Impact of the Covering Vegetable Oil on the Sensory Profile of Canned Tuna of Katsuwonus pelamis Species and Tuna’s Taste Evaluation Using an Electronic Tongue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Covering Vegetable Oil Samples and Analysis
2.1.1. Oil Samples
2.1.2. Physicochemical and Sensory Evaluation of the Vegetable Oils
2.2. Canned Tuna and Analysis
2.2.1. Tuna Samples
2.2.2. Physicochemical Analysis of Canned Tuna Samples
2.2.3. Color Assessment
2.2.4. Sensory Analysis
2.2.5. Electronic Tongue Apparatus and Tuna Samples Analysis
2.3. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical and Sensory Analysis of the Different Vegetable Oils Used as Covering Media
3.2. Physicochemical and Sensory Analysis of Canned Tuna in Different Vegetable Oils
3.3. Electronic Tongue
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pataca, J.K.G.; Porto-Figueira, P.; Pereira, J.A.M.; Caldeira, H.; Câmara, J.S. Profiling the occurrence of biogenic amines in different types of tuna samples using an improved analytical approach. LWT 2021, 139, 110804. [Google Scholar] [CrossRef]
- Dantas, N.M.; de Oliveira, V.S.; Sampaio, G.R.; Chrysostomo, Y.S.K.; Chávez, D.W.H.; Gamallo, O.D.; Sawaya, A.C.H.F.; Torres, E.A.F.D.S.; Saldanha, T. Lipid profile and high contents of cholesterol oxidation products (COPs) in different commercial brands of canned tuna. Food Chem. 2021, 352, 129334. [Google Scholar] [CrossRef] [PubMed]
- Boughattas, F.; Karoui, R. Mid infrared spectroscopy combined with chemometric tools for the identification of canned tuna species in brine. J. Food Composit. Anal. 2021, 96, 103717. [Google Scholar] [CrossRef]
- Sotelo, C.G.; Velasco, A.; Perez-Martin, R.I.; Kappel, K.; Schröder, U.; Verrez-Bagnis, V.; Jérôme, M.; Mendes, R.; Silva, H.; Mariani, S.; et al. Tuna labels matter in Europe: Mislabelling rates in different tuna products. PLoS ONE 2018, 13, e0196641. [Google Scholar] [CrossRef]
- Dominguez-Vidal, A.; Pantoja-De La Rosa, J.; Cuadros-Rodríguez, L.; Ayora-Cañada, M.J. Authentication of canned fish packing oils by means of Fourier transform infrared spectroscopy. Food Chem. 2016, 190, 122–127. [Google Scholar] [CrossRef]
- Boughattas, F.; Le Fur, B.; Karoui, R. Mid infrared spectroscopy coupled with chemometric tools for qualitative analysis of canned tuna with sunflower medium. J. Food Compost. Anal. 2020, 91, 103519. [Google Scholar] [CrossRef]
- Boughattas, F.; Le Fur, B.; Karoui, R. Identification and quantification of tuna species in canned tunas with sunflower medium by means of a technique based on front face fluorescence spectroscopy (FFFS). Food Cont. 2019, 101, 17–23. [Google Scholar] [CrossRef]
- Mata, W.; Chanmalee, T.; Punyasuk, N.; Thitamadee, S. Simple PCR-RFLP detection method for genus- and species-authentication of four types of tuna used in canned tuna industry. Food Cont. 2020, 108, 106842. [Google Scholar] [CrossRef]
- Krcmar, P.; Piskata, Z.; Servusova, E. Identification of tuna species thunnus albacares and katsuwonus pelamis in canned products by real-time PCR method. Acta Vet. Brno 2019, 88, 323–328. [Google Scholar] [CrossRef]
- Abdullah, A.; Rehbein, H. The differentiation of tuna (family: Scombridae) products through the PCR-based analysis of the cytochrome b gene and parvalbumin introns. J. Sci. Food Agric. 2016, 96, 456–464. [Google Scholar] [CrossRef]
- Liu, S.; Xu, K.; Wu, Z.; Xie, X.; Feng, J. Identification of five highly priced tuna species by quantitative real-time polymerase chain reaction. Mitochondrial DNA 2016, 27, 3270–3279. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Xu, W.; Guo, L.; An, J.; Huang, L.; Qian, H.; Cui, X.; Li, Y.; Cao, M.; Xiong, X.; et al. Development of loop-mediated isothermal amplification (LAMP) assay for rapid screening of skipjack tuna (Katsuwonus pelamis) in processed fish products. J. Food Composit. Anal. 2021, 102, 104038. [Google Scholar] [CrossRef]
- Chuenban, P.; Sornsaruht, P.; Pimdee, P. How brand attitude, brand quality, and brand value affect Thai canned tuna consumer brand loyalty. Heliyon 2021, 7, e06301. [Google Scholar] [CrossRef] [PubMed]
- Cecchi, L.; Migliorini, M.; Mulinacci, N. Virgin olive oil volatile compounds: Composition, sensory characteristics, analytical approaches, quality control, and authentication. J. Agric. Food Chem. 2021, 69, 2013–2040. [Google Scholar] [CrossRef]
- Marone, E.; Masi, E.; Taiti, C.; Pandolfi, C.; Bazihizina, N.; Azzarello, E.; Fiorino, P.; Mancuso, S. Sensory, spectrometric (PTR–ToF–MS) and chemometric analyses to distinguish extra virgin from virgin olive oils. J. Food Sci. Technol. 2017, 54, 1368–1376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, Y.; Habara, M.; Ikezazki, H.; Chen, R.; Naito, Y.; Toko, K. Advanced taste sensors based on artificial lipids with global selectivity to basic taste qualities and high correlation to sensory scores. Sensors 2010, 10, 3411–3443. [Google Scholar] [CrossRef] [Green Version]
- Kostritskii, A.Y.; Kondinskaia, D.A.; Nesterenko, A.M.; Gurtovenko, A.A. Adsorption of Synthetic Cationic Polymers on Model Phospholipid Membranes: Insight from Atomic-Scale Molecular Dynamics Simulations. Langmuir 2016, 32, 10402–10414. [Google Scholar] [CrossRef]
- Arca, V.C.; Peres, A.M.; Machado, A.A.S.C.; Bona, E.; Dias, L.G. Sugars’ quantifications using a potentiometric electronic tongue with cross-selective sensors: Influence of an ionic background. Chemosensors 2019, 7, 43. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.-M.; Kwon, H.C.; Xu, B.; Hang, M.; Kwon, D.H.; Kang, S.W. Taste sensor based on the floating gate structure of a lateral double-diffused metal-oxide semiconductor. Sens. Actuators B Chem. 2020, 308, 127661. [Google Scholar] [CrossRef]
- Sharma, G.; Kumar, S.; Kumar, A.; Sharma, A.; Kumar, R.; Kaur, R.; Bhondekar, A.P. Development of Lipid Membrane Based Taste Sensors for Electronic Tongue. Procedia Comput. Sci. 2015, 70, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Slim, S.; Rodrigues, N.; Dias, L.G.; Veloso, A.C.A.; Pereira, J.A.; Oueslati, S.; Peres, A.M. Application of an electronic tongue for Tunisian olive oils’ classification according to olive cultivar or physicochemical parameters. Eur. Food Res. Technol. 2017, 243, 1459–1470. [Google Scholar] [CrossRef]
- Toko, K.; Hara, D.; Tahara, Y.; Yasura, M.; Ikezaki, H. Relationship between the amount of bitter substances adsorbed onto lipid/polymer membrane and the electric response of taste sensors. Sensors 2014, 14, 16274–16286. [Google Scholar] [CrossRef] [PubMed]
- Veloso, A.C.A.; Dias, L.G.; Rodrigues, N.; Pereira, J.A.; Peres, A.M. Sensory intensity assessment of olive oils using an electronic tongue. Talanta 2016, 146, 585–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Miyake, K.; Tahara, Y.; Fujimoto, H.; Iwai, K.; Narita, Y.; Hanzawa, T.; Kobayashi, T.; Kakiuchi, M.; Ariki, S.; et al. Quantification of bitterness of coffee in the presence of high-potency sweeteners using taste sensors. Sens. Actuators B Chem. 2020, 309, 127784. [Google Scholar] [CrossRef]
- Wu, X.; Tahara, Y.; Yatabe, R.; Toko, K. Taste sensor: Electronic tongue with lipid membranes. Anal. Sci. 2020, 36, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Jia, Z.; Chen, X.-T.; Pan, N.; Cai, S.-L.; Zhang, Y.; Liu, Z.-Y. The Freshness of Frozen Fugu bimaculatus Detected by Electronic Tongue. Mod. Food Sci. Technol. 2021, 37, 220–229. [Google Scholar]
- Duan, Z.; Dong, S.; Dong, Y.; Gao, Q. Geographical origin identification of two salmonid species via flavor compound analysis using headspace-gas chromatography-ion mobility spectrometry combined with electronic nose and tongue. Food Res. Int. 2021, 145, 110385. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, H.; Shi, W.; Huang, H.; Shen, S.; Yang, F.; Chen, S. Changes of the flavor substances and protein degradation of black carp (Mylopharyngodon piceus) pickled products during steaming. J. Sci. Food Agric. 2021, 101, 4033–4041. [Google Scholar] [CrossRef]
- Duan, Z.; Zhou, Y.; Liu, W.; Shi, C.C.; Li, L.; Dong, Y.; Gao, Q.; Dong, S. Variations in flavor according to fish size in rainbow trout (Oncorhynchus mykiss). Aquaculture 2020, 526, 735398. [Google Scholar] [CrossRef]
- Miao, H.; Liu, Q.; Bao, H.; Wang, X.; Miao, S. Effects of different freshness on the quality of cooked tuna steak. Innov. Food Sci. Emerg. Technol. 2017, 44, 67–73. [Google Scholar] [CrossRef] [Green Version]
- The European Commission. Commission Delegated Regulation (EU) 2015/1830 of 8th July 2015: Amending Regulation (EEC) No 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Off. J. Eur. Union 2015, L266, 9–13. [Google Scholar]
- Cherif, M.; Rodrigues, N.; Veloso, A.C.A.; Pereira, J.A.; Peres, A.M. Kinetic study of the microwave-induced thermal degradation of cv. Arbequina olive oils flavored with lemon verbena essential oil. JAOCS 2021, 98, 1021–1032. [Google Scholar] [CrossRef]
- IOC (International Olive Council). Sensory Analysis of Olive Oil—Method for the Organoleptic Assessment of Virgin Olive Oil Applying to Use a Designation of Origin; COI/T.20/Doc. no. 22; IOC (International Olive Council): Madrid, Spain, 2005; p. 29. [Google Scholar]
- Atitallah, A.B.; Barkallah, M.; Hentati, F.; Dammak, M.; Hlima, H.B.; Fendri, I.; Attia, H.; Michaud, P.; Abdelkafi, S. Physicochemical, textural, antioxidant and sensory characteristics of microalgae-fortified canned fish burgers prepared from minced flesh of common barbel (Barbus barbus). Food Biosci. 2019, 30, 100417. [Google Scholar] [CrossRef]
- AOAC 925.40. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1995. [Google Scholar]
- AOAC 940.26. Official Methods of Analysis of AOAC International, 17th ed.; Horwitz, W., Ed.; AOAC: Arlington, VA, USA, 2000; Volume II, pp. 1–3. [Google Scholar]
- Bersuder, P.; Hole, M.; Smith, G. Antioxidants from a heated histidine glucose model system I: Investigation of the antioxidant role of histidine and isolation of antioxidants by high performance liquid chromatography. J. Am. Oil Chem. Soc. 1998, 75, 181–187. [Google Scholar] [CrossRef]
- ISO 4121:2003. Sensory Analysis—Guidelines for the Use of Quantitative Response Scales, 2nd ed.; International Organization for Standardization: Geneva, Switzerland, 2003; p. 9. [Google Scholar]
- ISO 13299: 2016. Sensory Analysis—Methodology—General Guidance for Establishing a Sensory Profile, 2nd ed.; International Organization for Standardization: Geneva, Switzerland, 2016; p. 41. [Google Scholar]
- ISO 11036:2020. Sensory Analysis—Methodology—Texture Profile, 2nd ed.; International Organization for Standardization: Geneva, Switzerland, 2020; p. 17. [Google Scholar]
- Ghrissi, H.; Veloso, A.C.A.; Marx, Í.M.G.; Dias, T.; Peres, A.M. A potentiometric electronic tongue as a discrimination tool of water-food indicator/contamination bacteria. Chemosensors 2021, 9, 143. [Google Scholar] [CrossRef]
- Dias, L.A.; Peres, A.M.; Veloso, A.C.A.; Reis, F.S.; Vilas-Boas, M.; Machado, A.A.S.C. An electronic tongue taste evaluation: Identification of goat milk adulteration with bovine milk. Sens. Actuators B Chem. 2009, 136, 209–217. [Google Scholar] [CrossRef]
- Bertsimas, D.; Tsitsiklis, J. Simulated annealing. Stat. Sci. 1993, 8, 10–15. [Google Scholar] [CrossRef]
- Cadima, J.; Cerdeira, J.O.; Minhoto, M. Computational aspects of algorithms for variable selection in the context of principal components. Comput. Stat. Data Anal. 2004, 47, 225–236. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.M. Pattern Recognition and Machine Learning, 1st ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Caponio, F.; Bilancia, M.T.; Summo, C.; Gomes, T.; Pasqualone, A. A survey of in-oil canned tuna quality by sensory analysis and the determination of the oxidative degradation of the liquid medium. Int. J. Food Prop. 2010, 13, 672–681. [Google Scholar] [CrossRef]
- Gerhardt, N.; Schwolow, S.; Rohn, S.; Pérez-Cacho, P.R.; Galán-Soldevilla, H.; Arce, L.; Weller, P. Quality assessment of olive oils based on temperature-ramped HS-GC-IMS and sensory evaluation: Comparison of different processing approaches by LDA, KNN, and SVM. Food Chem. 2019, 278, 720–728. [Google Scholar] [CrossRef] [PubMed]
Sensor’s Code | Composition 1 | |
---|---|---|
1st Array | 2nd Array | |
S1:1 | S2:1 | 65% PVC + 32 % P1 + 3% A1 |
S1:2 | S2:2 | 65% PVC + 32 % P1 + 3% A2 |
S1:3 | S2:3 | 65% PVC + 32 % P1 + 3% A3 |
S1:4 | S2:4 | 65% PVC + 32 % P1 + 3% A4 |
S1:5 | S2:5 | 65% PVC + 32 % P2 + 3% A1 |
S1:6 | S2:6 | 65% PVC + 32 % P2 + 3% A2 |
S1:7 | S2:7 | 65% PVC + 32 % P2 + 3% A3 |
S1:8 | S2:8 | 65% PVC + 32 % P2 + 3% A4 |
S1:9 | S2:9 | 65% PVC + 32 % P3 + 3% A1 |
S1:10 | S2:10 | 65% PVC + 32 % P3 + 3% A2 |
S1:11 | S2:11 | 65% PVC + 32 % P3 + 3% A3 |
S1:12 | S2:12 | 65% PVC + 32 % P3 + 3% A4 |
S1:13 | S2:13 | 65% PVC + 32 % P4 + 3% A1 |
S1:14 | S2:14 | 65% PVC + 32 % P4 + 3% A2 |
S1:15 | S2:15 | 65% PVC + 32 % P4 + 3% A3 |
S1:16 | S2:16 | 65% PVC + 32 % P4 + 3% A4 |
S1:17 | S2:17 | 65% PVC + 32 % P5 + 3% A1 |
S1:18 | S2:18 | 65% PVC + 32 % P5 + 3% A2 |
S1:19 | S2:19 | 65% PVC + 32 % P5 + 3% A3 |
S1:20 | S2:20 | 65% PVC + 32 % P5 + 3% A4 |
Parameters | Sunflower Oil | Refined Olive Oil | Extra Virgin Olive Oil | p-Value 2 | ||
---|---|---|---|---|---|---|
Ripely Fruity | Greenly Light Fruity | Greenly Intense Fruity | ||||
Physicochemical | ||||||
FA (% oleic acid) | 0.17 ± 0.00c | 0.17 ± 0.00c | 0.28 ± 0.00a | 0.23 ± 0.00b | 0.23 ± 0.00b | <0.0001 |
PV (mEq O2/kg) | 0.83 ± 0.00c | 0.83 ± 0.00c | 5.81 ± 0.59a | 5.65 ± 0.37a | 3.32 ± 0.01b | <0.0001 |
K232 | 3.28 ± 0.14a | 2.46 ± 0.03b | 1.76 ± 0.05c | 1.73 ± 0.01c | 1.85 ± 0.04c | <0.0001 |
K268 | 2.32 ± 0.06a | 0.33 ± 0.02b | 0.14 ± 0.01c | 0.16 ±0.01c | 0.17 ± 0.01c | <0.0001 |
DPPH (%) | 2.09 ± 0.08d | 3.75 ± 0.30d | 20.22 ± 1.02c | 44.87 ± 1.55b | 66.97 ± 1.82a | <0.0001 |
TPC (mg GAE/kg) | ND | ND | 114 ± 18c | 282 ± 21b | 476 ± 20a | <0.0001 |
Gustatory sensory evaluation 1 | ||||||
Ripely fruity | ND | ND | 7.38 ± 0.15 | ND | ND | ---- |
Greenly fruity | ND | ND | ND | 4.49 ± 0.07b | 6.90 ± 0.01a | <0.0001 |
Sweet | ND | ND | 6.95 ± 0.04a | 4.50 ± 0.01b | 1.19 ± 0.07c | <0.0001 |
Bitter | ND | ND | 3.35 ± 1.02a | 2.96 ± 0.44a | 3.65 ± 0.37a | 0.3090 |
Pungent | ND | ND | 0.88 ± 0.18c | 2.14 ± 0.30b | 4.64 ± 0.11a | <0.0001 |
Parameters 1 | Canned Tuna Covered with Different Media | p-Value 2 | ||||
---|---|---|---|---|---|---|
Sunflower Oil | Refined Olive Oil | Extra Virgin Olive Oil | ||||
Ripely Fruity | Greenly Light Fruity | Greenly Intense Fruity | ||||
Physicochemical | ||||||
pH | 5.64 ± 0.02a | 5.53 ± 0.02b | 5.57 ± 0.01b | 5.62 ± 0.05a | 5.62 ± 0.00a | <0.0001 |
Moisture (%) | 60.5 ± 1.5a | 61.5 ± 1.3a | 60.1 ± 1.8a | 61.6 ± 3.0a | 58.6 ± 4.2a | 0.3760 |
Ash (%) | 1.28 ± 0.01ab | 1.32 ± 0.04a | 1.25 ± 0.01b | 1.29 ± 0.02ab | 1.34 ± 0.07a | 0.0097 |
DPPH (%) | 3.5 ± 1.7e | 9.2 ± 0.5d | 12.1 ± 0.8c | 15.2 ± 0.7b | 20.4 ± 0.9a | <0.0001 |
TPC (mg GAE/kg) | 264 ± 19c | 284 ± 6bc | 340 ± 11a | 330 ± 14a | 293 ± 4b | <0.0001 |
CIELAB color scale | ||||||
L* | 59.9 ± 2.0a | 58.7 ± 2.1a | 57.5 ± 1.3a | 57.3 ± 2.0a | 58.1 ± 1.7a | 0.2120 |
a* | 4.5 ± 0.2c | 4.6 ± 0.1bc | 6.3 ± 0.5a | 4.7 ± 0.3bc | 5.3 ± 0.6b | <0.0001 |
b* | 16.7 ± 1.3b | 19.8 ± 1.3a | 22.1 ± 2.1a | 22.3 ± 1.3a | 21.7 ± 1.6a | <0.0001 |
C* | 17.3 ± 1.3b | 20.4 ± 1.3a | 23.0 ± 1.9a | 22.7 ± 1.3a | 22.3 ± 1.6a | <0.0001 |
h* | 74.8 ± 1.2b | 76.9 ± 0.7ab | 73.9 ± 2.6b | 78.1 ± 0.9 | 76.3 ± 1.9ab | 0.0043 |
Sensory Attributes 1 | Canned Tuna Covered with Different Media | p-Value 2 | ||||
---|---|---|---|---|---|---|
Sunflower Oil | Refined Olive Oil | Extra Virgin Olive Oil | ||||
Ripely Fruity | Greenly Light Fruity | Greenly Intense Fruity | ||||
Visual sensations | ||||||
Consistency | 4.7 ± 0.4ab | 5.2 ± 0.3a | 3.9 ± 0.5b | 5.7 ± 0.7a | 3.7 ± 1.0b | 0.0002 |
Appearance | 6.8 ± 1.4a | 5.9 ± 1.0a | 5.8 ± 1.6a | 6.0 ± 1.0a | 5.8 ± 1.0a | 0.6500 |
Color uniformity | 2.6 ± 0.5a | 4.0 ± 0.7a | 3.7 ± 1.3a | 3.8 ± 0.3a | 3.5 ± 0.4a | 0.0633 |
Brightness | 3.6 ± 0.4abc | 2.7 ± 0.3c | 4.3 ± 0.8a | 3.0 ± 0.4bc | 3.6 ± 0.3ab | 0.0002 |
Strange spots | ND | ND | ND | ND | ND | ---- |
Olfactory sensations | ||||||
Tuna aroma | 7.2 ± 0.5a | 6.8 ± 0.2a | 6.9 ± 0.4a | 3.8 ± 1.4b | 4.3 ± 0.9b | <0.0001 |
Aroma intensity | 5.7 ± 0.9a | 6.4 ± 0.3a | 5.7 ± 0.2a | 3.8 ± 0.5b | 4.7 ± 0.0b | <0.0001 |
Aroma pleasantness | 6.0 ± 0.7ab | 6.4 ± 1.1a | 6.5 ± 0.3a | 5.2 ± 0.8ab | 4.8 ± 0.2b | 0.0032 |
Other aroma | ND | ND | 3.3 ± 0.6a | 2.4 ± 0.9a | 3.1 ± 0.3a | 0.1098 |
Off-flavor (rancid) | ND | ND | ND | ND | ND | ---- |
Complexity | 2.9 ± 0.5b | 3.1 ± 0.7b | 4.8 ± 0.2a | 3.5 ± 0.5b | 2.9 ± 0.5b | <0.0001 |
Persistence | 3.2 ± 0.6b | 3.4 ± 0.4b | 5.0 ± 0.2a | 3.8 ± 0.4b | 3.3 ± 1.0b | 0.0008 |
Kinesthetic sensations | ||||||
Succulence | 2.5 ± 0.5c | 2.9 ± 0.5bc | 3.1 ± 1.0bc | 5.1 ± 0.4a | 3.7 ± 0.6b | <0.0001 |
Chewiness | 2.9 ± 0.9ab | 3.8 ± 0.5a | 3.8 ± 1.0a | 1.9 ± 0.8b | 3.5 ± 0.7a | 0.0075 |
Hardness | 3.0 ± 0.8a | 2.9 ± 0.6a | 4.1 ± 0.8a | 3.2 ± 0.4a | 3.3 ± 0.6a | 0.0489 |
Adhesiveness | 1.7 ± 0.8c | 3.8 ± 0.4a | 3.2 ± 0.8ab | 2.3 ± 0.5bc | 4.0 ± 0.5a | <0.0001 |
Gustatory sensations | ||||||
Tuna taste | 4.8 ± 0.7a | 4.9 ± 0.2a | 4.6 ± 0.6a | 3.0 ± 1.2a | 4.0 ± 1.7a | 0.0438 |
Fat taste | 1.5 ± 0.8a | 1.2 ± 0.4a | 2.0 ± 0.5a | 1.1 ± 0.6a | 1.3 ± 0.3a | 0.1390 |
Taste intensity | 5.1 ± 0.2a | 3.5 ± 0.7b | 5.0 ± 0.2a | 3.9 ± 0.5b | 3.2 ± 0.5b | <0.0001 |
Taste pleasantness | 5.5 ± 1.2a | 4.6 ± 0.4a | 5.1 ± 0.3a | 4.9 ± 0.3a | 4.9 ± 0.5a | 0.3130 |
Saltiness | 1.5 ± 0.5a | 1.3 ± 0.4a | 1.5 ± 0.4a | 1.4 ± 0.2a | 1.4 ± 0.3a | 0.9500 |
Bitterness | 0.7 ± 0.1a | 0.8 ± 0.7a | 1.3 ± 0.8a | 0.7 ± 0.2a | 0.8 ± 0.3a | 0.3534 |
Sweetness | 2.7 ± 0.6a | 2.7 ± 0.5a | 2.4 ± 0.8a | 2.9 ± 0.4a | 2.8 ± 0.7a | 0.7100 |
Pungency | ND | ND | ND | ND | 0.6 ± 0.1 | ---- |
Other tastes | ND | ND | ND | ND | ND | ---- |
Complexity | 3.0 ± 1.2a | 2.3 ± 0.2a | 3.2 ± 0.5a | 3.2 ± 0.7a | 2.8 ± 0.4a | 0.2150 |
Persistence | 3.2 ± 0.7a | 3.0 ± 0.3a | 3.5 ± 0.2a | 3.4 ± 0.7a | 3.3 ± 0.7a | 0.6460 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreiro, N.; Rodrigues, N.; Veloso, A.C.A.; Fernandes, C.; Paiva, H.; Pereira, J.A.; Peres, A.M. Impact of the Covering Vegetable Oil on the Sensory Profile of Canned Tuna of Katsuwonus pelamis Species and Tuna’s Taste Evaluation Using an Electronic Tongue. Chemosensors 2022, 10, 18. https://doi.org/10.3390/chemosensors10010018
Ferreiro N, Rodrigues N, Veloso ACA, Fernandes C, Paiva H, Pereira JA, Peres AM. Impact of the Covering Vegetable Oil on the Sensory Profile of Canned Tuna of Katsuwonus pelamis Species and Tuna’s Taste Evaluation Using an Electronic Tongue. Chemosensors. 2022; 10(1):18. https://doi.org/10.3390/chemosensors10010018
Chicago/Turabian StyleFerreiro, Nuno, Nuno Rodrigues, Ana C. A. Veloso, Conceição Fernandes, Helga Paiva, José A. Pereira, and António M. Peres. 2022. "Impact of the Covering Vegetable Oil on the Sensory Profile of Canned Tuna of Katsuwonus pelamis Species and Tuna’s Taste Evaluation Using an Electronic Tongue" Chemosensors 10, no. 1: 18. https://doi.org/10.3390/chemosensors10010018
APA StyleFerreiro, N., Rodrigues, N., Veloso, A. C. A., Fernandes, C., Paiva, H., Pereira, J. A., & Peres, A. M. (2022). Impact of the Covering Vegetable Oil on the Sensory Profile of Canned Tuna of Katsuwonus pelamis Species and Tuna’s Taste Evaluation Using an Electronic Tongue. Chemosensors, 10(1), 18. https://doi.org/10.3390/chemosensors10010018