Recent Trends in Sedentary Time: A Systematic Literature Review
Abstract
:1. Introduction
2. Methodology and Data Source
3. Results
3.1. Contribution of Leading Countries/Regions
3.1.1. Number of Publications and Citation
3.1.2. Cooperation of Countries/Regions
3.2. Contribution of Leading Institutions
3.3. Contribution of Leading Research Areas
3.4. Contribution of Leading Journals
3.5. Contribution of Leading Authors
3.6. Research Hotspots and Trends
3.6.1. An Analysis of Author Keywords
3.6.2. An Analysis of Keyword Categories
- The measurements used to monitor sedentary time and the effective way to change the pattern of sedentary behavior: physical activity/exercise, intervention, and accelerometry. Accelerometers are commonly used as a device to assess sedentary time; engaging in regular physical activity is widely regarded as a valid measurement to prevent a range of health risk factors across all age, gender, ethnic and socioeconomic subgroups [41,78,79,80,81]. Some intervention studies aiming to increase physical activity or reduce sedentary time have also been conducted [82,83,84];
- Related diseases: the majority of epidemiological evidence has adversely associated high levels of sedentary time and unhealthy sedentary lifestyle with an increased risk of chronic diseases, as listed in the keywords, including obesity/adiposity [92,101], type 2 diabetes [102,103], and cardiovascular disease [104];
3.6.3. An Analysis of the Most Cited Papers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maher, C.A.; Williams, M.; Olds, T.; Lane, A. Physical and sedentary activity in adolescents with cerebral palsy. Dev. Med. Child Neurol. 2007, 49, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Owen, N.; Bauman, A.; Brown, W.J. Too much sitting: A novel and important predictor of chronic disease risk? Br. J. Sports Med. 2008, 43, 81–83. [Google Scholar] [CrossRef] [Green Version]
- Yin, X.; Chen, M.; He, R.; Wu, S.; Xia, H.; Xie, F.; Wang, H. Association of leisure sedentary time with common chronic disease risk factors: A longitudinal study of China Health and Nutrition Surveys. Int. J. Health Plan. Manag. 2021, 36, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Chappel, S.E.; Aisbett, B.; Considine, J.; Ridgers, N.D. Bidirectional associations between emergency nurses’ occupational and leisure physical activity: An observational study. J. Sports Sci. 2021, 39, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Prince, S.A.; Roberts, K.C.; Melvin, A.; Butler, G.P.; Thompson, W. Gender and education differences in sedentary behaviour in Canada: An analysis of national cross-sectional surveys. BMC Public Health 2020, 20, 1170. [Google Scholar] [CrossRef] [PubMed]
- Rockette-Wagner, B.; Miller, R.G.; Eaglehouse, Y.L.; Arena, V.C.; Kramer, M.K.; Kriska, A.M. Leisure Sedentary Behavior Levels and Meeting Program Goals in a Community Lifestyle Intervention for Diabetes Prevention. J. Phys. Act. Health 2021, 18, 44–51. [Google Scholar] [CrossRef]
- Chau, J.Y.; van der Ploeg, H.; van Uffelen, J.; Wong, J.; Riphagen, I.; Healy, G.; Gilson, N.; Dunstan, D.; Bauman, A.E.; Owen, N.; et al. Are workplace interventions to reduce sitting effective? A systematic review. Prev. Med. 2010, 51, 352–356. [Google Scholar] [CrossRef]
- Alfonsin, N.; McLeod, V.; Loder, A.; Di Pietro, L. Evaluating a buildings’ impact on active transportation: An interdisciplinary approach. Build. Environ. 2019, 163, 106322. [Google Scholar] [CrossRef]
- Taylor, H.L.; Parlin, R.W.; BlackburHw Puchner, T.C.; Keys, A.B. Blood Pressure Relative Body Weight and Height in Sedentary and Physically Active Railroad Employees at Time of Employment and at Ages 40 to 49. Circulation 1965, 32, 33. [Google Scholar]
- Whitsett, T.L.; Naughton, J. The effect of exercise on systolic time intervals in sedentary and active individuals and rehabilitated patients with heart disease. Am. J. Cardiol. 1971, 27, 352–358. [Google Scholar] [CrossRef]
- Kannel, W.B. Current Status of the Epidemiology of Brain Infarction Associated with Occlusive Arterial Disease. Stroke 1971, 2, 295–318. [Google Scholar] [CrossRef] [Green Version]
- Cooper, A.R.; Sebire, S.; Montgomery, A.; Peters, T.; Sharp, D.; Jackson, N.; Fitzsimons, K.; Dayan, C.; Andrews, R. Sedentary time, breaks in sedentary time and metabolic variables in people with newly diagnosed type 2 diabetes. Diabetologia 2012, 55, 589–599. [Google Scholar] [CrossRef] [PubMed]
- Tieges, Z.; Mead, G.; Allerhand, M.; Duncan, F.; van Wijck, F.; Fitzsimons, C.; Greig, C.; Chastin, S. Sedentary Behavior in the First Year After Stroke: A Longitudinal Cohort Study With Objective Measures. Arch. Phys. Med. Rehabil. 2015, 96, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Thorp, A.A.; Healy, G.N.; Winkler, E.; Clark, B.K.; Gardiner, P.A.; Owen, N.; Dunstan, D.W. Prolonged sedentary time and physical activity in workplace and non-work contexts: A cross-sectional study of office, customer service and call centre employees. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Tanabe, K.; Yokoyama, N.; Zempo, H.; Kuno, S. Objectively measured light-intensity lifestyle activity and sedentary time are independently associated with metabolic syndrome: A cross-sectional study of Japanese adults. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 30. [Google Scholar] [CrossRef] [Green Version]
- Fanning, J.; Porter, G.; Awick, E.A.; Ehlers, D.K.; Roberts, S.A.; Cooke, G.; Burzynska, A.Z.; Voss, M.W.; Kramer, A.F.; Mcauley, E. Replacing sedentary time with sleep, light, or moderate-to-vigorous physical activity: Effects on self-regulation and executive functioning. J. Behav. Med. 2017, 40, 332–342. [Google Scholar] [CrossRef]
- Aires, L.; Andersen, L.; Mendonça, D.; Martins, C.; Silva, G.; Mota, J. A 3-year longitudinal analysis of changes in fitness, physical activity, fatness and screen time. Acta Paediatr. 2009, 99, 140–144. [Google Scholar] [CrossRef]
- Hagströmer, M.; Kwak, L.; Oja, P.; Sjöström, M. A 6 year longitudinal study of accelerometer-measured physical activity and sedentary time in Swedish adults. J. Sci. Med. Sport 2015, 18, 553–557. [Google Scholar] [CrossRef]
- Van Dyck, D.; Cardon, G.; De Bourdeaudhuij, I. Longitudinal changes in physical activity and sedentary time in adults around retirement age: What is the moderating role of retirement status, gender and educational level? BMC Public Health 2016, 16, 1125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffiths, L.J.; Cortina-Borja, M.; Sera, F.; Pouliou, T.; Geraci, M.; Rich, C.; Cole, T.; Law, C.; Joshi, H.; Ness, A.; et al. How active are our children? Findings from the Millennium Cohort Study. BMJ Open 2013, 3, e002893. [Google Scholar] [CrossRef] [Green Version]
- Katzmarzyk, P. Standing and Mortality in a Prospective Cohort of Canadian Adults. Med. Sci. Sports Exerc. 2014, 46, 940–946. [Google Scholar] [CrossRef] [Green Version]
- Diaz, K.M.; Howard, V.J.; Hutto, B.; Colabianchi, N.; Vena, J.E.; Safford, M.M.; Blair, S.N.; Hooker, S.P. Patterns of Sedentary Behavior and Mortality in US Middle-Aged and Older Adults A National Cohort Study. Ann. Intern. Med. 2017, 167, 465. [Google Scholar] [CrossRef]
- Gao, Y.; Nevala, N.; Cronin, N.J.; Finni, T. Effects of environmental intervention on sedentary time, musculoskeletal comfort and work ability in office workers. Eur. J. Sport Sci. 2016, 16, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Fairclough, S.J.; Hackett, A.F.; Davies, I.G.; Gobbi, R.; Mackintosh, K.A.; Warburton, G.L.; Stratton, G.; van Sluijs, E.M.F.; Boddy, L.M. Promoting healthy weight in primary school children through physical activity and nutrition education: A pragmatic evaluation of the CHANGE! randomised intervention study. BMC Public Health 2013, 13, 14. [Google Scholar] [CrossRef] [Green Version]
- Catenacci, V.; Barrett, C.; Odgen, L.; Browning, R.; Schaefer, C.A.; Hill, J.; Wyatt, H. Changes in Physical Activity and Sedentary Behavior in a Randomized Trial of an Internet-Based Versus Workbook-Based Family Intervention Study. J. Phys. Act. Health 2014, 11, 348–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finch, M.; Wolfenden, L.; Falkiner, M.; Edenden, D.; Pond, N.; Hardy, L.L.; Milat, A.J.; Wiggers, J. Impact of a population based intervention to increase the adoption of multiple physical activity practices in centre based childcare services: A quasi experimental, effectiveness study. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cradock, A.L.; Barrett, J.; Carter, J.; McHugh, A.; Sproul, J.; Russo, E.T.; Dao-Tran, P.; Gortmaker, S.L. Impact of the Boston Active School Day Policy to Promote Physical Activity among Children. Am. J. Health Promot. 2014, 28, S54–S64. [Google Scholar] [CrossRef]
- Haapala, H.L.; Hirvensalo, M.H.; Kulmala, J.; Hakonen, H.; Kankaanpaa, A.; Laine, K.; Laakso, L.; Tammelin, T.H. Changes in physical activity and sedentary time in the Finnish Schools on the Move program: A quasi-experimental study. Scand. J. Med. Sci. Sports 2017, 27, 1442–1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buman, M.P.; Hekler, E.B.; Haskell, W.L.; Pruitt, L.; Conway, T.L.; Cain, K.L.; Sallis, J.F.; Saelens, B.E.; Frank, L.D.; King, A.C. Objective Light-Intensity Physical Activity Associations With Rated Health in Older Adults. Am. J. Epidemiol. 2010, 172, 1155–1165. [Google Scholar] [CrossRef] [Green Version]
- Healy, G.N.; Clark, B.K.; Winkler, E.A.H.; Gardiner, P.A.; Brown, W.J.; Matthews, C.E. Measurement of Adults’ Sedentary Time in Population-Based Studies. Am. J. Prev. Med. 2011, 41, 216–227. [Google Scholar] [CrossRef] [Green Version]
- Tandon, P.S.; Zhou, C.; Sallis, J.F.; Cain, K.L.; Frank, L.D.; Saelens, B.E. Home environment relationships with children’s physical activity, sedentary time, and screen time by socioeconomic status. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verloigne, M.; Van Lippevelde, W.; Maes, L.; Yildirim, M.; Chinapaw, M.; Manios, Y.; Androutsos, O.; Kovacs, E.; Bringolf-Isler, B.; Brug, J.; et al. Levels of physical activity and sedentary time among 10- to 12-year-old boys and girls across 5 European countries using accelerometers: An observational study within the ENERGY-project. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tudor-Locke, C.; Brashear, M.M.; Johnson, W.D.; Katzmarzyk, P.T. Accelerometer profiles of physical activity and inactivity in normal weight, overweight, and obese U.S. men and women. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 60. [Google Scholar] [CrossRef] [Green Version]
- O’donoghue, G.; Perchoux, C.; Mensah, K.; Lakerveld, J.; Van Der Ploeg, H.; Bernaards, C.; Chastin, S.F.M.; Simon, C.; O’gorman, D.; Nazare, J.A. A systematic review of correlates of sedentary behaviour in adults aged 18–65 years: A socio-ecological approach. BMC Public Health 2016, 16, 163. [Google Scholar] [CrossRef] [Green Version]
- Spurrier, N.J.; Magarey, A.A.; Golley, R.; Curnow, F.; Sawyer, M.G. Relationships between the home environment and physical activity and dietary patterns of preschool children: A cross-sectional study. Int. J. Behav. Nutr. Phys. Act. 2008, 5, 31. [Google Scholar] [CrossRef] [Green Version]
- Veitch, J.; Timperio, A.; Crawford, D.; Abbott, G.; Giles-Corti, B.; Salmon, J. Is the Neighbourhood Environment Associated with Sedentary Behaviour Outside of School Hours Among Children? Ann. Behav. Med. 2011, 41, 333–341. [Google Scholar] [CrossRef] [Green Version]
- Bankoski, A.; Harris, T.B.; McClain, J.J.; Brychta, R.J.; Caserotti, P.; Chen, K.Y.; Berrigan, D.; Troiano, R.P.; Koster, A. Sedentary Activity Associated With Metabolic Syndrome Independent of Physical Activity. Diabetes Care 2011, 34, 497–503. [Google Scholar] [CrossRef] [Green Version]
- Henson, J.; Yates, T.; Biddle, S.; Edwardson, C.L.; Khunti, K.; Wilmot, E.G.; Gray, L.; Gorely, T.; Nimmo, M.; Davies, M. Associations of objectively measured sedentary behaviour and physical activity with markers of cardiometabolic health. Diabetologia 2013, 56, 1012–1020. [Google Scholar] [CrossRef] [Green Version]
- Schram, M.T.; Sep, S.J.S.; van der Kallen, C.J.; Dagnelie, P.C.; Koster, A.; Schaper, N.; Henry, R.M.A.; Stehouwer, C.D.A. The Maastricht Study: An extensive phenotyping study on determinants of type 2 diabetes, its complications and its comorbidities. Eur. J. Epidemiol. 2014, 29, 439–451. [Google Scholar] [CrossRef]
- Stamatakis, E.; Rogers, K.; Ding, D.; Berrigan, D.; Chau, J.; Hamer, M.; Bauman, A. All-cause mortality effects of replacing sedentary time with physical activity and sleeping using an isotemporal substitution model: A prospective study of 201,129 mid-aged and older adults. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Global Recommendations on Physical Activity for Health; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- De Rezende, L.F.M.; Rey-Lopez, J.P.; Matsudo, V.K.R.; Luiz, O.D. Sedentary behavior and health outcomes among older adults: A systematic review. BMC Public Health 2014, 14, 9. [Google Scholar] [CrossRef] [Green Version]
- Warburton, D.E.; Bredin, S.S. Reflections on Physical Activity and Health: What Should We Recommend? Can. J. Cardiol. 2016, 32, 495–504. [Google Scholar] [CrossRef] [Green Version]
- Wilmot, E.G.; Edwardson, C.L.; Achana, F.A.; Davies, M.J.; Gorely, T.; Gray, L.J.; Khunti, K.; Yates, T.; Biddle, S.J.H. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: Systematic review and meta-analysis. Diabetologia 2012, 56, 2895–2905. [Google Scholar] [CrossRef]
- Hamilton, M.T.; Hamilton, D.G.; Zderic, T.W. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes 2007, 56, 2655–2667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carson, V.; Hunter, S.; Kuzik, N.; Gray, C.E.; Poitras, V.J.; Chaput, J.P.; Saunders, T.J.; Katzmarzyk, P.T.; Okely, A.D.; Gorber, S.C.; et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: An update. Appl. Physiol. Nutr. Metab. 2016, 41, S240–S265. [Google Scholar] [CrossRef]
- Biswas, A.; Oh, P.I.; Faulkner, G.E.; Bajaj, R.R.; Silver, M.A.; Mitchell, M.S.; Alter, D.A. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: A systematic review and meta-analysis. Ann. Intern. Med. 2015, 162, 123–132. [Google Scholar] [CrossRef]
- Leung, K.C.W.; Sum, K.W.R.; Yang, Y.J. Patterns of Sedentary Behavior among Older Adults in Care Facilities: A Scoping Review. Int. J. Environ. Res. Public Health 2021, 18, 2710. [Google Scholar] [CrossRef]
- Prince, S.A.; Saunders, T.J.; Gresty, K.; Reid, R.D. A comparison of the effectiveness of physical activity and sedentary behaviour interventions in reducing sedentary time in adults: A systematic review and meta-analysis of controlled trials. Obes. Rev. 2014, 15, 905–919. [Google Scholar] [CrossRef] [PubMed]
- Peter, A. Interventions with potential to reduce sedentary time in adults: Systematic review and meta-analysis. Orvosi Hetil. 2016, 157, 758–759. [Google Scholar]
- Neuhaus, M.; Eakin, E.G.; Straker, L.; Owen, N.; Dunstan, D.W.; Reid, N.; Healy, G.N. Reducing occupational sedentary time: A systematic review and meta-analysis of evidence on activity-permissive workstations. Obes. Rev. 2014, 15, 822–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayne, R.S.; Hart, N.D.; Heron, N. Sedentary behaviour among general practitioners: A systematic review. BMC Fam. Pr. 2021, 22, 1–8. [Google Scholar] [CrossRef]
- Mackintosh, K.A.; McNarry, M.A.; Berntsen, S.; Steele, J.; Sejersted, E.; Westergren, T. Physical activity and sedentary time in children and adolescents with asthma: A systematic review and meta-analysis. Scand. J. Med. Sci. Sports 2021, 31, 1183–1195. [Google Scholar] [CrossRef]
- Hadgraft, N.T.; Winkler, E.; Climie, R.E.; Grace, M.S.; Romero, L.; Owen, N.; Dunstan, D.; Healy, G.; Dempsey, P.C. Effects of sedentary behaviour interventions on biomarkers of cardiometabolic risk in adults: Systematic review with meta-analyses. Br. J. Sports Med. 2021, 55, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Wan, Y.; Lu, J.; Fang, H.; Yin, Z.; Wang, T.; Wang, R.; Fan, X.; Zhao, L.; Tan, D. Lattice Boltzmann Method for Fluid-Thermal Systems: Status, Hotspots, Trends and Outlook. IEEE Access 2020, 8, 27649–27675. [Google Scholar] [CrossRef]
- Chen, G.; Ju, B.; Fang, H.; Chen, Y.; Yu, N.; Wan, Y. Air bearing: Academic insights and trend analysis. Int. J. Adv. Manuf. Technol. 2019, 106, 1191–1202. [Google Scholar] [CrossRef]
- Liu, T.; Hu, H.; Ding, X.; Yuan, H.; Jin, C.; Nai, J.; Liu, Y.; Wang, Y.; Wan, Y.; Tao, X. 12 years roadmap of the sulfur cathode for lithium sulfur batteries (2009–2020). Energy Storage Mater. 2020, 30, 346–366. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, Z.; Wang, C.; Chen, Y.; Li, S.; Wan, Y.; Jin, Q. A bibliometric analysis for the research on laser processing based on Web of Science. J. Laser Appl. 2020, 32, 022001. [Google Scholar] [CrossRef]
- Garousi, V.; Fernandes, J.M. Highly-cited papers in software engineering: The top-100. Inf. Softw. Technol. 2016, 71, 108–128. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.-Q.; Wan, Y.; Jiang, S.; Cheng, Y. Alzheimer’s disease research in the future: Bibliometric analysis of cholinesterase inhibitors from 1993 to 2012. Science 2013, 98, 1865–1877. [Google Scholar] [CrossRef]
- He, L.; Fang, H.; Chen, C.; Wu, Y.; Wang, Y.; Ge, H.; Wang, L.; Wan, Y.; He, H. Metastatic castration-resistant prostate cancer: Academic insights and perspectives through bibliometric analysis. Medicine 2020, 99, e19760. [Google Scholar] [CrossRef]
- He, L.; Fang, H.; Wang, X.; Wang, Y.; Ge, H.; Li, C.; Chen, C.; Wan, Y.; He, H. The 100 most-cited articles in urological surgery: A bibliometric analysis. Int. J. Surg. 2020, 75, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Chen, D.W.; Ding, X.F.; Wang, G.; Wan, Y.H.; Shen, Q. A bibliometric analysis of income and cardiovascular disease Status, Hotspots, Trends and Outlook. Medicine 2020, 99, 34. [Google Scholar] [CrossRef]
- Cheng, M. Sharing economy: A review and agenda for future research. Int. J. Hosp. Manag. 2016, 57, 60–70. [Google Scholar] [CrossRef]
- Linnenluecke, M.K.; Chen, X.Y.; Ling, X.; Smith, T.; Zhu, Y.S. Emerging trends in Asia-Pacific finance research: A review of recent influential publications and a research agenda. Pac.-Basin Financ. J. 2016, 36, 66–76. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, F.A. Mapping the field of arts-based management: Bibliographic coupling and co-citation analyses. J. Bus. Res. 2018, 85, 348–357. [Google Scholar] [CrossRef]
- Wang, C.; Wu, R.; Deng, L.; Chen, Y.; Li, Y.; Wan, Y. A Bibliometric Analysis on No-Show Research: Status, Hotspots, Trends and Outlook. Sustainability 2020, 12, 3997. [Google Scholar] [CrossRef]
- Liao, P.; Wan, Y.; Tang, P.; Wu, C.; Hu, Y.; Zhang, S. Applying crowdsourcing techniques in urban planning: A bibliometric analysis of research and practice prospects. Cities 2019, 94, 33–43. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, J.; Fang, H.; Wan, Y. Intimate Partner Violence: A Bibliometric Review of Literature. Int. J. Environ. Res. Public Health 2020, 17, 5607. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, Y.; Zhang, L.; Zhou, Y. A bibliometric review of nitrogen research in eutrophic lakes and reservoirs. J. Environ. Sci. 2018, 66, 274–285. [Google Scholar] [CrossRef]
- Mao, G.; Shi, T.; Zhang, S.; Crittenden, J.; Guo, S.; Du, H. Bibliometric analysis of insights into soil remediation. J. Soils Sediments 2018, 18, 2520–2534. [Google Scholar] [CrossRef]
- Guo, Y.; Zhou, X.; Porter, A.L.; Robinson, D.K.R. Tech mining to generate indicators of future national technological competitiveness: Nano-Enhanced Drug Delivery (NEDD) in the US and China. Technol. Forecast. Soc. Chang. 2015, 97, 168–180. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Porter, A.; Hu, Z.; Guo, Y.; Newman, N.C. “Term clumping” for technical intelligence: A case study on dye-sensitized solar cells. Technol. Forecast. Soc. Chang. 2014, 85, 26–39. [Google Scholar] [CrossRef]
- Prathap, G. Is there a place for a mock h-index? Science 2009, 84, 153–165. [Google Scholar] [CrossRef]
- Garfield, E. Citation Indexing for Studying Science. Nature 1970, 227, 669–671. [Google Scholar] [CrossRef]
- Yao, Q.; Chen, J.; Lyu, P.-H.; Zhang, S.-J.; Ma, F.-C.; Fang, J.-G. Knowledge map of artemisinin research in SCI and Medline database. J. Vector Borne Dis. 2012, 49, 205–216. [Google Scholar] [PubMed]
- Li, L.-L.; Ding, G.; Feng, N.; Wang, M.-H.; Ho, Y.-S. Global stem cell research trend: Bibliometric analysis as a tool for mapping of trends from 1991 to 2006. Science 2009, 80, 39–58. [Google Scholar] [CrossRef]
- Janssen, I.; LeBlanc, A.G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paterson, D.H.; Warburton, D.E.R. Physical activity and functional limitations in older adults: A systematic review related to Canada’s Physical Activity Guidelines. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- Warburton, D.E.R.; Charlesworth, S.; Ivey, A.; Nettlefold, L.; Bredin, S.S.D. A systematic review of the evidence for Canada’s Physical Activity Guidelines for Adults. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, J.R.; Ortega, F.B.; Martinez-Gomez, D.; Labayen, I.; Moreno, L.A.; De Bourdeaudhuij, I.; Manios, Y.; Gonzalez-Gross, M.; Mauro, B.; Molnar, D.; et al. Objectively Measured Physical Activity and Sedentary Time in European Adolescents The HELENA Study. Am. J. Epidemiol. 2011, 174, 173–184. [Google Scholar] [CrossRef] [Green Version]
- Opdenacker, J.; Boen, F. Effectiveness of Face-to-Face Versus Telephone Support in Increasing Physical Activity and Mental Health Among University Employees. J. Phys. Act. Health 2008, 5, 830–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilson, N.D.; Puig-Ribera, A.; McKenna, J.; Brown, W.J.; Burton, N.W.; Cooke, C.B. Do walking strategies to increase physical activity reduce reported sitting in workplaces: A randomized control trial. Int. J. Behav. Nutr. Phys. Act. 2009, 6, 43–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, M.; Dunton, G.F.; Cooper, D.M. Physical activity and physical self-concept among sedentary adolescent females: An intervention study. Psychol. Sport Exerc. 2008, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Thompson, A.L.; Adair, L.S.; Bentley, M.E. Maternal Characteristics and Perception of Temperament Associated With Infant TV Exposure. Pediatrics 2013, 131, e390–e397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granich, J.; Rosenberg, M.; Knuiman, M.; Timperio, A. Individual, Social, and Physical Environment Factors Associated With Electronic Media Use Among Children: Sedentary Behavior at Home. J. Phys. Act. Health 2011, 8, 613–625. [Google Scholar] [CrossRef]
- Vissers, P.A.J.; Jones, A.P.; Corder, K.; Jennings, A.; Van Sluijs, E.M.F.; Welch, A.; Cassidy, A.; Griffin, S. Breakfast consumption and daily physical activity in 9–10-year-old British children. Public Health Nutr. 2013, 16, 1281–1290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carson, V.; Ridgers, N.; Howard, B.J.; Winkler, E.A.H.; Healy, G.; Owen, N.; Dunstan, D.; Salmon, J. Light-Intensity Physical Activity and Cardiometabolic Biomarkers in US Adolescents. PLoS ONE 2013, 8, e71417. [Google Scholar] [CrossRef] [Green Version]
- Pate, R.R.; Mitchell, J.; Byun, W.; Dowda, M. Sedentary behaviour in youth. Br. J. Sports Med. 2011, 45, 906–913. [Google Scholar] [CrossRef]
- Cooper, A.R.; Goodman, A.; Page, A.S.; Sherar, L.B.; Esliger, D.W.; Van Sluijs, E.M.F.; Andersen, L.B.; Anderssen, S.; Cardon, G.; Davey, R.; et al. Objectively measured physical activity and sedentary time in youth: The International children’s accelerometry database (ICAD). Int. J. Behav. Nutr. Phys. Act. 2015, 12, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilsson, A.; Andersen, L.B.; Ommundsen, Y.; Froberg, K.; Sardinha, L.B.; Piehl-Aulin, K.; Ekelund, U. Correlates of objectively assessed physical activity and sedentary time in children: A cross-sectional study (The European Youth Heart Study). BMC Public Health 2009, 9, 322. [Google Scholar] [CrossRef] [Green Version]
- Ekelund, U.; Brage, S.; Besson, H.; Sharp, S.; Wareham, N.J. Time spent being sedentary and weight gain in healthy adults: Reverse or bidirectional causality? Am. J. Clin. Nutr. 2008, 88, 612–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Besson, H.; Brage, S.; Jakes, R.W.; Ekelund, U.; Wareham, N.J. Estimating physical activity energy expenditure, sedentary time, and physical activity intensity by self-report in adults. Am. J. Clin. Nutr. 2009, 91, 106–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugiyama, T.; Salmon, J.; Dunstan, D.W.; Bauman, A.E.; Owen, N. Neighborhood walkability and TV viewing time among Australi-an adults. Am. J. Prev. Med. 2007, 33, 444–449. [Google Scholar] [CrossRef]
- Copeland, J.L.; Esliger, D.W. Accelerometer Assessment of Physical Activity in Active, Healthy Older Adults. J. Aging Phys. Act. 2009, 17, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Gardiner, P.A.; Eakin, E.; Healy, G.; Owen, N. Feasibility of Reducing Older Adults’ Sedentary Time. Am. J. Prev. Med. 2011, 41, 174–177. [Google Scholar] [CrossRef] [Green Version]
- Gennuso, K.P.; Gangnon, R.E.; Matthews, C.E.; Thraen-Borowski, K.M.; Colbert, L.H. Sedentary Behavior, Physical Activity, and Markers of Health in Older Adults. Med. Sci. Sports Exerc. 2013, 45, 1493–1500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sisson, S.B.; Church, T.S.; Martin, C.K.; Tudor-Locke, C.; Smith, S.R.; Bouchard, C.; Earnest, C.P.; Rankinen, T.; Newton, R.L.; Katzmarzyk, P.T. Profiles of sedentary behavior in children and adolescents: The US National Health and Nutrition Examination Survey, 2001–2006. Int. J. Pediatr. Obes. 2009, 4, 353–359. [Google Scholar] [CrossRef] [Green Version]
- Colley, R.C.; Garriguet, D.; Janssen, I.; Wong, S.L.; Saunders, T.J.; Carson, V.; Tremblay, M.S. The association between accelerometer-measured patterns of sedentary time and health risk in children and youth: Results from the Canadian Health Measures Survey. BMC Public Health 2013, 13, 200. [Google Scholar] [CrossRef] [Green Version]
- Ortega, F.B.; Konstabel, K.; Pasquali, E.; Ruiz, J.R.; Hurtig-Wennlof, A.; Maestu, J.; Lof, M.; Harro, J.; Bellocco, R.; Labayen, I.; et al. Objectively Measured Physical Activity and Sedentary Time during Childhood, Adolescence and Young Adulthood: A Cohort Study. PLoS ONE 2013, 8, e60871. [Google Scholar] [CrossRef] [Green Version]
- Steele, R.M.; Van Sluijs, E.M.; Cassidy, A.; Griffin, S.J.; Ekelund, U. Targeting sedentary time or moderate- and vigorous-intensity activity: Independent relations with adiposity in a population-based sample of 10-y-old British children. Am. J. Clin. Nutr. 2009, 90, 1185–1192. [Google Scholar] [CrossRef] [Green Version]
- Ekelund, U.; Brage, S.; Griffin, S.J.; Wareham, N.J.; The ProActive UK Research Group. Objectively Measured Moderate- and Vigorous-Intensity Physical Activity but Not Sedentary Time Predicts Insulin Resistance in High-Risk Individuals. Diabetes Care 2009, 32, 1081–1086. [Google Scholar] [CrossRef] [Green Version]
- Dempsey, P.C.; Larsen, R.N.; Sethi, P.; Sacre, J.W.; Straznicky, N.E.; Cohen, N.D.; Cerin, E.; Lambert, G.W.; Owen, N.; Kingwell, B.A.; et al. Benefits for Type 2 Diabetes of Interrupting Prolonged Sitting With Brief Bouts of Light Walking or Simple Resistance Activities. Diabetes Care 2016, 39, 964–972. [Google Scholar] [CrossRef] [Green Version]
- Glazer, N.L.; Lyass, A.; Esliger, D.; Blease, S.J.; Freedson, P.S.; Massaro, J.; Murabito, J.; Vasan, R.S. Sustained and Shorter Bouts of Physical Activity Are Related to Cardiovascular Health. Med. Sci. Sports Exerc. 2013, 45, 109–115. [Google Scholar] [CrossRef] [Green Version]
- Garner, J.; Carley, S.; Porter, A.L.; Newman, N.C. Technological Emergence Indicators Using Emergence Scoring. In Proceedings of the 2017 Portland International Conference on Management of Engineering and Technology (PICMET), Portland, OR, USA, 9–13 July 2017. [Google Scholar] [CrossRef]
- Ekelund, U.; Kolle, E.; Steene-Johannessen, J.; Dalene, K.E.; Nilsen, A.K.O.; Anderssen, S.A.; Hansen, B.H. Objectively measured sedentary time and physical activity and associations with body weight gain: Does body weight determine a decline in moderate and vigorous intensity physical activity? Int. J. Obes. 2017, 41, 1769–1774. [Google Scholar] [CrossRef]
- Pearson, N.; Biddle, S. Sedentary Behavior and Dietary Intake in Children, Adolescents, and Adults: A Systematic Review. Am. J. Prev. Med. 2011, 41, 178–188. [Google Scholar] [CrossRef] [Green Version]
- Owen, N.; Healy, G.N.; Matthews, C.E.; Dunstan, D.W. Too Much Sitting: The Population Health Science of Sedentary Behavior. Exerc. Sport Sci. Rev. 2010, 38, 105–113. [Google Scholar] [CrossRef]
- Tremblay, M.S.; Aubert, S.; Barnes, J.D.; Saunders, T.J.; Carson, V.; Latimer-Cheung, A.E.; Chastin, S.F.M.; Altenburg, T.M.; Chinapaw, M.J.M.; Sbrn Terminology Consensus Project Participants. Sedentary Behavior Research Network (SBRN)—Terminology Consensus Project process and outcome. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 75. [Google Scholar] [CrossRef] [Green Version]
- Dyrstad, S.M.; Hansen, B.H.; Holme, I.M.; Anderssen, S.A. Comparison of Self-reported versus Accelerometer-Measured Physical Activity. Med. Sci. Sports Exerc. 2014, 46, 99–106. [Google Scholar] [CrossRef]
- Tremblay, M.S.; LeBlanc, A.G.; Kho, M.E.; Saunders, T.J.; Larouche, R.; Colley, R.C.; Goldfield, G.; Gorber, S.C. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- Peddie, M.C.; Bone, J.L.; Rehrer, N.J.; Skeaff, C.M.; Gray, A.; Perry, T.L. Breaking prolonged sitting reduces postprandial glycemia in healthy, normalweight adults: A randomized crossover trial. Am. J. Clin. Nutr. 2013, 98, 358–366. [Google Scholar] [CrossRef] [Green Version]
- Patterson, R.; McNamara, E.; Tainio, M.; de Sa, T.H.; Smith, A.D.; Sharp, S.J.; Edwards, P.; Woodcock, J.; Brage, S.; Wijndaele, K. Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: A systematic review and dose response meta-analysis. Eur. J. Epidemiol. 2018, 33, 811–829. [Google Scholar] [CrossRef] [Green Version]
- Ekelund, U.; Tarp, J.; Steene-Johannessen, J.; Hansen, B.H.; Jefferis, B.; Fagerland, M.W.; Whincup, P.; Diaz, K.M.; Hooker, S.P.; Chernofsky, A.; et al. Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: Systematic review and harmonised meta-analysis. BMJ Br. Med. J. 2019, 366, 10. [Google Scholar] [CrossRef] [Green Version]
- Huckins, J.F.; Dasilva, A.W.; Wang, W.; Hedlund, E.; Rogers, C.; Nepal, S.K.; Wu, J.; Obuchi, M.; I Murphy, E.; Meyer, M.L.; et al. Mental Health and Behavior of College Students During the Early Phases of the COVID-19 Pandemic: Longitudinal Smartphone and Ecological Momentary Assessment Study. J. Med. Internet Res. 2020, 22, e20185. [Google Scholar] [CrossRef]
- Deschasaux-Tanguy, M.; Druesne-Pecollo, N.; Esseddik, Y.; de Edelenyi, F.S.; Alles, B.; Andreeva, V.A.; Baudry, J.; Charreire, H.; Des-champs, V.; Egnell, M.; et al. Diet and physical activity during the coronavirus disease 2019 (COVID-19) lockdown (March-May 2020): Results from the French NutriNet-Sante cohort study. Am. J. Clin. Nutr. 2021, 113, 924–938. [Google Scholar] [CrossRef]
- Castaneda-Babarro, A.; Arbillaga-Etxarri, A.; Gutierrez-Santamaria, B.; Coca, A. Physical Activity Change during COVID-19 Confinement. Int. J. Environ. Res. Public Health 2020, 17, 6878. [Google Scholar] [CrossRef]
- Bejarano, C.M.; Carlson, J.A.; Conway, T.L.; Saelens, B.E.; Glanz, K.; Couch, S.C.; Cain, K.L.; Sallis, J.F. Physical Activity, Sedentary Time, and Diet as Mediators of the Association Between TV Time and BMI in Youth. Am. J. Health Promot. 2021, 35, 613–623. [Google Scholar] [CrossRef]
- Van Roekel, E.H.; Dugue, P.A.; Jung, C.H.; Joo, J.E.; Makalic, E.; Wong, E.M.; English, D.R.; Southey, M.C.; Giles, G.G.; Lynch, B.M.; et al. Physical Activity, Television Viewing Time, and DNA Methylation in Peripheral Blood. Med. Sci. Sports Exerc. 2019, 51, 490–498. [Google Scholar] [CrossRef]
- Hoeck, L.; Spann, M. The effects of first and second screen marketing on TV viewing activity. J. Media Econ. 2021, 32, 82–98. [Google Scholar] [CrossRef]
- Sumimoto, Y.; Yanagita, M.; Miyamatsu, N.; Okuda, N.; Nishi, N.; Nakamura, Y.; Nakamura, K.; Miyagawa, N.; Miyachi, M.; Kadota, A.; et al. Association between socioeconomic status and prolonged television viewing time in a general Japanese population: NIPPON DATA2010. Environ. Health Prev. Med. 2021, 26, 57. [Google Scholar] [CrossRef]
- Song, L.; Shi, Y.; Tso, G.K.F. Commercial audience retention of television programs: Measurement and prediction. Int. J. Advert. 2021, 1–27. [Google Scholar] [CrossRef]
Rank | Country/Region | TP | TC | ACPP | SP (%) | nCC | H-Index |
---|---|---|---|---|---|---|---|
1 | USA | 914 | 21,980 | 24.05 | 40.37 | 63 | 63 |
2 | UK | 702 | 19,649 | 27.99 | 66.67 | 60 | 64 |
3 | Australia | 657 | 19,413 | 29.55 | 71.23 | 44 | 66 |
4 | Canada | 391 | 12,274 | 31.39 | 49.87 | 36 | 51 |
5 | Spain | 245 | 3858 | 15.75 | 72.65 | 47 | 32 |
6 | Netherlands | 216 | 5949 | 27.54 | 65.28 | 36 | 38 |
7 | Norway | 180 | 5279 | 29.33 | 73.89 | 40 | 37 |
8 | Belgium | 170 | 4609 | 27.11 | 84.71 | 42 | 35 |
9 | China | 153 | 2113 | 13.81 | 60.13 | 37 | 25 |
10 | Sweden | 142 | 4125 | 29.05 | 66.90 | 31 | 32 |
11 | Portugal | 122 | 2530 | 20.74 | 86.07 | 41 | 28 |
12 | Denmark | 121 | 2355 | 19.46 | 81.82 | 38 | 25 |
13 | Brazil | 115 | 2135 | 18.57 | 78.26 | 42 | 21 |
14 | Finland | 111 | 1827 | 16.46 | 71.17 | 40 | 23 |
15 | Germany | 109 | 1607 | 14.74 | 68.81 | 41 | 20 |
16 | Japan | 84 | 763 | 9.08 | 35.71 | 22 | 15 |
17 | Ireland | 69 | 1247 | 18.07 | 78.26 | 27 | 18 |
18 | France | 64 | 1415 | 22.11 | 81.25 | 30 | 19 |
19 | Italy | 58 | 1164 | 20.07 | 81.03 | 33 | 18 |
20 | New Zealand | 56 | 1069 | 19.09 | 78.57 | 23 | 18 |
Rank | Institution | TP | TC | ACPP | h-Index | Country/Region |
---|---|---|---|---|---|---|
1 | Baker IDI Heart and Diabetes Inst. | 165 | 9328 | 56.53 | 47 | Australia |
2 | Univ. Queensland | 154 | 9021 | 58.58 | 45 | Australia |
3 | Deakin Univ. | 138 | 5494 | 39.81 | 39 | Australia |
4 | Univ. Ghent | 125 | 3970 | 31.76 | 34 | Belgium |
5 | Norwegian Sch. Sport Science | 122 | 4279 | 35.07 | 31 | Norway |
6 | Univ. Cambridge | 116 | 2883 | 24.85 | 28 | UK |
7 | Vrije Univ. Amsterdam | 97 | 3365 | 34.69 | 30 | Netherlands |
8 | Univ. Melbourne | 88 | 2695 | 30.63 | 29 | Australia |
9 | Univ. Granada | 85 | 1695 | 19.94 | 20 | Spain |
10 | Australian Catholic Univ. | 84 | 1603 | 19.08 | 22 | Australia |
11 | Curtin Univ. | 82 | 1922 | 23.44 | 21 | Australia |
12 | Univ. Bristol | 82 | 2455 | 30.31 | 23 | Australia |
13 | Univ. Calif San Diego | 81 | 1505 | 18.58 | 22 | USA |
14 | Univ. Western Australia | 81 | 2951 | 36.43 | 31 | Australia |
15 | Univ. Sydney | 80 | 2164 | 27.05 | 26 | Australia |
16 | Univ. Leicester | 76 | 2884 | 37.95 | 22 | UK |
17 | Loughborough Univ. | 74 | 4339 | 59.44 | 26 | UK |
18 | UCL | 73 | 2182 | 29.89 | 27 | UK |
19 | Karolinska Inst. | 71 | 2220 | 31.27 | 24 | Sweden |
20 | Monash Univ. | 71 | 4359 | 61.39 | 35 | Australia |
Rank | WOS Research Area | TP | TPR% | TC | ACPP |
---|---|---|---|---|---|
1 | Public, Environmental & Occupational Health | 842 | 27.88 | 16,729 | 19.87 |
2 | Sport Sciences | 526 | 17.42 | 12,139 | 23.08 |
3 | Nutrition and Dietetics | 359 | 11.89 | 10,876 | 30.30 |
4 | Physiology | 277 | 9.17 | 10,008 | 36.13 |
5 | Medicine, General & Internal | 230 | 7.62 | 10,060 | 43.93 |
6 | Endocrinology and Metabolism | 209 | 6.92 | 7187 | 34.55 |
7 | Multidisciplinary Sciences | 181 | 5.99 | 4598 | 25.40 |
8 | Pediatrics | 180 | 5.96 | 2303 | 12.79 |
9 | Environmental Sciences | 144 | 4.77 | 867 | 6.02 |
10 | Geriatrics and Gerontology | 130 | 4.30 | 1643 | 12.64 |
11 | Rehabilitation | 111 | 3.68 | 1484 | 13.37 |
12 | Cardiac and Cardiovascular Systems | 94 | 3.11 | 2640 | 28.09 |
13 | Health Care Sciences and Services | 82 | 2.72 | 1308 | 15.95 |
14 | Oncology | 81 | 2.68 | 1450 | 17.90 |
15 | Gerontology | 69 | 2.28 | 795 | 11.52 |
16 | Clinical Neurology | 51 | 1.69 | 604 | 11.84 |
17 | Respiratory System | 46 | 1.52 | 408 | 8.87 |
18 | Medicine, Research and Experimental | 45 | 1.49 | 399 | 8.87 |
19 | Psychology | 45 | 1.49 | 642 | 14.27 |
20 | Psychology, Applied | 41 | 1.36 | 511 | 12.46 |
Rank | Journal Title | TP | TC | ACPP | IF |
---|---|---|---|---|---|
1 | BMC Public Health | 170 | 3438 | 20.22 | 2.521 |
2 | Int. J. Behav. Nutr. Phys. Act. | 163 | 7152 | 43.88 | 6.714 |
3 | PLOS One | 156 | 4338 | 27.81 | 2.740 |
4 | Int. J. Environ. Res. Public Health | 136 | 852 | 6.26 | 2.849 |
5 | Med. Sci. Sports Exerc. | 128 | 4452 | 34.78 | 4.029 |
6 | J. Phys. Act. Health | 122 | 1425 | 11.68 | 1.993 |
7 | Prev. Med. | 61 | 2492 | 40.85 | 3.788 |
8 | BMJ Open | 56 | 702 | 12.76 | 2.496 |
9 | J. Sports Sci. | 52 | 371 | 7.13 | 2.597 |
10 | Scand. J. Med. Sci. Sports | 46 | 432 | 9.39 | 3.255 |
11 | J. Sci. Med. Sport | 45 | 934 | 20.76 | 3.607 |
12 | Pediatr. Exerc. Sci. | 38 | 400 | 10.53 | 1.489 |
13 | Am. J. Prev. Med. | 37 | 3225 | 87.16 | 4.420 |
14 | Int. J. Obes. | 32 | 811 | 25.34 | 4.419 |
15 | Obesity | 29 | 734 | 25.31 | 3.742 |
16 | J. Aging Phys. Act. | 26 | 222 | 8.54 | 1.763 |
17 | Appl. Physiol. Nutr. Metab. | 25 | 423 | 16.92 | 2.522 |
18 | Br. J. Sports Med. | 23 | 1459 | 63.43 | 12.68 |
19 | J. Occup. Environ. Med. | 20 | 267 | 13.35 | 1.642 |
20 | Nutrients | 20 | 91 | 4.55 | 4.546 |
Rank | Author | TP | TAR | TC | ACPP | H-Index | Institution (Current), Country/Region |
---|---|---|---|---|---|---|---|
1 | Ekelund U. | 99 | 12 | 4063 | 41.04 | 31 | Norwegian Sch Sport Sci, Norway |
2 | Owen N. | 88 | 3 | 7698 | 87.48 | 43 | Baker Heart and Diabetes Institute, Australia |
3 | Dunstan D.W. | 84 | 4 | 6782 | 80.74 | 38 | Baker Heart and Diabetes Institute, Australia |
4 | Healy G.N. | 64 | 9 | 6244 | 97.56 | 36 | Univ Queensland, Australia |
5 | Brage S. | 61 | 5 | 1603 | 26.28 | 23 | Univ Cambridge, UK |
6 | Tremblay M.S. | 60 | 6 | 4141 | 69.02 | 28 | Children’s Hosp Eastern Ontario, Canada |
7 | De Bourdeaudhuij I. | 55 | 3 | 1711 | 31.11 | 23 | Univ Ghent, Belgium |
8 | Yates T. | 55 | 4 | 2666 | 49.37 | 20 | Univ Leicester, UK |
9 | Salmon J. | 53 | 7 | 1724 | 32.53 | 23 | Deakin Univ, Australia |
10 | Chaput J.P. | 48 | 11 | 1758 | 36.63 | 23 | Childrens Hosp Eastern Ontario, Canada |
11 | Sardinha L.B. | 46 | 15 | 1236 | 26.87 | 21 | Univ Lisbon, Portugal |
12 | Katzmarzyk P.T. | 44 | 4 | 1428 | 32.45 | 18 | Pennington Biomed Res Ctr, USA |
13 | Edwardson C.L. | 43 | 11 | 2332 | 55.52 | 18 | Univ Leicester, UK |
14 | Olds T. | 43 | 1 | 1259 | 29.28 | 20 | Univ S Australia, Australia |
15 | Cardon G. | 42 | 20 | 1124 | 26.76 | 19 | Univ Ghent, Belgium |
16 | Davies M.J. | 42 | 2 | 2085 | 50.85 | 17 | Univ Leicester, UK |
17 | Khunti K. | 38 | 0 | 2071 | 54.50 | 18 | Univ Leicester, UK |
18 | Andersen L.B. | 36 | 2 | 697 | 19.36 | 17 | Western Norway Univ Appl Sci, Norway |
19 | Hamer M. | 35 | 15 | 952 | 27.20 | 19 | UCL, UK |
20 | Kerr J. | 35 | 4 | 604 | 17.26 | 15 | Univ Calif San Diego, USA |
Year | Authors | Title | TC | TCY | Source | Country/Region |
---|---|---|---|---|---|---|
2010 | Owen N. et al. | Too Much Sitting: The Population Health Science of Sedentary Behavior | 1214 | 110 | Exerc. Sport Sci. Rev. | Australia; USA |
2011 | Tremblay M.S. et al. | Systematic review of sedentary behaviour and health indicators in school-aged children and youth | 969 | 97 | Int. J. Behav. Nutr. Phys. Act. | Canada; USA |
2012 | Wilmot E.G. et al. | Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis | 859 | 95 | Diabetologia | England |
2013 | Peddie M.C. et al. | Breaking prolonged sitting reduces postprandial glycemia in healthy, normal-weight adults: a randomized crossover trial | 227 | 28 | Am. J. Clin. Nutr. | New Zealand |
2014 | Dyrstad S.M. et al. | Comparison of Self-reported versus Accelerometer-Measured Physical Activity | 305 | 44 | Med. Sci. Sports Exerc. | Norway |
2015 | Biswas A. et al. | Sedentary Time and Its Association With Risk for Disease Incidence, Mortality, and Hospitalization in Adults A Systematic Review and Meta-analysis | 1141 | 190 | Ann. Intern. Med. | Canada |
2016 | Warburton D.E.R. et al. | Reflections on Physical Activity and Health: What Should We Recommend? | 171 | 34 | Can. J. Cardiol. | Canada |
2017 | Tremblay M.S. et al. | Sedentary Behavior Research Network (SBRN)—Terminology Consensus Project process and outcome | 811 | 203 | Int. J. Behav. Nutr. Phys. Act. | Canada; Scotland; Belgium; Netherlands |
2018 | Patterson R. et al. | Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: a systematic review and dose response meta-analysis | 220 | 73 | Eur. J. Epidemiol. | England; Brazil |
2019 | Ekelund U. et al. | Dose–response associations between accelerometry measured physical activity and sedentary time and all cause mortality: systematic review and harmonised meta-analysis | 167 | 84 | BMJ-British Medical Journal | Norway; USA; Sweden |
2020 | Huckins J.F. et al. | Mental Health and Behavior of College Students During the Early Phases of the COVID-19 Pandemic: Longitudinal Smartphone and Ecological Momentary Assessment Study | 38 | 38 | J. Med. Internet Res. | USA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, H.; Jing, Y.; Chen, J.; Wu, Y.; Wan, Y. Recent Trends in Sedentary Time: A Systematic Literature Review. Healthcare 2021, 9, 969. https://doi.org/10.3390/healthcare9080969
Fang H, Jing Y, Chen J, Wu Y, Wan Y. Recent Trends in Sedentary Time: A Systematic Literature Review. Healthcare. 2021; 9(8):969. https://doi.org/10.3390/healthcare9080969
Chicago/Turabian StyleFang, Hui, Yuan Jing, Jie Chen, Yanqi Wu, and Yuehua Wan. 2021. "Recent Trends in Sedentary Time: A Systematic Literature Review" Healthcare 9, no. 8: 969. https://doi.org/10.3390/healthcare9080969
APA StyleFang, H., Jing, Y., Chen, J., Wu, Y., & Wan, Y. (2021). Recent Trends in Sedentary Time: A Systematic Literature Review. Healthcare, 9(8), 969. https://doi.org/10.3390/healthcare9080969