulating interval duration in overweight/obese men. Physician Sportsmed. 2015, 43, 107–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nybo, L.; Sundstrup, E.; Jakobsen, M.D.; Mohr, M.; Hornstrup, T.; Simonsen, L.; Bülow, J.; Randers, M.B.; Nielsen, J.J.; Aagaard, P. High-intensity training versus traditional exercise interventions for promoting health. Med. Sci. Sports Exerc. 2010, 42, 1951–1958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balagué, N.; Hristovski, R.; Almarcha, M.d.C.; Garcia-Retortillo, S.; Ivanov, P.C. Network physiology of exercise: Vision and perspectives. Front. Physiol. 2020, 11, 1607–1614. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Retortillo, S.; Gacto, M.; O’Leary, T.; Noon, M.; Hristovski, R.; Balagué, N.; Morris, M. Cardiorespiratory coordination reveals training-specific physiological adaptations. Eur. J. Appl. Physiol. 2019, 119, 1701–1709. [Google Scholar] [CrossRef]
Variables | HIIT (n = 27) | MICT (n = 29) | t | p-Values |
---|---|---|---|---|
Age, years | 15.7 ± 0.8 | 15.8 ± 0.7 | −0.506 | 0.615 |
Height, cm | 176.0 ± 5.5 | 178.7 ± 5.3 | −1.884 | 0.064 |
Weight, kg | 64.3 ± 6.6 | 65.8 ± 6.3 | −0.891 | 0.377 |
BMI, kg/m2 | 20.8 ± 2.0 | 20.6 ± 1.5 | 0.383 | 0.703 |
Variables | Group | Pre | Post | Difference (%) | p-Values |
---|---|---|---|---|---|
VO2 peak, mL/kg/min | HIIT | 47.7 ± 6.7 | 55.3 ± 7.5 | 15.9 | 0.012 * |
MICT | 48.1 ± 7.4 | 52.2 ± 8.9 | 8.5 | 0.028 * | |
p-values | 0.524 | 0.041 * | |||
Anaerobic Threshold, % | HIIT | 64.2 ± 8.9 | 73.5 ± 6.6 | 16.6 | 0.025 * |
MICT | 65.4 ± 7.3 | 68.0 ± 6.9 | 4.0 | 0.138 | |
p-values | 0.495 | 0.031 * | |||
Recovery 1 m HR, % | HIIT | 55.7 ± 6.8 | 70.0 ± 11.8 | 25.7 | 0.029 * |
MICT | 56.2 ± 7.4 | 61.6 ± 12.0 | 9.6 | 0.217 | |
p-values | 0.413 | 0.013 * | |||
Recovery 3 m HR, % | HIIT | 82.2 ± 13.8 | 92.0 ± 14.5 | 11.9 | 0.015 * |
MICT | 80.4 ± 17.2 | 85.6 ± 16.3 | 6.5 | 0.188 | |
p-values | 0.554 | 0.038 * |
Variables | Set | Pre | Post | Difference (%) | p-Values |
---|---|---|---|---|---|
HIIT | 1 | 11.2 ± 2.2 | 12.6 ± 1.3 | 12.5 | 0.016 * |
2 | 10.3 ± 1.4 a | 11.9 ± 1.6 | 15.5 | 0.011 * | |
3 | 9.7 ± 1.6 b,c | 10.8 ± 1.7 c | 11.3 | 0.005 * | |
p-values | 0.034 * | 0.022 * | |||
MICT | 1 | 11.7 ± 1.2 | 12.5 ± 1.1 | 6.8 | 0.040 * |
2 | 10.2 ± 1.3 a | 10.8 ± 1.5 a | 5.9 | 0.254 | |
3 | 9.4 ± 1.5 b,c | 9.6 ± 1.2 b,c | 2.1 | 0.163 | |
p-values | 0.026 * | 0.022 * |
Variables | Set | Pre | Post | Difference (%) | p-Values |
---|---|---|---|---|---|
HIIT | 1 | 41.0 ± 12.2 | 35.3 ± 7.7 | −14.6 | 0.023 * |
2 | 47.9 ± 10.4 a | 42.5 ± 9.8 | −11.3 | 0.046 * | |
3 | 59.4 ± 9.4 b,c | 48.7 ± 10.7 c | −18.0 | 0.016 * | |
p-values | 0.013 * | 0.040 * | |||
MICT | 1 | 43.6 ± 11.9 | 37.7 ± 9.2 | −13.8 | 0.032 * |
2 | 49.5 ± 10.2 a | 46.9 ± 10.6 a | −5.3 | 0.315 | |
3 | 57.0 ± 11.5 b,c | 55.9 ± 13.1 b,c | −1.9 | 0.265 | |
p-values | 0.028 * | 0.019 * |
Variables | Group | Pre | Post | Difference (%) | p-Values |
---|---|---|---|---|---|
60°/s, Nm/kg, % | HIIT | 487.8 ± 127.1 | 532.5 ± 120.4 | 9.2 | 0.024 * |
MICT | 477.6 ± 116.0 | 506.8 ± 107.8 | 6.0 | 0.016 * | |
p-values | 0.724 | 0.032 * | |||
180°/s, Watt/kg, % | HIIT | 618.3 ± 127.0 | 649.8 ± 135.7 | 5.0 | 0.039 * |
MICT | 607.6 ± 139.1 | 632.1 ± 120.2 | 4.1 | 0.231 | |
p-values | 0.629 | 0.020 * | |||
240°/s, total Joule/kg | HIIT | 60.6 ± 13.6 | 65.9 ± 15.1 | 8.7 | 0.140 |
MICT | 61.4 ± 12.3 | 70.5 ± 14.6 | 14.8 | 0.033 * | |
p-values | 0.431 | 0.039 * |
Variables | Group | Pre | Post | Difference (%) | p-Values |
---|---|---|---|---|---|
Fat mass, kg | HIIT | 7.4 ± 1.9 | 7.1 ± 2.0 | −4.1 | 0.174 |
MICT | 7.3 ± 2.1 | 7.0 ± 1.8 | −4.1 | 0.141 | |
p-values | 0.766 | 0.755 | |||
Fat ratio, % | HIIT | 11.4 ± 2.4 | 11.3 ± 1.9 | −1.3 | 0.183 |
MICT | 11.2 ± 2.1 | 10.8 ± 2.2 | −0.9 | 0.210 | |
p-values | 0.576 | 0.481 | |||
Muscle mass, kg | HIIT | 31.0 ± 3.2 | 32.1 ± 3.0 | 3.5 | 0.774 |
MICT | 31.9 ± 3.1 | 32.2 ± 2.9 | 0.9 | 0.813 | |
p-values | 0.499 | 0.425 | |||
Muscle ratio, % | HIIT | 48.4 ± 1.4 | 50.2 ± 1.6 | 3.7 | 0.132 |
MICT | 49.1 ± 1.5 | 49.5 ± 1.4 | 0.8 | 0.205 | |
p-values | 0.299 | 0.306 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, B.; Kim, Y.; Choi, M. Effect of Cycle-Based High-Intensity Interval Training and Moderate to Moderate-Intensity Continuous Training in Adolescent Soccer Players. Healthcare 2021, 9, 1628. https://doi.org/10.3390/healthcare9121628
Fang B, Kim Y, Choi M. Effect of Cycle-Based High-Intensity Interval Training and Moderate to Moderate-Intensity Continuous Training in Adolescent Soccer Players. Healthcare. 2021; 9(12):1628. https://doi.org/10.3390/healthcare9121628
Chicago/Turabian StyleFang, Bin, Yonghwan Kim, and Moonyoung Choi. 2021. "Effect of Cycle-Based High-Intensity Interval Training and Moderate to Moderate-Intensity Continuous Training in Adolescent Soccer Players" Healthcare 9, no. 12: 1628. https://doi.org/10.3390/healthcare9121628
APA StyleFang, B., Kim, Y., & Choi, M. (2021). Effect of Cycle-Based High-Intensity Interval Training and Moderate to Moderate-Intensity Continuous Training in Adolescent Soccer Players. Healthcare, 9(12), 1628. https://doi.org/10.3390/healthcare9121628